Perencanaan batas minimal fly over jembatan Data : Elevasi dasar sungai = 1813.3 Perhitungan kelandaian memanjang Penghitungan lengkung vertical

1 2 3 1 2 3 56 2+800 1880 61 3+050 1900 57 2+850 1880 62 3+100 1895 58 2+900 1881.7 63 3+150 1880 59 2+950 1884 B 3+200 1860 60 3+000 1890 Gambar 3.7 Elevasi tanah asli

a. Perencanaan batas minimal fly over jembatan Data : Elevasi dasar sungai = 1813.3

Tinggi muka air banjir = 5 m Ruang bebas = 4 m Tebal gelagar = 0.5 Tebal perkerasan = 0.2 m Elevasi rencana jembatan = 1825 m + Lanjutan Tabel 3.2 उ ‽ 㠱㈷฀〠㌬ 㴉ㄠ Gambar 3.8 Jembatan

b. Perhitungan kelandaian memanjang

data perhitungan: L 1 = 0 + 000 h 1 = 1912 L 2 = 0 + 950 h 2 = 1910 L 3 = 1 + 200 h 3 = 1890 L 4 = 1 + 550 h 4 = 1870 L 5 = 1 + 850 h 5 = 1842 L 6 = 2 + 500 h 6 = 1842 L 7 = 2 + 750 h 7 = 1862 L 8 = 2 + 850 h 8 = 1872 L 9 = 3 + 200 h 9 = 1880 Dengan menggunakan rumus: 100 1 1       n n n n PVI STA PVI STA Elv Elv gn Penghitungan : 21 . 100 950 1912 1910 1      g 8 100 250 1910 1890 2      g 7 . 5 100 350 1890 1870 3      g 33 . 9 100 300 1870 1842 4      g 100 650 1842 1842 5     g 8 100 250 1842 1862 6     g 10 100 100 1862 1872 7     g 29 . 2 100 350 1872 1880 8     g 3.3 Tabel Hasil Penghitungan kelandaian memanjang No Titik STA Elevasi Keland aian g 1 2 3 4 5 1 A 0 + 000 1912 -0.21 2 PVI 1 0 + 950 1910 -8 3 PVI 2 1 + 200 1890 -5.7 4 PVI 3 1 + 550 1870 -9.33 5 PVI 4 1 + 850 1842 6 PVI 5 2 + 500 1842 8 7 PVI 6 2 + 750 1862 10 8 PVI 7 2 + 850 1872 2.29 9 B 3 + 200 1880

