Perkerasan jalan

Conc re t e Pa ve m e nt T ype s,
De sign Fe a t ure s, a nd
Pe rform a nc e

Ba sic Com pone nt s of a Conc re t e
Pa ve m e nt

Surface smoothness
or rideability

Thickness Design

Longitudinal joint
Transverse joint
Surface Texture

Concrete materials
Dowel bars
Tiebars
Subgrade


Subbase

T e rm inology Com pa rison – Rigid
a nd Fle x ible Pa ve m e nt s
Concrete Section

Asphalt Section
Asphalt Layer

Base (or Subbase)
Subgrade

Base
Subbase
Subgrade

1

St re ss Dissipa t ion in Pa ve m e nt s


18,000 lbs.

18,000 lbs.

Asphalt Layer
pressure < 30 psi
pressure
≈ 290 psi

Conc re t e Pa ve m e nt T ype s

Jointed Plain (JPCP)
Undoweled
Doweled

Jointed Reinforced (JRCP)
Continuously Reinforced (CRCP)

J oint e d Pla in (J PCP)


14-20 ft.

Plan
or
Profile

2

J PCP

J oint e d Re inforc e d (J RCP)

Plan

22.5 - 40 ft.

Profile

J RCP


3

Cont inuously Re inforc e d (CRCP)
Plan
2 – 6 ft.

Profile

CRCP

Ba sic Com pone nt s of a Conc re t e
Pa ve m e nt
Surface smoothness
or rideability

Thickness Design

Longitudinal joint
Transverse joint
Surface Texture


Concrete materials
Dowel bars
Tiebars
Subgrade
Subbase or base

4

Com pa ra t ive Pe rform a nc e
of I n-Se rvic e H ighw a y
Pa ve m e nt s

Se le c t e d H ighw a y Corridors

I-40 in Western Tennessee
I-90 in Western South Dakota
I-15 in Utah South of Salt Lake City
I-40 in Eastern Oklahoma
I-285, & SR 400 in Georgia North of Atlanta


Surviva l Ana lysis Re sult s - I -4 0 in
TN
35

JPCP/ACP = 2.1

30
25
Age

20
JPCP
ACP

15
10
5
0
25%


50%

75%

Mean Life

Percent in Service

5

Surviva l Ana lysis Re sult s - I -9 0 in
SD
30
CRCP/ACP = 2.6

25
20

CRCP

JRCP
ACP
FDACP

Age 15
10
5
0
25%

50%

75%

Mean Life

All of the CRC
is Still in Service
(>31 Years)


Percent in Service

Surviva l Ana lysis Re sult s - I -1 5 in
UT
30
JPCP/ACP
= 2.1

25
20
Age 15

JPCP
ACP

10
5
0
25%


50%

75%

Mean Life

Note: Over
50% of JPCP
Sections Have
Not Failed
(>32 Years)

Percent in Service

Surviva l Ana lysis Re sult s - I -4 0 in
OK
30
PCCP/ACP = 2.5

25

20
Age 15

ALL PCCP
ACP

10
5
0
25%

50%

75%

Mean
Life

Note: Over 50%
of PCCP Sections
Have Not Failed
(>30 Years)

Percent in Service

6

Surviva l Ana lysis Re sult s
Avg. M e a n life

40
35
30

All PCC
JPCP
CRCP
JRCP
ACP
FDACP

25
Age 20
15
10
5
0
TN

SD*

UT**

OK***

Que st ions?

AASH T O 1 9 9 8 Rigid Pa ve m e nt
De sign Proc e dure a nd Soft w a re

7

AASH T O De sign Guide : Evolut ion
AASHO Road Test (ART), 1958-1960
AASHO Interim Guides, 1961 & 1962
Revised Interim Guide, 1972
Revised Chapter III (rigid), 1981
AASHTO Guide for the Design of Pavement Structures, 1986
AASHTO Guide for the Design of Pavement Structures, 1993
(overlays)
Supplement to the AASHTO Guide for the Design of Pavement
Structures, 1998 (rigid pavement design)

AASHO Road Test ( ART)

Basis of AASHTO Design Guide

TYPI CAL JPCP PAVEMENT
( designed according to 1972-1989 versions AASHTO design guides)

8

Rigid Pa ve m e nt De sign
De fic ie nc ie s
Major shortcomings of JPCP designs based on 19721986 versions of the AASHTO Guide :
inadequate joint load transfer,
long joint spacing,
erosion of base/subbase,
poor subdrainage
etc.
Deterioration occurs early
Rehabilitation needed

De ve lopm e nt of Supple m e nt a l
AASH T O De sign Proc e dure for J PCP
Serious deficiencies noted in 1986 AASHTO
procedure
Studies showed major flaws in base/subgrade
support procedures
No easy fixes
Improved structural (3D finite element) model for
JPCP was developed to correct deficiencies

De ve lopm e nt , V a lida t ion, Adopt ion:
1 9 9 8 Supple m e nt a l Rigid Pa ve m e nt
De sign Proc e dure
Developed under NCHRP Project 1-30
(University of Illinois at Urbana-Champaign)
Validated under FHWA/LTPP research study
(ERES Consultants/ARA)
Adopted by AASHTO as Supplementary Rigid Pavement
Design Procedure (1998)
FHWA/LTPP - Supplementary Rigid Pavement Design
Spreadsheet (ERES Consultants/ARA)

9

1 9 9 8 AASH T O J PCP De sign
Proc e dure
Improved structural modeling
Improved subgrade characterization
Base course as structural layer
Transverse joint spacing
Climate at site is considered directly
Shoulder type and slab width
Joint faulting and cracking checks

U se of LT PP Da t a t o V e rify
1 9 9 8 AASH T O De sign
Design procedure verified using field data from LTPP
Inputs to 1998 AASHTO design model obtained
Actual traffic log ESALs compared to predicted log W
(ESALs)
No significant bias found in predicting serviceability of
pavements in four climatic zones

Rigid Pa ve m e nt De sign
Spre a dshe e t : Fe a t ure s
Information sheet containing
spreadsheet “User Guide”
I.

Input Sheet - General Information
z

II.

The general inform ation section requ ests inform ation about the agency. This
inform ation is not requ ired for the analysis, but the inform ation entered here
m ay be d isplayed on the "Resu lts" sheet.

Input Sheet - D esign Information
z
z

All d esign inp uts are required except sensitivity analysis.
N o d efault values are u sed .
Inform ation can be retrieved from the "Saved Data" sheet u sing the "Retrieve Data"
button. The existing d ata can be rep laced or saved as a new set u sing the
"Save Data" bu tton.
Clicking on the "Retrieve Data" bu tton opens the "Saved Data" sheet. Select the
app ropriate row to be retrieved and click on the "Export" button.
If the retrieval is su ccessful, the d ata are retreived . Changes can be m ad e and saved
as a new d ata set u sing a d ifferent valu e for the search ID. The d ata can also

10

U se rs of t he RPD Soft w a re
State and Provincial Highway Engineers
Consulting Engineers

Be ne fit s of
Rigid Pa ve m e nt De sign Soft w a re
Provides key answers not previously addressed:
How do I adequately characterize the subgrade
support?
What is the best base type for the conditions?
What is the optimum joint spacing?
Will this pavement fault or have corner breaks?

