The Art of Program Design Web Programming
Chapter 13. Further Topics
This books goal has been to help you learn basic Perl programming. In this chapter, I will point the way to further learning in Perl.13.1 The Art of Program Design
My emphasis on the art of program design has determined the way in which the programs were presented. Theyve generally progressed from a discussion of problems and ideas, to pseudocode, to small groups of small, cooperating subroutines, and finally to a close-up discussion of the code. At several points youve seen more than one way to do the same task. This is an important part of a programmers mindset: the knowledge of, and willingness to try, alternatives. The other recurrent theme has been to explain the problem-solving strategies programmers rely on. These include knowing how to use such sources of information as searchable newsgroup archives, books, and language documentation; having a good working knowledge of debugging tools; and understanding basic algorithm and data structure design and analysis. As your skills improve, and your programs become more complex, youll find that these strategies take on a much more important role. Designing and coding programs to solve complex problems or crunch lots of complex data requires advanced problem-solving strategies. So its worth your while to learn to think like a computer scientist as well as a biologist.13.2 Web Programming
The Internet is the most important source of bioinformatics data. From FTP sites to web-enabled programs, the Perl-literate bioinformatician needs to be able to access web resources. Just about every lab has to have its own web page these days, and many grants even require it. Youll need to learn the basics about the HTML and XML markup languages that display web pages, about the difference between a web server and a web browser, and similar facts of life. The popular CGI.pm module makes it fairly easy to create interactive web pages, and several other modules are available that make Internet programming tasks relatively painless. For instance, you can write code for your own web page that enables visitors to try out your latest sequence analyzer or search through your special-purpose database. You can also add code to your own programs to enable them to interact with other web sites, querying and retrieving data automatically. Collaborators who are geographically diverse can use such web programming to work cooperatively on a project.13.3 Algorithms and Sequence Alignment
Parts
» OReilly.Beginning.Perl For Bioinformatics
» The Organization of Proteins
» In Silico Biology and Computer Science
» A Low and Long Learning Curve
» Ease of Programming Rapid Prototyping
» Portability, Speed, and Program Maintenance
» Perl May Already Be Installed No Internet Access?
» Downloading Binary Versus Source Code
» Unix and Linux Macintosh Windows
» Unix or Linux How to Run Perl Programs
» Text Editors Getting Started with Perl
» Finding Help Getting Started with Perl
» Saves and Backups Error Messages
» Individual Approaches to Programming Programming Strategies
» The Design Phase The Programming Process
» Algorithms The Programming Process
» Pseudocode and Code Comments
» Representing Sequence Data Sequences and Strings
» Control Flow Comments Revisited Command Interpretation
» Assignment Print Exit Statements
» Concatenating DNA Fragments Sequences and Strings
» Using the Perl Documentation
» Calculating the Reverse Complement in Perl
» Proteins, Files, and Arrays Reading Proteins in Files
» Arrays Sequences and Strings
» Scalar and List Context Exercises
» Conditional tests and matching braces
» Code Layout Motifs and Loops
» Getting User Input from the Keyboard Turning Arrays into Scalars with join
» Regular expressions and character classes
» Counting Nucleotides Motifs and Loops
» Exploding Strings into Arrays
» Operating on Strings Motifs and Loops
» Writing to Files Motifs and Loops
» Advantages of Subroutines Subroutines
» Arguments Scoping and Subroutines
» Scoping Scoping and Subroutines
» Command-Line Arguments and Arrays
» Subroutines: Pass by Value Subroutines: Pass by Reference
» Modules and Libraries of Subroutines
» use warnings; and use strict; Fixing Bugs with Comments and Print Statements
» How to start and stop the debugger Debugger command summary
» Stepping through statements with the debugger
» Setting breakpoints The Perl Debugger
» Fixing another bug use warnings; and use strict; redux
» Exercises Subroutines and Bugs
» Random Number Generators Mutations and Randomization
» Seeding the Random Number Generator Control Flow
» Making a Sentence Randomly Selecting an Element of an Array
» Formatting A Program Using Randomization
» Select a random position in a string Choose a random nucleotide
» Improving the Design Combining the Subroutines to Simulate Mutation
» Exercises Mutations and Randomization
» A Gene Expression Database Gene Expression Data Using Unsorted Arrays
» Gene Expression Data Using Sorted Arrays and Binary Search
» Gene Expression Data Using Hashes
» Translating Codons to Amino Acids
» The Redundancy of the Genetic Code
» Using Hashes for the Genetic Code
» Translating DNA into Proteins
» FASTA Format Reading DNA from Files in FASTA Format
» A Design to Read FASTA Files
» A Subroutine to Read FASTA Files
» Writing Formatted Sequence Data
» Regular Expressions Restriction Maps and Regular Expressions
» Background Planning the Program
» Restriction Enzyme Data Restriction Maps and Restriction Enzymes
» Logical Operators and the Range Operator
» Finding the Restriction Sites
» Exercises Restriction Maps and Regular Expressions
» Using Arrays Separating Sequence and Annotation
» Pattern modifiers Examples of pattern modifiers
» Separating annotations from sequence
» Using Arrays Parsing Annotations
» When to Use Regular Expressions
» Main Program Parsing Annotations
» Parsing Annotations at the Top Level
» Features Parsing the FEATURES Table
» Parsing Parsing the FEATURES Table
» DBM Essentials Indexing GenBank with DBM
» Overview of PDB Protein Data Bank
» Opening Directories Files and Folders
» Processing Many Files Files and Folders
» Extracting Primary Sequence Parsing PDB Files
» Finding Atomic Coordinates Parsing PDB Files
» The Stride Secondary Structure Predictor
» Parsing Stride Output Controlling Other Programs
» String Matching and Homology
» Extracting Annotation and Alignments
» Parsing BLAST Alignments Parsing BLAST Output
» The printf Function Presenting Data
» here Documents format and write
» Bioperl Tutorial Script Bioperl
» The Art of Program Design Web Programming
» Algorithms and Sequence Alignment Object-Oriented Programming Complex Data Structures
Show more