c. Penghitungan lengkung vertical

1. PVI 1 STA A g1 =-0.21 g2 =--8 STA C STA D STA E STA B Gambar 3.9 Lengkung Vertikal PVI 1 a. Perhitungan Lengkung Vertikal :   79 , 7 21 , 8 1 2          g g  Syarat keluwesan bentuk m V Lv 24 40 6 , 6 ,       Syarat drainase m Lv 6 , 311 79 , 7 40 40          Syarat kenyamanan m m ik jam Km t V Lv 35 33 , 33 det 3 40        Pengurangan goncangan m V Lv 62 , 34 360 79 , 7 40 360 2 2         Diambil Lv = 35 m m Lv Ev 34 , 800 35 79 , 7 800         2 3 2 2 10 113 , 1 35 200 79 , 7 200 X X Lv X Y             b. Stationing lengkung vertikal PVI 1 Sta A = Sta PVI 1 – 1 2 Lv = 0 + 950 - 1 2 35 = 0 + 932,5 m Sta C = Sta PVI 1 – 1 4 Lv = 0 + 950 - 1 4 35 = 0 + 941,25 m Sta D = Sta PVI 1 = 0 + 950 m Sta E = Sta PVI 1 + 1 4 Lv = 0 + 950 + 1 4 35 = 0 + 958,75 m Sta B = Sta PVI 1 + 1 2 Lv = 0 + 950 + 1 2 35 = 0 + 967,5 m c. Elevasi lengkung vertikal: Elevasi A = Elevasi PVI 1 - ½ Lv x g 1 = 1910 - ½ 35 x -0,21 = 1910,367 m Elevasi C = Elevasi PVI 1 - ¼ Lv x g 1 - y = 1910 - ¼ 35 x -0,21 - -1,113 x 10 -3 ¼ 35 2 = 1910.268 m Elevasi D = Elevasi PVI 1 - Ev = 1910 - -0,34 = 1909,66 m Elevasi E = Elevasi PVI 1 + ¼Lv x g 2 - y = 1910 + ¼ 35 x -8 - -1,113 x 10 -3 ¼ 35 2 = 1909.215 m Elevasi B = Elevasi PVI 1 + ½ Lv x g 2 = 1910 + ½ 35 x -8 = 1908,6 m 2. PVI 2 STA A g2 =-8 g3 = -5.7 STA C STA D STA E STA B Gambar 3.10 Lengkung Vertikal PVI 2 a. Perhitungan Lengkung Vertikal :   3 , 2 8 7 , 5 2 3         g g  Syarat keluwesan bentuk m V Lv 24 40 6 , 6 ,       Syarat drainase m Lv 92 3 , 2 40 40        Syarat kenyamanan m m ik jam Km t V Lv 35 33 , 33 det 3 40        Pengurangan goncangan m V Lv 22 , 102 360 3 , 2 40 360 2 2       Diambil Lv = 35 m m Lv Ev 1 , 800 35 3 , 2 800       2 4 2 2 10 286 , 3 35 200 3 , 2 200 X X Lv X Y            b. Stationing lengkung vertikal PVI 2 Sta A = Sta PVI 2 – 1 2 Lv = 1 + 200 - 1 2 35 = 1 + 182,5 m Sta C = Sta PVI 12 – 1 4 Lv = 1 + 200 - 1 4 35 = 1 + 191,25 m Sta D = Sta PVI 12 = 1 + 200 m Sta E = Sta PVI 2 + 1 4 Lv = 1 + 200 + 1 4 35 = 1 + 208,75 m Sta B = Sta PVI 2 + 1 2 Lv = 1 + 200 + 1 2 35 = 1 + 217,5 m c. Elevasi lengkung vertikal: Elevasi A = Elevasi PVI 2 – ½ Lv x g 2 = 1890 - ½ 35 x -8 = 1891,4 m Elevasi C = Elevasi PVI 2 - ¼ Lv x g 2 + y = 1890 - ¼ 35 x -8 + 3,286 x 10 -4 ¼ 35 2 = 1890,725 m Elevasi D = Elevasi PVI 2 + Ev = 1890 + 0,1 = 1890,1 m Elevasi E = Elevasi PVI 2 + ¼Lv x g 3 + y = 1890 + ¼ 35 x -5,7 + 3,286 x 10 -4 ¼ 35 2 = 1889,526 m Elevasi B = Elevasi PVI 2 + ½ Lv x g 3 = 1890 + ½ 35 x -5,7 = 1889,002 m 3. PVI 3 STA A g3 =-5.7 STA C STA D STA E STA B Gambar 3.11 Lengkung Vertikal PVI 3 a.. Perhitungan Lengkung Vertikal :   63 , 3 7 , 5 33 , 9 3 4         g g  Syarat keluwesan bentuk m V Lv 24 40 6 , 6 ,       Syarat drainase m Lv 2 , 145 63 , 3 40 40        Syarat kenyamanan m m ik jam Km t V Lv 35 33 , 33 det 3 