Soft w a re De m onst ra t ion
Order software:
LTPP homepage
www.tfhrc.gov
LTPP customer service
Call 865-481-2967

11

VIRGINIA DEPARMENT OF TRANSPORTATION
MATERIALS DIVISION
PAVEMENT DESIGN AND EVALUATION SECTION

GUIDELINES FOR
1993 AASHTO
PAVEMENT DESIGN
FIRST PRINTING – MAY 2000
REVISED – OCTOBER 2001
REVISED – JANUARY 2003
REVISED – MAY 2003

We Keep Virginia Moving !

Planning Today, For Tomorrow’s
Challenges

Guidelines for 1993 AASHTO Pavement Design
Pavement Design and Evaluation Section

May 2003

PURPOSE
These guidelines are intended to aid professional staff knowledgeable in the field of pavement
design and evaluation. Persons using these guidelines are responsible for their proper use and
application in concert with the AASHTO “Guide for Design of Pavement Structures – 1993”.
The 1993 AASHTO Guide may be ordered by phone (800-231-3475) or via the internet
(www.asshto.org). Virginia Department of Transportation and individuals associated with the
development of this material cannot be held responsible for improper use or application.
Criticisms or suggestions for improvements in Materials Division Policies and Procedures are
invited. These should be made preferably in writing directly to the State Materials Engineer or
directed to the State Materials Engineer through the District Materials Engineer.

Guidelines For 1993 AASHTO Pavement Design
Pavement Design and Evaluation Section

May 2003

Table of Contents
I.

FLEXIBLE PAVEMENT DESIGN..................................................................................... 1
Design Variables ......................................................................................................................... 1
Pavement Design Life ............................................................................................................. 1
Traffic Factors ......................................................................................................................... 1
Reliability ................................................................................................................................ 2
Serviceability........................................................................................................................... 2
Standard Deviation .................................................................................................................. 3
Stage Construction................................................................................................................... 3
Material Information ................................................................................................................... 3
Structural Layer Coefficients (New Design and Overlay) ...................................................... 3
AC Material Layer Thickness ................................................................................................. 3
Drainage Coefficients (m) ....................................................................................................... 3
Design Subgrade Resilient Modulus ....................................................................................... 3
Shoulder Design ...................................................................................................................... 4
Pavement Drainage Considerations......................................................................................... 5

II.

RIGID PAVEMENT DESIGN......................................................................................... 6

Design Variables ......................................................................................................................... 6
Pavement Design Life ............................................................................................................. 6
Traffic Factors ......................................................................................................................... 6
Reliability ................................................................................................................................ 7
Serviceability........................................................................................................................... 7
Material Information ................................................................................................................... 8
28-Day Mean PCC Modulus of Rupture (psi)......................................................................... 8
28-Day Mean PCC Modulus of Elasticity (psi)....................................................................... 8
Mean Effective k-value (psi/inch) ........................................................................................... 8
Subdrainage Coefficient .......................................................................................................... 8
Load Transfer Factors.............................................................................................................. 9
Shoulder Design ...................................................................................................................... 9
Pavement Drainage Considerations....................................................................................... 10

Guidelines For 1993 AASHTO Pavement Design
Pavement Design and Evaluation Section

May 2003
Page 1

FLEXIBLE PAVEMENT DESIGN
Design Variables
Pavement Design Life
Highway Classification
Interstate
Divided Primary Route
Undivided Primary Route
High Volume Secondary Route
Farm to Market Secondary Route
Residential/Subdivision Street

Initial Construction
Design (Years)
30
30
20
20
20
20

Initial Overlay
Design (Years)
12
12
10
10
10
10

Traffic Factors
Lane Distribution Factors
Number of Lanes Per Direction
1
2
3
4 or more

VDOT Value for Pavement Design (%)
100
90
70
60

Traffic Growth Rate Calculation
GR = [((ADTf / ADTi) (1/(F-I)) )-1] x 100
Where:
GR = Growth Rate (%)
ADTf = Average daily traffic for future year
ADTi = Average daily traffic for initial year
I = Initial year for ADT
F = Future year for ADT
Future ADT Calculation
If an ADT and growth rate is provided, then a future ADT can be calculated using the following
equation:
ADTf = ADTI (1+GR)(F-I)

Guidelines For 1993 AASHTO Pavement Design
Pavement Design and Evaluation Section

May 2003
Page 2

Where:
GR = Growth Rate (%)
ADTf = Average daily traffic for future year
ADTi = Average daily traffic for initial year (year traffic data is provided)
I = Initial year for ADT
F = Future year for ADT
ESAL Factors
When no Weigh in Motion (WIM) or vehicle classification data are available to determine actual
Equivalent Single Axle Loads (ESAL) Factors, use the following values:
Vehicle Classification
Cars/Passenger Vehicles
Single Unit Trucks
Tractor Trailer Trucks

ESAL Factor
0.0002
0.37
1.28

If traffic classification or WIM data are available, use Appendix D of the 1993 AASHTO Design
Guide for Pavement Structures to determine ESAL factors.
ESAL Calculation
For the ESAL Calculation, use Compound Growth Factors. Assume Truck Growth ESAL Factor
is 0%.
Reliability
Highway Classification
Interstate
Divided Primary Route
Undivided Primary Route
High Volume Secondary Route
Farm to Market Secondary Route
Residential/Subdivision Street

VDOT Value for Pavement Design
Urban
Rural
95
95
90
90
90
85
90
85
85
75
75
70

Serviceability
Highway Classification
Interstate
Divided Primary Route
Undivided Primary Route
High Volume Secondary Route
Farm to Market Secondary Route
Residential/Subdivision Street

VDOT Value for Pavement Design
Initial
Terminal
4.2
3.0
4.2
2.9
4.2
2.8
4.2
2.8
4.0
2.5
4.0
2.0

Guidelines For 1993 AASHTO Pavement Design
Pavement Design and Evaluation Section

May 2003
Page 3

Standard Deviation
For flexible pavements, the standard deviation of 0.49 shall be used.
Stage Construction
This is an option in the Darwin pavement design program, select Stage 1 construction.
Material Information
Structural Layer Coefficients (New Design and Overlay)
Material
VDOT Value for Pavement Design (ai)
SM-9.0
.44
SM-9.5
.44
SM-12.5
.44
IM-19.0
.44
BM-25.0
.40
BM-37.5
.37
SMA 9.5, SMA 12.5, SMA 19.0
.44
Graded Aggregate Base – 21A or 21B
.12
Cement Treated Aggregate Base
.20
Rubblized Concrete
.18
Break and Seat/Crack and Seat
.25
Soil Cement
.18
Lime Treated Soil
.18
Gravel
.10
Open Graded Drainage Layer – Bound
.10
Open Graded Drainage Layer – Unbound
0 – .10
All other soils
No Layer Coefficient
AC Material Layer Thickness
Material
Minimum Lift Thickness (in.)
SM-9.0
0.75
SM-9.5
1.25
SMA 9.5
1.25
SM-12.5
1.5
SMA 12.5
1.5
SMA 19.0
2
IM-19.0
2
BM-25.0
2.5
BM-37.5
3

