Extracting Primary Sequence Parsing PDB Files
11.4.1 Extracting Primary Sequence
Lets examine the subroutine extractSEQRES , now that the record types have been parsed out, and extract the primary amino acid sequence. You need to extract each chain separately and return an array of one or more strings of sequence corresponding to those chains, instead of just one sequence. The previous parse, in Example 11-4 , left the required SEQRES record type, which stretches over several lines, in a scalar string that is the value of the key SEQRES in a hash. Our success with the previous parsePDBrecordtypes subroutine that used iteration over lines as opposed to regular expressions over multiline strings leads to the same approach here. The split Perl function enables you to turn a multiline string into an array. As you iterate through the lines of the SEQRES record type, notice when a new chain is starting, save the previous chain in results , reset the sequence array, and reset the lastchain flag to the new chain. Also, when done with all the lines, make sure to save the last sequence chain in the results array. Also notice and verify by exploring the Perl documentation for the function that split, with the arguments you gave it, does what you want. The third and final subroutine of Example 11-5 is called iub3to1 . Since in PDB the sequence information is in three-character codes, you need this subroutine to change those sequences into one-character codes. It uses a straightforward hash lookup to perform the translation. Weve now decomposed the problem into a few complementary subroutines. Its always interesting as to how to best divide a problem into cooperating subroutines. You can put the call to iub3to1 inside the extractSEQRES subroutine; that might be a cleaner way to package these subroutines together, since, outside the PDB file format, you wont have use for the strings of amino acids in three-character codes. The important observation at this juncture is to point out that a few short subroutines, tied together with a very short main program, were sufficient to do a great deal of parsing of PDB files. IT-SC 29811.4.2 Finding Atomic Coordinates
Parts
» OReilly.Beginning.Perl For Bioinformatics
» The Organization of Proteins
» In Silico Biology and Computer Science
» A Low and Long Learning Curve
» Ease of Programming Rapid Prototyping
» Portability, Speed, and Program Maintenance
» Perl May Already Be Installed No Internet Access?
» Downloading Binary Versus Source Code
» Unix and Linux Macintosh Windows
» Unix or Linux How to Run Perl Programs
» Text Editors Getting Started with Perl
» Finding Help Getting Started with Perl
» Saves and Backups Error Messages
» Individual Approaches to Programming Programming Strategies
» The Design Phase The Programming Process
» Algorithms The Programming Process
» Pseudocode and Code Comments
» Representing Sequence Data Sequences and Strings
» Control Flow Comments Revisited Command Interpretation
» Assignment Print Exit Statements
» Concatenating DNA Fragments Sequences and Strings
» Using the Perl Documentation
» Calculating the Reverse Complement in Perl
» Proteins, Files, and Arrays Reading Proteins in Files
» Arrays Sequences and Strings
» Scalar and List Context Exercises
» Conditional tests and matching braces
» Code Layout Motifs and Loops
» Getting User Input from the Keyboard Turning Arrays into Scalars with join
» Regular expressions and character classes
» Counting Nucleotides Motifs and Loops
» Exploding Strings into Arrays
» Operating on Strings Motifs and Loops
» Writing to Files Motifs and Loops
» Advantages of Subroutines Subroutines
» Arguments Scoping and Subroutines
» Scoping Scoping and Subroutines
» Command-Line Arguments and Arrays
» Subroutines: Pass by Value Subroutines: Pass by Reference
» Modules and Libraries of Subroutines
» use warnings; and use strict; Fixing Bugs with Comments and Print Statements
» How to start and stop the debugger Debugger command summary
» Stepping through statements with the debugger
» Setting breakpoints The Perl Debugger
» Fixing another bug use warnings; and use strict; redux
» Exercises Subroutines and Bugs
» Random Number Generators Mutations and Randomization
» Seeding the Random Number Generator Control Flow
» Making a Sentence Randomly Selecting an Element of an Array
» Formatting A Program Using Randomization
» Select a random position in a string Choose a random nucleotide
» Improving the Design Combining the Subroutines to Simulate Mutation
» Exercises Mutations and Randomization
» A Gene Expression Database Gene Expression Data Using Unsorted Arrays
» Gene Expression Data Using Sorted Arrays and Binary Search
» Gene Expression Data Using Hashes
» Translating Codons to Amino Acids
» The Redundancy of the Genetic Code
» Using Hashes for the Genetic Code
» Translating DNA into Proteins
» FASTA Format Reading DNA from Files in FASTA Format
» A Design to Read FASTA Files
» A Subroutine to Read FASTA Files
» Writing Formatted Sequence Data
» Regular Expressions Restriction Maps and Regular Expressions
» Background Planning the Program
» Restriction Enzyme Data Restriction Maps and Restriction Enzymes
» Logical Operators and the Range Operator
» Finding the Restriction Sites
» Exercises Restriction Maps and Regular Expressions
» Using Arrays Separating Sequence and Annotation
» Pattern modifiers Examples of pattern modifiers
» Separating annotations from sequence
» Using Arrays Parsing Annotations
» When to Use Regular Expressions
» Main Program Parsing Annotations
» Parsing Annotations at the Top Level
» Features Parsing the FEATURES Table
» Parsing Parsing the FEATURES Table
» DBM Essentials Indexing GenBank with DBM
» Overview of PDB Protein Data Bank
» Opening Directories Files and Folders
» Processing Many Files Files and Folders
» Extracting Primary Sequence Parsing PDB Files
» Finding Atomic Coordinates Parsing PDB Files
» The Stride Secondary Structure Predictor
» Parsing Stride Output Controlling Other Programs
» String Matching and Homology
» Extracting Annotation and Alignments
» Parsing BLAST Alignments Parsing BLAST Output
» The printf Function Presenting Data
» here Documents format and write
» Bioperl Tutorial Script Bioperl
» The Art of Program Design Web Programming
» Algorithms and Sequence Alignment Object-Oriented Programming Complex Data Structures
Show more