open and unless Loops
5.1.2.1 open and unless
IT-SC 75 The open call is a system call, because to open a file, Perl must ask for the file from the operating system. The operating system may be a version of Unix or Linux, a Microsoft Windows versions, one of the Apple Macintosh operating systems, and so on. Files are managed by the operating system and can be accessed only by it. Its a good habit to check for the success or failure of system calls, especially when opening files. If a system call fails, and youre not checking for it, your program will continue, perhaps attempting to read or write to a file you couldnt open in the first place. You should always check for failure and let the user of the program know right away when a file cant be opened. Often you may want to exit the program on failure or try to open a different file. In Example 5-2 , the open system call is part of the test of the unless conditional. unless is the opposite of if. Just as in English you can say do the statements in the block if the condition is true; you can also say the opposite, do the statements in the block unless the condition is true. The open system call gives you a true value if it successfully opens the file; so here, in the conditional test of the unless statement, if the open call fails, the statements in the block are performed, the program prints an error message, and then exits. To sum up, conditionals and loops are simple ideas and not difficult to learn in Perl. They are among the most powerful features of programming languages. Conditionals allow you to tailor a program to several alternatives, and in that way, make decisions based on the type of input it gets. They are responsible for a large part of whatever artificial intelligence there is in a computer program. Loops harness the speed of the computer so that in a few lines of code, you can handle large amounts of input or continually iterateParts
» OReilly.Beginning.Perl For Bioinformatics
» The Organization of Proteins
» In Silico Biology and Computer Science
» A Low and Long Learning Curve
» Ease of Programming Rapid Prototyping
» Portability, Speed, and Program Maintenance
» Perl May Already Be Installed No Internet Access?
» Downloading Binary Versus Source Code
» Unix and Linux Macintosh Windows
» Unix or Linux How to Run Perl Programs
» Text Editors Getting Started with Perl
» Finding Help Getting Started with Perl
» Saves and Backups Error Messages
» Individual Approaches to Programming Programming Strategies
» The Design Phase The Programming Process
» Algorithms The Programming Process
» Pseudocode and Code Comments
» Representing Sequence Data Sequences and Strings
» Control Flow Comments Revisited Command Interpretation
» Assignment Print Exit Statements
» Concatenating DNA Fragments Sequences and Strings
» Using the Perl Documentation
» Calculating the Reverse Complement in Perl
» Proteins, Files, and Arrays Reading Proteins in Files
» Arrays Sequences and Strings
» Scalar and List Context Exercises
» Conditional tests and matching braces
» Code Layout Motifs and Loops
» Getting User Input from the Keyboard Turning Arrays into Scalars with join
» Regular expressions and character classes
» Counting Nucleotides Motifs and Loops
» Exploding Strings into Arrays
» Operating on Strings Motifs and Loops
» Writing to Files Motifs and Loops
» Advantages of Subroutines Subroutines
» Arguments Scoping and Subroutines
» Scoping Scoping and Subroutines
» Command-Line Arguments and Arrays
» Subroutines: Pass by Value Subroutines: Pass by Reference
» Modules and Libraries of Subroutines
» use warnings; and use strict; Fixing Bugs with Comments and Print Statements
» How to start and stop the debugger Debugger command summary
» Stepping through statements with the debugger
» Setting breakpoints The Perl Debugger
» Fixing another bug use warnings; and use strict; redux
» Exercises Subroutines and Bugs
» Random Number Generators Mutations and Randomization
» Seeding the Random Number Generator Control Flow
» Making a Sentence Randomly Selecting an Element of an Array
» Formatting A Program Using Randomization
» Select a random position in a string Choose a random nucleotide
» Improving the Design Combining the Subroutines to Simulate Mutation
» Exercises Mutations and Randomization
» A Gene Expression Database Gene Expression Data Using Unsorted Arrays
» Gene Expression Data Using Sorted Arrays and Binary Search
» Gene Expression Data Using Hashes
» Translating Codons to Amino Acids
» The Redundancy of the Genetic Code
» Using Hashes for the Genetic Code
» Translating DNA into Proteins
» FASTA Format Reading DNA from Files in FASTA Format
» A Design to Read FASTA Files
» A Subroutine to Read FASTA Files
» Writing Formatted Sequence Data
» Regular Expressions Restriction Maps and Regular Expressions
» Background Planning the Program
» Restriction Enzyme Data Restriction Maps and Restriction Enzymes
» Logical Operators and the Range Operator
» Finding the Restriction Sites
» Exercises Restriction Maps and Regular Expressions
» Using Arrays Separating Sequence and Annotation
» Pattern modifiers Examples of pattern modifiers
» Separating annotations from sequence
» Using Arrays Parsing Annotations
» When to Use Regular Expressions
» Main Program Parsing Annotations
» Parsing Annotations at the Top Level
» Features Parsing the FEATURES Table
» Parsing Parsing the FEATURES Table
» DBM Essentials Indexing GenBank with DBM
» Overview of PDB Protein Data Bank
» Opening Directories Files and Folders
» Processing Many Files Files and Folders
» Extracting Primary Sequence Parsing PDB Files
» Finding Atomic Coordinates Parsing PDB Files
» The Stride Secondary Structure Predictor
» Parsing Stride Output Controlling Other Programs
» String Matching and Homology
» Extracting Annotation and Alignments
» Parsing BLAST Alignments Parsing BLAST Output
» The printf Function Presenting Data
» here Documents format and write
» Bioperl Tutorial Script Bioperl
» The Art of Program Design Web Programming
» Algorithms and Sequence Alignment Object-Oriented Programming Complex Data Structures
Show more