Maximum Lift Thickness (in.)
1.25
1.5
1.5
2
2
3
3
4
6

Drainage Coefficients (m)
For most designs, use a value of 1.0. If the quality of drainage is known as well as the period of
time the pavement is exposed to levels approaching saturation, then refer to Table 2.4 in the 1993
AASHTO Guide for the Design of Pavement Structures.
Design Subgrade Resilient Modulus
Caution must be used when selecting a design resilient modulus. An analysis of all the soils data
should be conducted prior to selecting a value. An average Resilient Modulus (Mr) should not be

Guidelines For 1993 AASHTO Pavement Design
Pavement Design and Evaluation Section

May 2003
Page 4

used as the design Mr if the coefficient of variance (Cv) is greater than 10%. If the Cv is greater
than 10%, then the Pavement Designer should look at sections with similar Mr values and design
those section based on that average Mr. If no sections clearly exist, then use the average Mr
times 67% to obtain the design Mr. For those locations with an actual Mr less than the design
Mr, then the pavement designer should consider a separate design for that location or
undercutting the area.
If resilient modulus results are not available, then use the following correlations:
For fine-grained soils with a soaked CBR between 5 and 10 , use the following equation to
correlate CBR to resilient modulus (Mr):
Design Mr (psi) = 1,500 x CBR
For non fine-grained soils with a soaked CBR greater than 10, use the following equation:
Mr = 3,000 x CBR 0.65
Typical values for fine-grained soils are 2,000 to 10,000 psi.
Typical values for course-grained soils are 10,000 to 20,000 psi.
When FWD testing is conducted and the backcalculated resilient modulus is determined, use the
following equation:
Design Mr = C x Backcalculated Mr
Where C = 0.33
If CBR and backcalculated Mr results are available, use the smaller Design Mr for pavement
design purposes.
If the Design Mr based on CBR is greater than 15,000 psi or if the Design Mr from
backcalculation is greater than 15,000 psi, then use a Design Mr value of 15,000 psi.
Shoulder Design
Typically, paved shoulders have a pavement structural capacity less than the mainline; however,
this is dependent on the roadway. For Interstate routes, the pavement shoulder shall have the
same design as the mainline pavement. This will allow the shoulder to support extended periods
of traffic loading as well as provide additional support to the mainline structure. A full-depth
shoulder (same design as the mainline pavement) is also recommended for other high-volume
non-interstate routes.
Where a full-depth shoulder is not necessary, the shoulder’s pavement structure should be based
on 2.5% of the design ESALs (minimum) for the project following the AASHTO pavement
design methodology. A minimum of two AC layers must be designed for the shoulder in order to
provide edge support for the mainline pavement structure. The AC layers must be placed on an
aggregate or cement stabilized aggregate layer, not directly on subgrade, to provide adequate
support and drainage for the shoulder structure. To help ensure positive subsurface drainage, the
total pavement depth of the shoulder should be equal to the mainline structure (i.e. mainline
pavement structure thickness above the subgrade is 20 inches, shoulder pavement structure
thickness above the subgrade is 20 inches).

Guidelines For 1993 AASHTO Pavement Design
Pavement Design and Evaluation Section

May 2003
Page 5

Pavement Drainage Considerations
The presence of water within the pavement structure has a detrimental effect on the pavement
performance under anticipated traffic loads. The following are guidelines to minimize these
effects:
1. Standard UD-2 underdrains and outlets are required on all raised medians to prevent
water infiltration through or under the pavement structure. Refer to the current VDOT
Road and Bridge Standards for installation details.
2. When Aggregate Base Material, Type I, Size #21-B is used as an untreated base or
subbase, it should be connect to a longitudinal pavement drain (UD-4) with outlets or
daylighted (to the face of the ditch) to provide for positive lateral drainage on all
roadways with a design ADT of 1,000 vehicles per day or greater. (Refer to the current
VDOT Road and Bridge Standards for installation details.) Other drainage layers can
also be used. When the design ADT is less than a 1,000 vehicles per day, the Engineer
must assess the potential for the presence of water and determine if sub-surface drainage
provisions should be made.
3. Undercutting, transverse drains, stabilization, and special design surface and subsurface
drainage installations should be considered whenever necessary to minimize the adverse
impacts of subsurface water on the stability and strength of the pavement structure.
4. Standard CD-1 and CD-2 should be considered for use with all types of unstablized
aggregates, independent of the traffic levels.
5. For roadways with a design ADT of 20,000 vehicles per day or greater, a drainage layer
should be used, placed on not less than 6 inches of stabilized material and connected to a
UD-4 edge drain.
For additional information see Report Number FHWA-TS-80-224, Highway Sub-Drainage
Design from the US Department of Transportation, Federal Highway Administration.

Guidelines For 1993 AASHTO Pavement Design
Pavement Design and Evaluation Section

May 2003
Page 6

RIGID PAVEMENT DESIGN
Design Variables
Pavement Design Life
Highway Classification

Interstate
Divided Primary Route
Undivided Primary Route
High Volume Secondary Route

Initial
Construction
Design (Years)
30
30
30
30

Initial AC
Overlay Design
(Years)
10
10
10
10

Initial PCC Overlay
Design
(Years)
30
30
30
30

Traffic Factors
Lane Distribution Factors
Number of Lanes Per Direction
1
2
3
4 or more

VDOT Value for Pavement Design (%)
100
90
70
60

Traffic Growth Rate Calculation
GR = [((ADTf / ADTi) (1/(F-I)) )-1] x 100
Where:
GR = Growth Rate (%)
ADTf = Average daily traffic for future year
ADTi = Average daily traffic for initial year
I = Initial year for ADT
F = Future year for ADT
Future ADT Calculation
If an ADT and growth rate is provided, then a future ADT can be calculated using the following
equation:
ADTf = ADTI (1+GR)(F-I)

Guidelines For 1993 AASHTO Pavement Design
Pavement Design and Evaluation Section

May 2003
Page 7

Where:
GR = Growth Rate (%)
ADTf = Average daily traffic for future year
ADTi = Average daily traffic for initial year (year traffic data is provided)
I = Initial year for ADT
F = Future year for ADT
ESAL Factors
When no Weigh in Motion (WIM) or vehicle classification data are available to determine actual
Equivalent Single Axle Loads (ESAL) Factors, use the following values:
Vehicle Classification
Cars/Passenger Vehicles
Single Unit Trucks
Tractor Trailer Trucks

ESAL Factor
0.0003
0.56
1.92

ESAL Calculation
For the ESAL Calculation, use Compound Growth Factors. Assume Truck Growth ESAL Factor
is 0%.
Reliability
Highway Classification
Interstate
Divided Primary Route
Undivided Primary Route
High Volume Secondary Route

VDOT Value for Pavement Design (%)
Urban
Rural
95
95
90
90
90
85
90
85

Serviceability
Highway Classification
Interstate
Divided Primary Route
Undivided Primary Route
High Volume Secondary Route

VDOT Value for Pavement Design
Initial
Terminal
4.5
3.0
4.5
2.9
4.5
2.8
4.5
2.8

Standard Deviation
For rigid pavements, the standard deviation of 0.39 shall be used.

