Perhitungan Bagian Perkuatan Dinding Counterfort

K = R . d . b Mn 1 2 → R 1 = β 1 x f’c = 0,85 x 22,5 = 19,125 N mm 2 = 19,125 x 720 x 1000 ,063 1289399450 2 = 1,301 x 10 -2 F = 1 - √1 - 2k = 1 - √1 - 2 x 1,301 x 10 -2 = 1,309 x 10 - 2 F F maks → tulangan tunggal under reinforced As = y 1 f R . d . b . F = 240 ,125 19 x 720 x 1000 x 10 x 1,309 -2 = 751,094 mm 2 ρ = b.d As = 720 x 1000 751,094 = 1,04 x 10 -4 ρ min = 5,833 x 10 -3 As min = ρ min. b.d = 5,833 x 10 -3 x 1000 x 720 = 4200 mm 2 Tulangan terpasang : Ø 20 - 50 As = 6284 mm 2

4.6.4.4. Perhitungan Bagian Perkuatan Dinding Counterfort

H = 10,25 m b 3 = 0,85 m b 4 = 3,95 m b 5 = 3,95 m 1. Perhitungan Titik Berat Counterfort Yz = ⅓.H = ⅓ x 10,25 = 3,417 m Xz = ⅓.B 5 = ⅓ x 3,95 = 1,317 m a O Xz Yz a L H b5 b3 b4 2. Perhitungan tinggi balok : Tan α = 1 3 5 B B B H   → α = 67,959 o Sin a = 1 3 5 B B B X   → a = 3,661 m Cos α = L B B B 1 3 5   → L = 11,059 cm 3. Pembebanan Counterfort Tabel 4.22 Pembebanan Counterfort P Gaya ton Titik Berat Y m X m Lengan m Momen tm Yz Xz Pa 1 Pa 2 Pa 3 Pa 4 Pa 5 Pa 6 Q G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8 G 9 1,622 10,285 24,658 9,898 21,782 2,22 4,15 4,176 5,46 7,392 33,408 20,029 10,917 13,058 19,864 5,669 3,417 3,417 3,417 3,417 3,417 3,417 3,417 3,417 3,417 3,417 3,417 3,417 3,417 3,417 3,417 3,417 1,317 1,317 1,317 1,317 1,317 1,317 1,317 1,317 1,317 1,317 1,317 1,317 1,317 1,317 1,317 1,317 8,1 7,35 3,35 2,517 -0,375 -0,783 1,875 -0,5 -0,475 -0,4 -0,4 1,875 1,9 1,9 1,975 1,975 4,683 3,933 -0,067 -0,9 -3,792 -4,2 -0,558 1,817 1,792 1,717 1,717 -0,558 -0,583 -0,583 -0,658 -0,658 7,595 40,456 -1,644 -8,908 -82,591 -9,324 -2,317 7,586 9,783 12,69 57,35 -11,183 -6,368 -7,617 -13,077 -3,732 ΣM = -11,301 tm 4. Perhitungan Tulangan Lentur Mu = 11,301 tm = 113012173,98 Nmm Mn =  Mu = 8 , 98 113012173, = 141265217,475 Nmm Tulangan direncanakan Ø 25 mm d = a - tebal selimut - ½ Ø tulangan lentur = 3661 - 50 - 252 = 3598,817 cm K = R . d . b Mn 1 2 → R 1 = β 1 x f’c = 0,85 x 22,5 = 19,125 N mm 2 = 19,125 x 3598,817 x 300 475 141265217, 2 = 1,9 x 10 -3 F = 1 - √1 - 2k = 1 - √1 – 2 x 8,19 x 10 -3 = 1,9 x 10 -3 F F maks → tulangan tunggal under reinforced As = y 1 f R . d . b . F = 240 ,125 19 x 3598,817 x 300 x 10 x 1,9 -3 = 163,711 mm 2 ρ = b.d As = 3598,817 x 300 711 , 163 = 1,5 x 10 -4 ρ min = 5,833 x 10 -3 As min = ρ min .b.d = 5,833 x 10 -3 x 300 x 3598,817 = 6297,930 mm 2 Tulangan terpasang : 21 Ø 20 As = 6596 mm 2 Pemasangan 3 baris, 7 tulangan 5. Perhitungan Tulangan Horisontal Gaya horisontal yang diperhitungkan : ΣP = Pa 1 + Pa 2 + Pa 3 + Pa 4 + Pa 5 + Pa 6 = 1,622 + 10,285 + 24,658 + 9,898 + 21,782 + 2,22 = 70,465 ton = 704653,541 N f y = As P  As = 704653,541 240 = 2936,056 mm 2 untuk 2 sisi As = 1468,028 mm 2 untuk 1 sisi Pemasangan tulangan untuk tiap 1 meter pias : As = 1468,028 10,25 = 143,222 mm 2 Tulangan terpasang = Ø 12 - 250 As = 452 mm 2 6. Perhitungan Tulangan Vertikal Gaya vertikal yang diperhitungkan : ΣG = Q + G 1 + G 2 + G 3 + G 4 + G 5 + G 6 + G 7 + G 8 +G 9 = 4,15 + 4,176 + 5,46 + 7,392 + 33,408 + 20,029 + 10,917 + 13,058 + 19,864 + 5,669 = 124,123 ton = 1241231,34 N f y = As G  As = 1241231,34 240 = 5171,797 mm 2 untuk 2 sisi As = 2585,899 mm 2 untuk 1 sisi Pemasangan tulangan untuk 1 meter pias : As = 2585,899 3,95 = 654,658 mm 2 Tulangan terpasang = Ø 12 - 250 As = 452 mm 2 4.6.5. Perhitungan Konstruksi Dinding Beda Elevasi A - C 4.6.5.1. Perhitungan Pembebanan Terhadap Dinding b3 q b5 b4 H H4 H3 H2 b2 b1 A B H1 -5,25 -9,5 -10,55 ?2 = 1,676 tm C2 = 0,14 tm² Ø2 = 21° ?3 = 1,688 tm C3 = 0,15 tm² Ø3 = 23° Gambar 4.47 Diagram Tegangan Tanah Beda Elevasi A - C 1. Perhitungan tegangan tanah a. Rencana dimensi dinding Tabel 4.23 Dimensi Dinding Beda Elevasi A - C H 4 = 4 1 H - 12 1 H; diambil 0,3 m b 1 = 0,25 m H = 5 + 0,3 = 5,3 m b 2 = 0,3 m H 1 = 1,2 m b 3 = 12 1 H - 10 1 H; diambil 0,35 m H 