The Organization of Proteins
1.2 The Organization of Proteins
Proteins are somewhat similar to DNA. They are also polymers, long strings made up of a small number of simple molecules. As DNA is composed of four nucleotides, so proteins are composed of 20 amino acids. These amino acids may occur in any order. See Table 4-2 for the names and one- and three-letter abbreviations for the amino acids. Amino acids are composed of an amino group and a carboxyl group. They form a chemical bond, called a peptide bond, between the amino group and the carboxyl group of adjacent amino acids. Each of the 20 amino acids has a different sidechain, which protrudes from the backbone. The chemical properties of the sidechains are important in determining the properties of the protein. Proteins usually have a more complex 3D structure than DNA. The peptide bonds have a great deal of rotational freedom, which allows proteins to form many 3D structures. Instead of DNAs double helix, proteins tend to fold up in a variety of different shapes and are composed of one or more strands of amino acids assembled together. [2] The sequence of amino acids along the strand is called the primary structure. The coiling in on itself into local structures such as helices, beta-strands, and turns, is called the secondary structure. The final foldings and assemblies are called the tertiary and quaternary structure of proteins see Chapter 11 . [2] I try to avoid most of the potentially confusing biology in this text in order to concentrate on learning Perl, but I cant help mentioning at this point that DNA also has a more complex 3D structure. It can appear as one-stranded, two-stranded, and three-stranded forms, and it is also coiled and recoiled into a small space during most of the life of the cell. There is more primary sequence data available than secondary or higher structural data. In fact, a great deal of primary protein sequence data is available since it is relatively easy to identify primary protein sequence from DNA, of which a great deal has been sequenced. The Protein Data Bank PDB contains structural information about thousands of proteins, the accumulated knowledge of decades of work. Well look at the PDB in Chapter 10 , but you may want to get a headstart by visiting the PDB web site http:www.rcsb.orgpdb to become familiar with this essential bioinformatics resource.1.3 In Silico
Parts
» OReilly.Beginning.Perl For Bioinformatics
» The Organization of Proteins
» In Silico Biology and Computer Science
» A Low and Long Learning Curve
» Ease of Programming Rapid Prototyping
» Portability, Speed, and Program Maintenance
» Perl May Already Be Installed No Internet Access?
» Downloading Binary Versus Source Code
» Unix and Linux Macintosh Windows
» Unix or Linux How to Run Perl Programs
» Text Editors Getting Started with Perl
» Finding Help Getting Started with Perl
» Saves and Backups Error Messages
» Individual Approaches to Programming Programming Strategies
» The Design Phase The Programming Process
» Algorithms The Programming Process
» Pseudocode and Code Comments
» Representing Sequence Data Sequences and Strings
» Control Flow Comments Revisited Command Interpretation
» Assignment Print Exit Statements
» Concatenating DNA Fragments Sequences and Strings
» Using the Perl Documentation
» Calculating the Reverse Complement in Perl
» Proteins, Files, and Arrays Reading Proteins in Files
» Arrays Sequences and Strings
» Scalar and List Context Exercises
» Conditional tests and matching braces
» Code Layout Motifs and Loops
» Getting User Input from the Keyboard Turning Arrays into Scalars with join
» Regular expressions and character classes
» Counting Nucleotides Motifs and Loops
» Exploding Strings into Arrays
» Operating on Strings Motifs and Loops
» Writing to Files Motifs and Loops
» Advantages of Subroutines Subroutines
» Arguments Scoping and Subroutines
» Scoping Scoping and Subroutines
» Command-Line Arguments and Arrays
» Subroutines: Pass by Value Subroutines: Pass by Reference
» Modules and Libraries of Subroutines
» use warnings; and use strict; Fixing Bugs with Comments and Print Statements
» How to start and stop the debugger Debugger command summary
» Stepping through statements with the debugger
» Setting breakpoints The Perl Debugger
» Fixing another bug use warnings; and use strict; redux
» Exercises Subroutines and Bugs
» Random Number Generators Mutations and Randomization
» Seeding the Random Number Generator Control Flow
» Making a Sentence Randomly Selecting an Element of an Array
» Formatting A Program Using Randomization
» Select a random position in a string Choose a random nucleotide
» Improving the Design Combining the Subroutines to Simulate Mutation
» Exercises Mutations and Randomization
» A Gene Expression Database Gene Expression Data Using Unsorted Arrays
» Gene Expression Data Using Sorted Arrays and Binary Search
» Gene Expression Data Using Hashes
» Translating Codons to Amino Acids
» The Redundancy of the Genetic Code
» Using Hashes for the Genetic Code
» Translating DNA into Proteins
» FASTA Format Reading DNA from Files in FASTA Format
» A Design to Read FASTA Files
» A Subroutine to Read FASTA Files
» Writing Formatted Sequence Data
» Regular Expressions Restriction Maps and Regular Expressions
» Background Planning the Program
» Restriction Enzyme Data Restriction Maps and Restriction Enzymes
» Logical Operators and the Range Operator
» Finding the Restriction Sites
» Exercises Restriction Maps and Regular Expressions
» Using Arrays Separating Sequence and Annotation
» Pattern modifiers Examples of pattern modifiers
» Separating annotations from sequence
» Using Arrays Parsing Annotations
» When to Use Regular Expressions
» Main Program Parsing Annotations
» Parsing Annotations at the Top Level
» Features Parsing the FEATURES Table
» Parsing Parsing the FEATURES Table
» DBM Essentials Indexing GenBank with DBM
» Overview of PDB Protein Data Bank
» Opening Directories Files and Folders
» Processing Many Files Files and Folders
» Extracting Primary Sequence Parsing PDB Files
» Finding Atomic Coordinates Parsing PDB Files
» The Stride Secondary Structure Predictor
» Parsing Stride Output Controlling Other Programs
» String Matching and Homology
» Extracting Annotation and Alignments
» Parsing BLAST Alignments Parsing BLAST Output
» The printf Function Presenting Data
» here Documents format and write
» Bioperl Tutorial Script Bioperl
» The Art of Program Design Web Programming
» Algorithms and Sequence Alignment Object-Oriented Programming Complex Data Structures
Show more