Guidelines For 1993 AASHTO Pavement Design
Pavement Design and Evaluation Section

May 2003
Page 8

Material Information
28-Day Mean PCC Modulus of Rupture (psi)
Typical Range – 600 to 800
VDOT Value for Pavement Design – 650
Use default value if actual value is not available. Where possible, use value base on historical
data.
28-Day Mean PCC Modulus of Elasticity (psi)
Typical Range – 3,000,000 to 8,000,000
VDOT Value for Pavement Design – 5,000,000
Use default value if actual value is not available. Where possible, use value base on historical
data.
Mean Effective k-value (psi/inch)
Typical Range – 50 to 500

VDOT Value for Pavement Design – 250

If the subgrade resilient modulus is known or obtained from the CBR, then use the following
equation:
k-value = Mr / 19.4
Caution must be used when selecting a design k-value based on resilient modulus and CBR. An
analysis of all the soils data should be conducted prior to selecting a value. An average Resilient
Modulus (Mr) should not be used as the design Mr if the coefficient of variance (Cv) is greater
than 10%. If the Cv is greater than 10%, then the Pavement Designer should look at sections with
similar Mr values and design those section based on that average Mr. If no sections clearly exist,
then use the average Mr times 67% to obtain the design Mr. For those locations with an actual
Mr less than the design Mr, then the pavement designer should consider a separate design for that
location or undercutting the area.
If the k-value is obtained from backcalculation, then use this value.
If k-value (based on backcalculation or subgrade resilient modulus) is larger than 500, then use
500 as the design value.
Subdrainage Coefficient
Use a value of 1.0 for design purposes.

Guidelines For 1993 AASHTO Pavement Design
Pavement Design and Evaluation Section

May 2003
Page 9

Load Transfer Factors
New Pavement Designs and Unbonded PCC Overlays with Load Transfer Devices
VDOT Value for Design
Pavement Type
Asphalt Shoulder
Tied PCC Shoulder or Wide
Lane
Jointed Plain
3.2
2.8
Jointed Reinforced
3.2
2.8
Continuously
3.0
2.6
Reinforced
Overlays Designs on Existing Pavements
For AC overlays on existing PCC pavements and bonded PCC overlays, determine the
appropriate J-Factor based on the load transfer efficiency determined from joint/crack testing.
Pavement Type
Jointed Plain

Jointed Reinforced

Continuously Reinforced

Load Transfer Efficiency
> 70%
50 – 70%
< 50%
> 70%
50 – 70%
< 50%

VDOT Design J-Factor
3.2
3.5
4.0
3.2
3.5
4.0
2.4 (working cracks repaired
with CRCP)

Shoulder Design
Two types of shoulders are designed for Portland cement concrete highways – full-width concrete
shoulders, narrow-width concrete section with an asphalt concrete extension, or an asphalt
shoulder. For full-width concrete shoulders, the pavement shoulder shall have the same design as
the mainline pavement. This will allow the shoulder to support extended periods of traffic
loading as well as provide additional support to the mainline structure.
A narrow-width concrete section with an asphalt concrete extension shoulder is constructed when
a wide concrete lane (14 feet) is part of the mainline pavement. Twelve feet of the fourteen-foot
wide slab is part of the outside travel lane, the remaining two feet is striped and designated as part
of the shoulder. The two-foot section of concrete has the same structure as the twelve-foot
section; therefore, no separate pavement design is necessary. For the asphalt concrete portion of
the shoulder and other asphalt concrete shoulders, the shoulder’s pavement structure should be
based on 2.5% of the design ESALs (minimum) for the project following the AASHTO pavement
design methodology. A minimum of two AC layers must be designed for the shoulder. The AC
layers must be placed on an aggregate or cement stabilized aggregate layer, not directly on
subgrade, to provide adequate support and drainage for the shoulder structure. To help ensure
positive subsurface drainage, the total pavement depth of the shoulder should be equal to the
mainline structure (i.e. mainline pavement structure thickness above the subgrade is 20 inches,
shoulder pavement structure thickness above the subgrade is 20 inches).

Guidelines For 1993 AASHTO Pavement Design
Pavement Design and Evaluation Section

May 2003
Page 10

Pavement Drainage Considerations
The presence of water within the pavement structure has a detrimental effect on the pavement
performance under anticipated traffic loads. The following are guidelines to minimize these
effects:
1. Standard UD-2 underdrains and outlets are required on all raised medians to prevent
water infiltration through or under the pavement structure. Refer to the current VDOT
Road and Bridge Standards for installation details.
2. When Aggregate Base Material, Type I, Size #21-B is used as an untreated base or
subbase, it should be connect to a longitudinal pavement drain (UD-4) with outlets or
daylighted (to the face of the ditch) to provide for positive lateral drainage on all
roadways with a design ADT of 1,000 vehicles per day or greater. (Refer to the current
VDOT Road and Bridge Standards for installation details.) Other drainage layers can
also be used. When the design ADT is less than a 1,000 vehicles per day, the Engineer
must assess the potential for the presence of water and determine if sub-surface drainage
provisions should be made.
3. Undercutting, transverse drains, stabilization, and special design surface and subsurface
drainage installations should be considered whenever necessary to minimize the adverse
impacts of subsurface water on the stability and strength of the pavement structure.
4. Standard CD-1 and CD-2 should be considered for use with all types of unstablized
aggregates, independent of the traffic levels.
5. For roadways with a design ADT of 20,000 vehicles per day or greater, a drainage layer
should be used, placed on not less than 6 inches of stabilized material and connected to a
UD-4 edge drain.
For additional information see Report Number FHWA-TS-80-224, Highway Sub-Drainage
Design from the US Department of Transportation, Federal Highway Administration.