2 = 1,6 m b 4 = 3 1 H ; diambil 1,8 m H 3 = 2,2 m b 5 = 1,8 m q = 2,5856 tm 2 B = 0,4 - 0,7 H ; diambil 3,95 m b. Perhitungan koefisien tekanan tanah aktif Ka =     Sin 1 Sin 1 atau Ka = tan 2 45° - φ2 Ka 1 = 14 Sin 1 14 Sin 1   Ka 1 = 0,6104 Ka 2 = 21 Sin 1 21 Sin 1   Ka 2 = 0.4724 Ka 3 = 23 Sin 1 23 Sin 1   Ka 3 = 0.438 Mencari nilai q : Akibat beban pelat beton D = 0,12 x 2400 = 288 kgm 2 Akibat beban hidup L = diambil 1400 kgm 2 Kombinasi pembebanan, q = 1,2.D + 1,6.L = 1 ,2 x 288 + 1,6 x 1400 = 2585,6 kgm 2 c. Perhitungan tegangan tanah aktif s a4 s a3 s a2 s a1 Pa4 Pa3 Pa2 Pa1 -10,55 -9,5 - 5,25 ?2 = 1,676 tm C2 = 0,14 tm² Ø2 = 21° ?3 = 1,688 tm C3 = 0,15 tm² Ø3 = 23° Gambar 4.48 Tegangan Tanah Aktif σ a1 = Ka 2 .q - 2.C 2 . √Ka 2 = 0,472 x 2,586 - 2 x 0,14 x √0,472 = 1,029 tm 2 σ a2 = Ka 2 . γ 2 .h 1 = 0,472 x 1,676 x 4,25 = 3,365 tm 2 σ a3 = σ a1 + σ a2 = 1,029 + 3,365 = 4,394 tm 2 σ a4 = Ka 3 .γ 3 .h 2 = 0,438 x 1,688 x 1,05 = 0,777 tm 2 d. Perhitungan tekanan tanah aktif per 1 m lebar Pa1 = σ a1 .h 1 = 1,029 x 4,25 = 4,373 t Pa2 = ½. σ a2 .h 1 = ½ x 3,365 x 4,25 = 7,151 t Pa3 = σ a3 .h 2 = 4,394 x 1,05 = 4,614 t Pa4 = ½. σ a4 .h 2 = ½ x 0,777 x 1,05 = 0,408 t e. Perhitungan gaya-gaya vertikal per 1 m lebar G4 G3 G8 G7 G6 G5 G2 G1 Q 1,2 0,35 1,8 1,8 0,3 2,2 1,6 0,3 0,25 A Gambar 4.49 Gaya-Gaya Vertikal pada Dinding Beda Elevasi A - C 1. Akibat beban merata : Q = q.B - b 4 - b 1 = 1 6,8 - 3 - 0,6 = 4,913 t 2. Akibat berat sendiri struktur : G 1 = H 1 .b 1 . γ c = 1,2 x 0,25 x 2,4 = 0,72 t G 2 = H 2 .b 2 . γ c = 1,6 x 0,3 x 2,4 = 1,152 t G 3 = H 3 .b 3 . γ c = 2,2 x 0,35 x 2,4 = 1,848 t G 4 = H 4 .B. γ c = 0,3 x 3,95 x 2,4 = 2,844 t 3. Akibat berat tanah di atas struktur : G 5 = b 3 + b 5 - b 1 .H 1 .γ 2 = 0,35 + 1,8 - 0,25 x 1,2 x 1,676 = 3,822 t G 6 = b 5 + b 3 - b 2 .H 2 .γ 2 = 1,8 + 0,35 - 0,3 x 2,4 x 1,676 = 4,962 t G 7 = b 5 .H 4 + H 3 - h 2 .γ 2 = 1,8x 0,3 + 2,2 - 1,05 x 1,676 = 4,375 t G 8 = b 5 .h 2 - H 4 .γ 3 = 1,8 x 1,05 - 0,3 x 1,688 = 2,279 t f. Perhitungan momen terhadap titik A 1. Momen aktif Tabel 4.24 Momen Aktif Horizontal P Gaya ton Lengan m M aktif tm Pa 1 Pa 2 Pa 3 Pa 4 4,373 7,151 4,614 0,408 3,175 2,467 0,525 0,35 13,883 17,639 2,422 0,143 ΣP = 16,545 ΣM aktif = 34,088 2. Momen pasif Tabel 4.25 Momen Pasif Vertikal G Gaya ton Lengan m M pasif tm Q G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8 4,913 0,72 1,152 1,848 2,844 3,822 4,962 4,375 2,279 3 1,925 1,95 1,814 1,975 3 3,025 3,05 3,05 14,738 1,386 2,246 3,352 5,617 11,466 15,01 13,344 6,952 ΣG = 26,915 ΣM Pasif = 74,111 2. Cek Stabilitas Struktur : a. Kontrol terhadap guling SF = aktif pasif M M   ≥ 2 SF = 088 , 34 111 , 74 ≥ 2 SF = 2,174 ≥ 2 Aman b. Kontrol terhadap geser SF = P P C B tan G pasif 2       ≥ 1,5 SF = 545 , 16 14 , x 95 , 3 23 tan 915 , 26   ≥ 1,5 SF = 0,724 1,5 Perlu Tiang Pancang c. Kontrol terhadap eksentrisitas e = ½.B - G M M aktif pasif     ≤ 6 1 B e = ½.3,95 - 915 , 26 088 , 34 111 , 74  ≤ 6 1 x 3,95 e = 1,975 – 1,487 ≤ 0,658 e = 0,488 ≤ 0,648 Aman d. Daya dukung tanah Nc =     40 3 , 4 228 = 23 40 23 x 3 , 4 228   = 19,229 Nq =     40 5 40 = 23 40 23 x 5 40   = 9,118 N γ =    40 6 = 23 40 23 x 6  = 8,118 q ult = C 3 .Nc + γ 3 .H 4 .Nq + ½.B. γ 3 N γ = 0,15 x 19,229 + 1,688 x 0,3 x 9,118 + ½ x 3,95 x 1,688 x 8,118 = 34,572 tm 2 Daya dukung tanah yang diijinkan ditentukan dengan membagi q ult dengan suatu faktor keamanan SF yaitu : q all = SF q ult → diambil SF = 3 q all = 3 572 , 34 q all = 11,524 tm 2 e. Tegangan tanah yang terjadi Kondisi yang harus diperhitungkan adalah pada saat kamar penuh, dengan berat air yang mempengaruhi dinding pada bagian toe sepanjang 1,8 m. W = H air .B. γ w = 5 - 1 x 3,95 x 1 = 15,8 tm Tegangan yang terjadi : σ maks,min = B e 6 1 x 1 x B W G    = 95 , 3 488 , x 6 1 x 1 x 95 , 3 8 , 15 915 , 26   σ maks = 18,829 tm 2 q all = 11,524 tm 2 Perlu tiang pancang σ min = 2,799 tm 2

