Klasifikasi Turbin TURBIN AIR

Persamaan kontinuitas: Q = V × A Keterangan: Q = debit aliran m 3 detik V = kecepatan aliran ms A = luas penampang pipa m 2 Head losses yang terjadi pada saluran pipa: 1. Mayor Losses yang terjadi akibat gesekan aliran dalam satuan pipa 2. Minor Losses yang terjadi akibat adanya perlengkapan equipment pipa, seperti belokan elbow, valve, saringan dan peralatan lainnya.

2.3.1 Klasifikasi Turbin

Universitas Sumatera Utara Gambar 2.8 Kincir Air [11] Kincir air adalah jenis turbin yang paling kuno, sudah sejak lama digunakan oleh masyarakat. Teknologinya sederhana dan biasanya bekerja pada tinggi air yang rendah berkisar antara 0,1 meter sampai 12 meter roda kincir besar, dengan kapasitas aliran antara 0,05 m 3 det sampai 5 m 3 det, serta kecepatan putarannya kecil berkisar pada 2 rpm sampai 12 rpm. Selain energi tempat, faktor yang harus diperhatikan pada kincir air adalah pengaruh berat air yang mengalir masuk ke dalam sel-selnya. Air yang mengalir ke dalam dan ke luar dari kincir tidak mempunyai tekanan lebih, hanya tekanan atmosfir saja. Kecepatan air yang mengalir ke dalam kincir harus kecil, sebab bila kecepatannya besar ketika melalui sel air akan melimpah ke luar atau energi yang ada hilang percuma. Berdasarkan prinsip kerjanya turbin air dibagi menjadi dua kelompok, yaitu turbin impuls dan turbin reaksi. Table 2.1 Pengelompokan Turbin High Head Medium Head Low Head Impulse Turbine Pelton Turgo Cross Flow Multi-Jet Pelton Turgo Cross Flow Universitas Sumatera Utara Reaction Turbine Francis Propeller Kaplan Francis Kaplan Universitas Sumatera Utara Pelton Gambar 2.9 Klasifikasi Turbin Air [2]

1. Turbin Impuls atau Turbin Tekanan Sama

Yang dimaksud dengan turbin impuls adalah turbin air yang cara bekerjanya dengan merubah seluruh energi air yang teridiri dari energi potensial-tekanan- kecepatan yang tersedia menjadi energi kinetik untuk memutar turbin, sehingga menghasilkan energi puntir dalam bentuk putaran poros. Atau dengan kata lain, energi potensial air diubah menjadi energi kinetik pada nosel. Contoh turbin impuls adalah turbin Pelton. Turbin Pelton dipakai untuk tinggi air jatuh yang besar. Turbin impuls adalah turbin tekanan sama karena aliran air yang ke luar nosel tekanannya adalah sama dengan tekanan atmosfer di sekitarnya. Semua energi tinggi tempat, dan tekanan ketika masuk ke sudu jalan turbin diubah menjadi energi kecepatan Gambar 2.15. Pancaran air tersebut akan menghasilkan gaya tangensial F u di roda jalan. Universitas Sumatera Utara Gambar 2.10 Skema Turbin Pancar Turbin Pelton, jalannya tekanan di dalam pipa dan di dalam roda jalan [2]

2. Turbin Reaksi atau Turbin Tekanan Lebih

Turbin reaksi adalah turbin air yang cara bekerjanya dengan merubah seluruh energi air yang tersedia menjadi energi puntir dalam bentuk putaran. Sudu pada turbin reaksi mempunyai profil khusus yang menyebabkan terjadinya penurunan tekanan air selama melalui sudu. Turbin ini terdiri dari sudu pengarah dan sudu jalan dan kedua sudu tersebut semuanya terendam di dalam air. Air dialirkan ke dalam sebuah terusan atau dilewatkan ke dalam sebuah cincin yang berbentuk spiral rumah keong. Perubahan energi seluruhnya terjadi di dalam sudu gerak Gambar 2.11. Turbin air yang paling banyak digunakan adalah turbin reaksi. Turbin reaksi digunakan untuk aplikasi turbin dengan head rendah dan medium. Pada turbin reaksi, letak turbin harus diperhatikan agar tidak terjadi bahaya kavitasi yang terjadi akibat adanya tekanan absolut yang lebih kecil dari tekanan uap air. Kavitasi dapat menyebabkan sudu-sudu turbin menjadi berlubang-lubang kecil, sehingga mengurangi efisiensi turbin yang akhirnya dapat pula merusak sudu turbin. Jika turbin diletakkan lebih tinggi dari tinggi tekanan isap, maka kavitasi akan terjadi, sehingga letak turbin harus selalu di bawah tinggi tekanan isap Hs. Universitas Sumatera Utara Gambar 2.11 Sistem Kerja Dari Tinggi Air Jatuh mulai dari sudu pengarah, sudu jalan dan ke pipa. Pembagian energi tinggi air jatuh ke sudu pengarah; di sudu jalan timbul tekanan kerendahan dan di dalam pipa isap tekanan tersebut kembali terbentuk [2]

2.3.2 Perbandingan Karakteristik Turbin

Dokumen yang terkait

Perancangan Pompa Sentrifugal dengan Kapasitas 100m3 /jam dan Head Pompa 44m untuk Suplai Air Barometrik Condenser

108 514 77

Rancang Bangun Instalasi Turbin Francis Pada Head 9,29 Meter Dan Uji Eksperimental Dengan Variasi Bukaan SUDU Pengarah

8 88 85

Simulasi Numerik Penggunaan Pompa Sebagai Turbin Pada Pembangkit Listrik Tenaga Mikro Hidro (Pltmh) Dengan Head 9,29 M Dan 5,18 M Menggunakan Perangkat Lunak Cfd Pada Pipa Berdiameter 10,16 Cm

5 58 76

Rancang Bangun Pompa Sentrifugal untuk Mensirkulasikan Air pada Instalasi Turbin Air dengan Daya : 2 KW dan Putaran : 500 rpm.

19 232 92

Mesin-Mesin Fluida : Rancang Bangun Pompa Sentrifugal Untuk Mensirkulasikan Air pada Instalasi Turbin Air Dengan Daya 2 KW Dan Putaran 500 RPM

5 77 109

Perancangan Instalasi Pompa Sentrifugal Dan Analisa Numerik Menggunakan Program Komputer CFD FLUENT 6.1.22 Pada Pompa Sentrifugal Dengan Suction Gate Valve Open 100 %

15 75 132

Instalasi Rancang Bangun Dan Pengujian Pompa Sentrifugal Sebagai Turbin Dengan Head (H) 5,18 M Dan Head (H) 9,29 M

8 66 121

Rancang Bangun Instalasi Pembangkit Listrik Piko Hidro Menggunakan Pompa Sentrifugal Dengan Total Head (H) 12 M Dan Kapasitas (Q) 1,25 M3/Menit Sebagai Turbin

7 105 98

Desain Pembangkit Listrik Tenaga Piko Hidro Terapung (PLTPHT)

1 8 7

BAB II TINJAUAN PUSTAKA 2.1 Pompa 2.1.1 Pengertian Pompa - Simulasi Numerik Penggunaan Pompa Sebagai Turbin Pada Pembangkit Listrik Tenaga Mikro Hidro (Pltmh) Dengan Head 9,29 M Dan 5,18 M Menggunakan Perangkat Lunak Cfd Pada Pipa Berdiameter 10,16 Cm

0 0 27