Pd. T-05-2005-B
Prakata

Pedoman perencanaan tebal lapis tambah perkerasan lentur dengan metode lendutan
dipersiapkan oleh Panitia Teknik Standardisasi Bidang Konstruksi dan Bangunan melalui
Gugus Kerja Bidang Perkerasan Jalan pada Sub Panitia Teknik Standardisasi Bidang
Prasarana Transportasi. Pedoman ini diprakarsai oleh Pusat Litbang Prasarana
Transportasi, Badan Litbang ex. Departemen Permukiman dan Prasarana Wilayah.
Pedoman ini merupakan revisi Manual Pemeriksaan Perkerasan Jalan Dengan Alat
Benkelman Beam (01/MN/B/1983) dan selain berlaku untuk data lendutan yang diperoleh
berdasarkan alat Benkelman Beam juga berlaku untuk data lendutan yang diperoleh dengan
alat Falling Weight Deflectometer.
Di samping mengacu pada Manual Pemeriksaan Perkerasan Jalan Dengan Alat Benkelman
Beam (01/MN/B/1983) dan hasil penelitian, pedoman ini mengaacu juga pada Metoda
Pengujian Lendutan Perkerasan Lentur Dengan Alat Benkelman Beam (SNI 07-2416-1991),
dan Perencanaan Tebal Perkerasan dengan Analisa Komponen (SNI 03-1732-1989).
Pedoman ini digunakan sebagai rujukan bagi perencana, pelaksana dan pengawas kegiatan
peningkatan jalan.
Tata Cara penulisan ini disusun mengikuti Pedoman BSN No. 8 th. 2000 dan dibahas dalam
forum konsensus yang melibatkan narasumber, pakar dan stakeholder Prasarana
Transportasi sesuai ketentuan Pedoman BSN No. 9 tahun 2000.

i
BACK

Daftar
RSNI
2006

Pd. T-05-2005-B
Pendahuluan

Pedoman perencanaan tebal lapis tambah dengan metode lendutan dengan menggunakan
alat Falling Deflectometer (FWD) belum dibuat NSPM nya sedangkan Manual Pemeriksaan
Perkerasan Jalan Dengan Alat Benkelman Beam (01/MN/B/1983) dipandang perlu direvisi
karena ada beberapa parameter yang perlu penyesuaian. Salah satu penyesuaian yang
perlu dilakukan adalah pada grafik atau rumus tebal lapis tambah/overlay. Rumus atau grafik
overlay yang terdapat dalam pedoman dan manual tersebut berbentuk asimtot dan lendutan
setelah lapis tambah terbatas sebesar 0,5 mm. Hal ini tidak realistis terutama untuk
perencanaan perkerasan yang melayani lalu lintas padat dan berat. Berdasarkan
perencanaan dengan cara mekanistik (teori elastis linier) yang mengatakan bahwa
kebutuhan kekuatan struktur perkerasan yang dicerminkan dengan besaran lendutan sejalan
dengan akumulasi beban lalu lintas rencana, maka makin banyak lalu lintas yang akan
dilayani, lendutan rencana harus makin kecil.
Upaya untuk memenuhi tuntutan tersebut perlu disusun pedoman perencanaan tebal lapis
tambah dengan metode lendutan yang disesuaikan dengan kondisi lalu lintas dan lingkungan
di Indonesia.
Saat ini acuan yang ada adalah Tata Cara Pemeriksaan Lendutan dengan alat Benkelman
Beam (SNI 07-2416-1991), Perencanaan Tebal Perkerasan dengan Analisa Komponen (SNI
03-1732-1989) dan Manual Pemeriksaan Perkerasan Jalan Dengan Alat Benkelman Beam
(01/MN/B/1983).
Dengan telah diberlakukannya pedoman ini maka Manual Pemeriksaan Perkerasan Jalan
Dengan Alat Benkelman Beam (01/MN/B/1983) tidak berlaku lagi.
Pedoman ini diharapkan akan memberikan keterangan yang cukup bagi perencana,
pelaksana dan pengawas dalam perencanaan atau perhitungan tebal lapis tambah untuk
konstruksi perkerasan lentur.

ii
BACK

Daftar
RSNI
2006

Pedoman perencanaan tebal lapis tambah perkerasan lentur
dengan metode lendutan

1 Ruang lingkup
Pedoman ini menetapkan kaidah-kaidah dan tata cara perhitungan lapis tambah perkerasan
lentur berdasarkan kekuatan struktur perkerasan yang ada yang diilustrasikan dengan nilai
lendutan. Pedoman ini memuat deskripsi berbagai faktor dan parameter yang digunakan
dalam perhitungan serta memuat contoh perhitungan.
Perhitungan tebal lapis tambah yang diuraikan dalam pedoman ini hanya berlaku untuk
konstruksi perkerasan lentur atau konstruksi perkerasan dengan lapis pondasi agregat
dengan lapis permukaan menggunakan bahan pengikat aspal.
Penilaian kekuatan struktur perkerasan yang ada, didasarkan atas lendutan yang dihasilkan
dari pengujian lendutan langsung dengan menggunakan alat Falling Weight Deflectometer
(FWD) dan lendutan balik dengan menggunakan alat Benkelman Beam (BB).

2 Acuan normatif


SNI 03-1732-18-989, Perencanaan tebal perkerasan dengan analisa komponen



SNI 03-2416-1991, Metoda pengujian lendutan perkerasan lentur dengan alat
Benkelman Beam

3 Istilah dan definisi
Istilah dan definisi yang digunakan dalam pedoman ini sebagai berikut :
3.1
angka ekivalen beban sumbu kendaraan (E)
angka yang menyatakan perbandingan tingkat kerusakan yang ditimbulkan oleh suatu
lintasan beban sumbu kendaraan terhadap tingkat kerusakan yang ditimbulkan oleh satu
lintasan beban sumbu standar
3.2
Benkelman Beam (BB)
alat untuk mengukur lendutan balik dan lendutan
menggambarkan kekuatan struktur perkerasan jalan

langsung

perkerasan

yang

3.3
CESA (Cummulative Equivalent Standard Axle)
akumulasi ekivalen beban sumbu standar selama umur rencana
3.4
Falling Weight Deflectometer (FWD)
alat untuk mengukur lendutan langsung perkerasan yang menggambarkan kekuatan struktur
perkerasan jalan
Daftar RSNI
1 dari 30
BACK

2006

3.5
Laston
campuran beraspal dengan gradasi agregat gabungan yang rapat/menerus dengan
menggunakan bahan pengikat aspal keras tanpa dimodifikasi (Straight Bitumen)
3.6
Laston modifikasi
campuran beraspal dengan gradasi agregat gabungan yang rapat/menerus dengan
menggunakan bahan pengikat aspal keras yang dimodifikasi (seperti aspal polimer, aspal
multigrade dan aspal keras yang dimodifikasi asbuton)
3.7
Lataston
campuran beraspal dengan gradasi agregat gabungan yang senjang dengan menggunakan
bahan pengikat aspal keras tanpa dimodifikasi (Straight Bitumen)
3.8
lendutan maksimum (maximum deflection)
besar gerakan turun vertikal maksimum suatu permukaan perkerasan akibat beban
3.9
lendutan balik (rebound deflection)
besar lendutan balik vertikal suatu permukaan perkerasan akibat beban dipindahkan
3.10
lendutan langsung
besar lendutan vertikal suatu permukaan perkerasan akibat beban langsung
3.11
lendutan rencana/ijin
besar lendutan rencana atau yang diijinkan sesuai dengan akumulasi ekivalen beban sumbu
standar selama umur rencana (Cummulative Equivalent Standard Axle, CESA)
3.12
pusat beban (load center)
letak beban pada permukaan perkerasan yang berada tepat dibawah garis sumbu gandar
belakang dan ditengah-tengah ban ganda sebuah truk
3.13
perkerasan jalan
konstruksi jalan yang diperuntukan bagi lalu lintas yang terletak diatas tanah dasar