4.6.5.2. Perhitungan Bagian Tapak Dinding

Dokumen yang terkait

PERENCANAAN SALURAN PINTU AIR PADA PERCABANGAN SUNGAI (Design of Lock Construction at River’s Junction ) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 1

PERENCANAAN SALURAN PINTU AIR PADA PERCABANGAN SUNGAI (Design of Lock Construction at River’s Junction ) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 22

PERENCANAAN SALURAN PINTU AIR PADA PERCABANGAN SUNGAI (Design of Lock Construction at River’s Junction ) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 6

PERENCANAAN SALURAN PINTU AIR PADA PERCABANGAN SUNGAI (Design of Lock Construction at River’s Junction ) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 54

PERENCANAAN SALURAN PINTU AIR PADA PERCABANGAN SUNGAI (Design of Lock Construction at River’s Junction ) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 4

PERENCANAAN SALURAN PINTU AIR PADA PERCABANGAN SUNGAI (Design of Lock Construction at River’s Junction ) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 4

PERENCANAAN SALURAN PINTU AIR DI SAMPING BENDUNG KLAMBU (Design of Lock Construction Beside of Klambu Barrage) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 1

PERENCANAAN SALURAN PINTU AIR DI PERTEMUAN 3 SUNGAI (Design of Lock Channel at Confluence of 3 Rivers) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 1

PERENCANAAN SALURAN PINTU AIR DI PERTEMUAN 3 SUNGAI (Design of Lock Channel at Confluence of 3 Rivers) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 18

Design and Development of Institutional

0 0 91