2 dari 30
BACK

Daftar RSNI
2006

3.14
perkerasan lentur
konstruksi perkerasan jalan yang dibuat dengan menggunakan lapis pondasi agregat dan
lapis permukaan dengan bahan pengikat aspal
3.15
tebal lapis tambah (overlay)
lapis perkerasan tambahan yang dipasang di atas konstruksi perkerasan yang ada dengan
tujuan meningkatkan kekuatan struktur perkerasan yang ada agar dapat melayani lalu lintas
yang direncanakan selama kurun waktu yang akan datang

4 Simbol dan singkatan





















C
Ca
Drencana
Dsbl ov
Dstl ov
Dwakil
d
d1
d3
df1
dL
dR
E
FK
FKijin
Fo
Ft
FKB-BB
FKB-FWD
FKTBL

:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:

















Ho
HL
Ht
L
MP
m
MR
N
n
ns
r
S
SDRG
STRG
STRT

:
:
:
:
:
:
:
:
:
:
:
:
:
:
:

BACK

koefisien distribusi kendaraan
faktor pengaruh muka air tanah
lendutan rencana
lendutan sebelum overlay
lendutan setelah overlay
lendutan wakil
lendutan
lendutan pada saat beban tepat pada titik pengukuran
lendutan pada saat beban berada pada jarak 6 meter dari titik pengukuran
lendutan langsung pada pusat beban
lendutan langsung
lendutan rencana
ekivalen beban sumbu kendaraan
faktor keseragaman
faktor keseragaman yang diijinkan
faktor koreksi tabal lapis tambah atau overlay
faktor penyesuaian lendutan terhadap temperatur standar 35oC
faktor koreksi beban uji Benkelman Beam (BB)
faktor koreksi beban uji Falling Weight Deflectometer (FWD)
faktor koreksi tebal lapis tambah penyesuaian (untuk Laston Modifikasi atau
Lataston)
tebal lapis tambah sebelum dikoreksi
tebal lapis beraspal
tebal lapis tambah setelah dikoreksi
lebar perkearasan
mobil penumpang
jumlah masing-masing jenis kendaraan
modulus resilien
faktor hubungan antara umur rencana dengan perkembagan lalu lintas
umur rencana
jumlah titik pemeriksaan pada suatu seksi jalan
angka pertumbuhan lalu lintas
deviasi standar atau simpangan baku
Sumbu Dual Roda Ganda
Sumbu Tunggal Roda Ganda
Sumbu Tunggal Roda Tunggal
Daftar RSNI
3 dari 30
2006









STrRG
TPRT
Tb
TL
Tp
Tt
Tu

:
:
:
:
:
:
:

Sumbu Triple Roda Ganda
Temperatur Perkerasan Rata-rata Tahunan
temperatur bawah lapis beraspal
temperatur lapis beraspal
temperatur permukaan perkerasan beraspal
temperatur tengah lapisan beraspal
temperatur udara

5 Ketentuan perhitungan
5.1

Lalu lintas

a) Jumlah Lajur dan Koefisien Distribusi Kendaraan (C).
Lajur rencana merupakan salah satu lajur lalu lintas dari suatu ruas jalan, yang
menampung lalu-lintas terbesar.
Jika jalan tidak memiliki tanda batas lajur, maka jumlah lajur ditentukan dari lebar
perkerasan sesuai Tabel 1.
Tabel 1 Jumlah lajur berdasarkan lebar perkerasan
Lebar Perkerasan (L)

Jumlah Lajur

L < 4,50 m
4,50 m ≤ L < 8,00 m
8,00 m ≤ L < 11,25 m
11,25 m ≤ L < 15,00 m
15,00 m ≤ L < 18,75 m
18,75 m ≤ L < 22,50 m

1
2
3
4
5
6

Koefisien distribusi kendaraan (C) untuk kendaraan ringan dan berat yang lewat pada
lajur rencana ditentukan sesuai Tabel 2.
Tabel 2 Koefisien distribusi kendaraan (C)
Kendaraan
1 arah
1,00
1
0,60
2
0,40
3
4
5
6
Keterangan : *) Mobil Penumpang
**) Truk dan Bus
Jumlah Lajur

ringan*
2 arah
1,00
0,50
0,40
0,30
0,25
0,20

Kendaraan berat**
1 arah
2 arah
1,00
1,00
0,70
0,50
0,50
0,475
0,45
0,425
0,40

b) Ekivalen beban sumbu kendaraan (E).
Angka ekivalen (E) masing-masing golongan beban sumbu (setiap kendaraan)
ditentukan menurut Rumus 1, 2, 3 dan 4 atau pada Tabel 3.
4

 beban sumbu ( ton) 
Angka ekivalen STRT = 
 ............................................................. (1)
5,40


4 dari 30
BACK

Daftar RSNI
2006

4

 beban sumbu ( ton) 
Angka ekivalen STRG = 
 ............................................................. (2)
8,16


4

 beban sumbu ( ton) 
Angka ekivalen SDRG = 
 ............................................................. (3)
13,76


4

 beban sumbu ( ton) 
Angka ekivalen STrRG = 
 ............................................................ (4)
18,45


Tabel 3 Ekivalen beban sumbu kendaraan (E)
Beban sumbu
(ton)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Ekivalen beban sumbu kendaraan (E)
STRT
0,00118
0,01882
0,09526
0,30107
0,73503
1,52416
2,82369
4,81709
7,71605
11,76048
17,21852
24,38653
33,58910
45,17905
59,53742
77,07347
98,22469
123,45679
153,26372
188,16764

STRG
0,00023
0,00361
0,01827
0,05774
0,14097
0,29231
0,54154
0,92385
1,47982
2,25548
3,30225
4,67697
6,44188
8,66466
11,41838
14,78153
18,83801
23,67715
29,39367
36,08771

SDRG
0,00003
0,00045
0,00226
0,00714
0,01743
0,03615
0,06698
0,11426
0,18302
0,27895
0,40841
0,57843
0,79671
1,07161
1,41218
1,82813
2,32982
2,92830
3,63530
4,46320

STrRG
0,00001
0,00014
0,00070
0,00221
0,00539
0,01118
0,02072
0,03535
0,05662
0,08630
0,12635
0,17895
0,24648
0,33153
0,43690
0,56558
0,72079
0,90595
1,12468
1,38081

c) Faktor umur rencana dan perkembangan lalu lintas
Faktor hubungan umur rencana dan perkembangan lalu lintas ditentukan menurut
Rumus 5 atau Tabel 4 dibawah ini.

(1 + r )n −1 − 1 …………........................................................ (5)
n
N = 1 1 + (1 + r ) + 2(1 + r )

2
r



5 dari 30
BACK

Daftar RSNI
2006

Tabel 4 Faktor hubungan antara umur rencana dengan
perkembangan lalu lintas (N)
r (%)
n (tahun)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
20
25
30

2

4

5

6

8

10

1,01
2,04
3,09
4,16
5,26
6,37
7,51
8,67
9,85
11,06
12,29
13,55
14,83
16,13
17,47
24,54
32,35
40,97

1,02
2,08
3,18
4,33
5,52
6,77
8,06
9,40
10,79
12,25
13,76
15,33
16,96
18,66
20,42
30,37
42,48
57,21

1,03
2,10
3,23
4,42
5,66
6,97
8,35
9,79
11,30
12,89
14,56
16,32
18,16
20,09
22,12
33,89
48,92
68,10

1,03
2,12
3,28
4,51
5,81
7,18
8,65
10,19
11,84
13,58
15,42
17,38
19,45
21,65
23,97
37,89
56,51
81,43

1,04
2,16
3,38
4,69
6,10
7,63
9,28
11,06
12,99
15,07
17,31
19,74
22,36
25,18
28,24
47,59
76,03
117,81

1,05
2,21
3,48
4,87
6,41
8,10
9,96
12,01
14,26
16,73
19,46
22,45
25,75
29,37
33,36
60,14
103,26
172,72

d) Akumulasi ekivalen beban sumbu standar (CESA)
Dalam menentukan akumulasi beban sumbu lalu lintas (CESA) selama umur rencana
ditentukan dengan Rumus 6.
MP

CESA =

∑ mx365xExCx

N

.......................................................................... (6)

Traktor − Trailer

dengan pengertian :
CESA = akumulasi ekivalen beban sumbu standar
m
= jumlah masing-masing jenis kendaraan
365
= jumlah hari dalam satu tahun
E
= ekivalen beban sumbu (Tabel 3)
C
= koefisien distribusi kendaraan (Tabel 2)
N
= Faktor hubungan umur rencana yang sudah disesuaikan dengan
perkembangan lalu lintas (Tabel 4)
5.2

Lendutan

Lendutan yang digunakan dalam perhitungan ini adalah lendutan hasil pengujian dengan alat
Falling Weight Deflectometer (FWD) atau Benkelman Beam (BB). Apabila pada waktu
pengujian lendutan ditemukan data yang meragukan maka pada lokasi atau titik tersebut
dianjurkan untuk dilakukan pengujian ulang atau titik pengujian dipindah pada lokasi atau titik
disekitarnya.
5.2.1

Lendutan dengan Falling Weight Deflectometr (FWD)

Lendutan yang digunakan adalah lendutan pada pusat beban (df1). Nilai lendutan ini harus
dikoreksi dengan faktor muka air tanah (faktor musim) dan koreksi temperatur serta faktor
koreksi beban uji (bila beban uji tidak tepat sebesar 4,08 ton). Besarnya lendutan langsung
adalah sesuai Rumus 7.
dL = df1 x Ft x Ca x FKB-FWD ............................................................................................ (7)
6 dari 30
BACK

Daftar RSNI
2006

dengan pengertian :
dL
= lendutan langsung (mm)
df1
= lendutan langsung pada pusat beban (mm)
Ft
= faktor penyesuaian lendutan terhadap temperatur standar 350C, yaitu sesuai
Rumus 8, untuk tebal lapis beraspal (HL) lebih kecil 10 cm atau Rumus 9, untuk
tebal lapis beraspal (HL) lebih besar atau sama dengan 10 cm atau
menggunakan Tabel 5 atau pada Gambar 1 (Kurva A untuk HL < 10 cm dan
Kurva B untuk HL > 10 cm).
= 4,184 x TL- 0,4025 , untuk HL < 10 cm ................................................................ (8)
= 14,785 x TL- 0,7573 , untuk HL > 10 cm .............................................................. (9)
TL = temperatur lapis beraspal, diperoleh dari hasil pengukuran langsung
dilapangan atau dapat diprediksi dari temperatur udara,yaitu:
TL = 1/3 (Tp + Tt + Tb) .............................................................................. (10)
Tp = temperatur permukaan lapis beraspal
Tt = temperatur tengah lapis beraspal atau dari Tabel 6
Tb = temperatur bawah lapis beraspal atau dari Tabel 6
Ca
= faktor pengaruh muka air tanah (faktor musim)
= 1,2 ; bila pemeriksaan dilakukan pada musim kemarau atau muka air tanah
rendah
= 0,9 ; bila pemeriksaan dilakukan pada musim hujan atau muka air tanah tinggi
FKB-FWD = faktor koreksi beban uji Falling Weight Deflectometer (FWD)
= 4,08 x (Beban Uji dalam ton)(-1) ................................................................... (11)
Cara pengukuran lendutan dengan alat FWD mengacu pada Petunjuk Pengujian Lendutan
Perkerasan Lentur Dengan Alat Falling Weight Deflectometer (Dadang AS-Pustran, 2003)
dan gambar alat Falling Weight Deflectometer (FWD) ditunjukkan pada Gambar C1 pada
Lampiran C.
5.2.2

Lendutan dengan Benkelman Beam (BB)

Lendutan yang digunakan untuk perencanaan adalah lendutan balik. Nilai lendutan tersebut
harus dikoreksi dengan, faktor muka air tanah (faktor musim) dan koreksi temperatur serta
faktor koreksi beban uji (bila beban uji tidak tepat sebesar 8,16 ton). Besarnya lendutan balik
adalah sesuai Rumus 12.
dB =

2 x (d3 – d1) x Ft x Ca x FKB-BB .............................................................................. (12)

dengan pengertian :
dB
= lendutan balik (mm)
d1
= lendutan pada saat beban tepat pada titik pengukuran
d3
= lendutan pada saat beban berada pada jarak 6 meter dari titik pengukuran
Ft
= faktor penyesuaian lendutan terhadap temperatur standar 350C, sesuai Rumus 8,
untuk tebal lapis beraspal (HL) lebih kecil 10 cm atau Rumus 9, untuk tebal lapis
beraspal (HL) lebih besar atau sama dengan 10 cm atau menggunakan Tabel 5
atau pada Gambar 1 (Kurva A untuk HL < 10 cm dan Kurva B untuk HL > 10 cm).
TL = temperatur lapis beraspal, diperoleh dari hasil pengukuran langsung
dilapangan atau dapat diprediksi dari temperatur udara,yaitu:
TL = 1/3 (Tp + Tt + Tb) ................................................................................ (13)
Tp = temperatur permukaan lapis beraspal
Tt = temperatur tengah lapis beraspal atau dari Tabel 6
Tb = temperatur bawah lapis beraspal atau dari Tabel 6
Ca
= faktor pengaruh muka air tanah (faktor musim)
= 1,2 ; bila pemeriksaan dilakukan pada musim kemarau atau muka air tanah
rendah
= 0,9 ; bila pemeriksaan dilakukan pada musim hujan atau muka air tanah tinggi
Daftar RSNI
7 dari 30
BACK

2006

FKB-BB =
=

faktor koreksi beban uji Benkelman Beam (BB)
77,343 x (Beban Uji dalam ton)(-2,0715) .......................................................... (14)

Cara pengukuran lendutan balik mengacu pada SNI 03-2416-1991 (Metoda Pengujian
Lendutan Perkerasan Lentur Dengan Alat Benkelman Beam) dan gambar alat Benkelman
Beam (BB) ditunjukkan pada Gambar C2 pada Lampiran C.
1,80

Fak to r Kor e k s i Le n dutan (Ft)

1,70
1,60

Kurva B
(HL > 10 cm)

1,50
1,40
1,30

Kurva A
(HL < 10 cm)

1,20
1,10
1,00
0,90
0,80
0,70
0,60
0,50
0,40
20

25

30

35

40

45

50

55

60

65

70

Tem peratur Perkerasan, TL (oC)

Gambar 1 Faktor koreksi lendutan terhadap temperatur standar (Ft)
Tabel 5 Faktor koreksi lendutan terhadap temperatur standar (Ft)
TL
o
( C)

Faktor Koreksi (Ft)
Kurva A
(HL < 10 cm)

Kurva B
(HL ≥ 10 cm)

20

1,25

1,53

22

1,21

24

1,16

26

Faktor Koreksi (Ft)
Kurva A
(HL < 10 cm)

Kurva B
(HL ≥ 10 cm)

46

0,90

0,81

1,42

48

0,88

0,79

1,33

50

0,87

0,76

1,13

1,25

52

0,85

0,74

28

1,09

1,19

54

0,84

0,72

30

1,06

1,13

56

0,83

0,70

32

1,04

1,07

58

0,82

0,68

34

1,01

1,02

60

0,81

0,67

36

0,99

0,98

62

0,79

0,65

38

0,97

0,94

64

0,78

0,63

40

0,95

0,90

66

0,77

0,62

42

0,93

0,87

68

0,77

0,61

44

0,91

0,84

70

0,76

0,59

8 dari 30
BACK

TL
o
( C)

Daftar RSNI
2006

Catatan :
− Kurva A adalah faktor koreksi (Ft) untuk tebal lapis beraspal (HL) kurang dari 10 cm.
− Kurva B adalah faktor koreksi (Ft) untuk tebal lapis beraspal (HL) minimum 10 cm
Tabel 6 Temperatur tengah (Tt) dan bawah (Tb) lapis beraspal berdasarkan data
temperatur udara (T u) dan temperatur permukaan (Tp)
Temperatur lapis beraspal (oC) pada kedalaman

Tu + Tp
o
( C)

2,5 cm

5,0 cm

10 cm

15 cm

20 cm

30 cm

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

26,8
27,4
28,0
28,6
29,2
29,8
30,4
30,9
31,5
32,1
32,7
33,3
33,9
34,5
35,1
35,7
36,3
36,9
37,5
38,1
38,7
39,3
39,9
40,5
41,1
41,7
42,2
42,8
43,4
44,0
44,6
45,2
45,8
46,4
47,0
47,6
48,2
48,8
49,4
50,0
50,6

25,6
26,2
26,7
27,3
27,8
28,4
28,9
29,5
30,0
30,6
31,2
31,7
32,3
32,8
33,4
33,9
34,5
35,1
35,6
36,2
36,7
37,3
37,8
38,4
39,0
39,5
40,1
40,6
41,2
41,7
42,3
42,9
43,4
44,0
44,5
45,1
45,6
46,2
46,8
47,3
47,9

22,8
23,3
23,8
24,3
24,7
25,2
25,7
26,2
26,7
27,1
27,6
28,1
28,6
29,1
29,6
30,0
30,5
31,0
31,5
32,0
32,5
32,9
33,4
33,9
34,4
34,9
35,4
35,8
36,3
36,8
37,3
37,8
38,3
38,7
39,2
39,7
40,2
40,7
41,2
41,6
42,1

21,9
22,4
22,9
23,4
23,8
24,3
24,8
25,3
25,7
26,2
26,7
27,2
27,6
28,1
28,6
29,1
29,5
30,0
30,5
31,0
31,4
31,9
32,4
32,9
33,3
33,8
34,3
34,8
35,2
35,7
36,2
36,7
37,1
37,6
38,1
38,6
39,0
39,5
40,0
40,5
40,9

20,8
21,3
21,7
22,2
22,7
23,1
23,6
24,0
24,5
25,0
25,4
25,9
26,3
26,8
27,2
27,7
28,2
28,6
29,1
29,5
30,0
30,5
30,9
31,4
31,8
32,3
32,8
33,2
33,7
34,1
34,6
35,0
35,5
36,0
36,4
36,9
37,3
37,8
38,3
38,7
39,2

20,1
20,6
21,0
21,5
21,9
22,4
22,8
23,3
23,7
24,2
24,6
25,1
25,5
26,0
26,4
26,9
27,3
27,8
28,2
28,7
29,1
29,6
30,0
30,5
30,9
31,4
31,8
32,3
32,8
33,2
33,7
34,1
34,6
35,0
35,5
35,9
36,4
36,8
37,3
37,7
38,2

9 dari 30
BACK

Daftar RSNI
2006

5.3

Keseragaman lendutan

Perhitungan tebal lapis tambah dapat dilakukan pada setiap titik pengujian atau berdasarkan
panjang segmen (seksi). Apabila berdasarkan panjang seksi maka cara menentukan
panjang seksi jalan harus dipertimbangkan terhadap keseragaman lendutan. Keseragaman
yang dipandang sangat baik mempunyai rentang faktor keseragaman antara 0 sampai
dengan 10, antara 11 sampai dengan 20 keseragaman baik dan antara 21 sampai dengan
30 keseragaman cukup baik. Untuk menentukan faktor keseragaman lendutan adalah
dengan menggunakan Rumus 15 sebagai berikut:

FK =

s
x 100% < FK ijin
dR

................................................................................... (15)

dengan pengertian :
FK
= faktor keseragaman
FK ijin = faktor keseragaman yang diijinkan
= 0 % - 10%; keseragaman sangat baik
= 11% - 20%; keseragaman baik
= 21% - 30%; keseragaman cukup baik
dR
= lendutan rata-rata pada suatu seksi jalan
ns

=
s

=

=
d

=

ns

=

5.4

∑d
1

ns

............................................................................................................ (16)

deviasi standar = simpangan baku


ns 



  ns 
 

d2