40        Pengurangan goncangan m V Lv 13 , 16 360 63 , 3 40 360 2 2       Diambil Lv terbesar = 145 m m Lv Ev 66 , 800 145 63 , 3 800       2 4 2 2 10 252 , 1 145 200 63 , 3 200 X X Lv X Y            b.. Stationing lengkung vertikal PVI 3 Sta A = Sta PVI 3 – 1 2 Lv = 1 + 550 - 1 2 145 = 1 + 477,5 m Sta C = Sta PVI 3 – 1 4 Lv = 1 + 550 - 1 4 145 = 1 + 513,75 m Sta D = Sta PVI 3 = 1 + 550 m Sta E = Sta PVI 3 + 1 4 Lv = 1 + 550 + 1 4 145 = 1 + 586,25 m Sta B = Sta PVI 3 + 1 2 Lv = 1 + 550 + 1 2 145 = 1 + 622,5 m c.. Elevasi lengkung vertikal: Elevasi A = Elevasi PVI 3 – ½ Lv x g 3 = 1870 - ½ 145 x -5,7 = 1874,13 m Elevasi C = Elevasi PVI 3 - ¼ Lv x g 3 - y = 1870 - ¼ 145 x -5,7 - 1,252 x 10 -4 ¼ 145 2 = 1871,9 m Elevasi D = Elevasi PVI 3 - Ev = 1870 – 0,66 = 1869,34 m Elevasi E = Elevasi PVI 3 + ¼Lv x g 4 - y = 1870 + ¼ 145 x -9,33 - 1,252 x 10 -4 ¼ 145 2 = 1866,453 m Elevasi B = Elevasi PVI 3 + ½ Lv x g 4 = 1870 + ½ 145 x -9,33 = 1863,23 m 4. PVI 4 g4 =-9.33 STA A STA C STA D STA E STA B Gambar 3.12 Lengkung Vertikal PVI 4 a. Perhitungan Lengkung Vertikal :   33 , 9 33 , 9 4 5        g g  Syarat keluwesan bentuk m V Lv 24 40 6 , 6 ,       Syarat drainase m Lv 2 , 373 33 , 9 40 40        Syarat kenyamanan m m ik jam Km t V Lv 35 33 , 33 det 3 40        Pengurangan goncangan m V Lv 47 , 41 360 33 , 9 40 360 2 2       Diambil Lv = 41,47 dibulatkan = 45 m m Lv Ev 525 , 800 45 33 , 9 800       2 3 2 2 10 037 , 1 45 200 33 , 9 200 X X Lv X Y            b.. Stationing lengkung vertikal PVI 4 Sta A = Sta PVI 4 – 1 2 Lv = 1 + 850 - 1 2 45 = 1 + 827,5 m Sta C = Sta PVI 4 – 1 4 Lv = 1 + 850 - 1 4 45 = 1 + 838,75 m Sta D = Sta PVI 4 = 1 + 850 m Sta E = Sta PVI 4 + 1 4 Lv = 1 + 850 + 1 4 45 = 1 + 861,25 m Sta B = Sta PVI 4 + 1 2 Lv = 1 + 850 + 1 2 45 = 1 + 872,5 m c. Elevasi lengkung vertikal: Elevasi A = Elevasi PVI 4 – ½ Lv x g 4 = 1842 - ½ 45 x -9,33 = 1844,1 m Elevasi C = Elevasi PVI 4 - ¼ Lv x g 4 + y = 1842 - ¼ 45 x -9,33 + 1,037 x 10 -3 ¼ 45 2 = 1843.181 m Elevasi D = Elevasi PVI 4 + Ev = 1842 + 0,525 = 1842,525 m Elevasi E = Elevasi PVI 4 + ¼Lv x g 5 + y = 1842 + ¼ 45 x 0 + 1,037 x 10 -4 ¼ 45 2 = 1842,13 m Elevasi B = Elevasi PVI 4 + ½ Lv x g 5 = 1842 + ½ 45 x 0 = 1842 m 5. PVI 5 g7 = 8 STA A g6 = 0 STA C STA D STA E STA B Gambar 3.13 Lengkung Vertikal PVI 5 a. Perhitungan Lv:   8 8 3 4       g g  Syarat keluwesan bentuk m V Lv 24 40 6 , 6 ,       Syarat drainase m Lv 240 8 40 40        Syarat kenyamanan m m ik jam Km t V Lv 35 33 , 33 det 3 40        Pengurangan goncangan m V Lv 56 , 35 360 8 40 360 2 2       Diambil Lv = 35 m Lv Ev 35 , 800 35 8 800       2 3 2 2 10 143 , 1 35 200 8 200 X X Lv X Y            b. Stationing lengkung vertikal PVI 5 Sta A = Sta PVI 5 – 1 2 Lv = 2 + 500 - 1 2 35 = 2 + 482,5 m Sta C = Sta PVI 5 – 1 4 Lv = 2 + 500 - 1 4 35 = 2 + 491,25 m Sta D = Sta PVI 5 = 2 + 500 m Sta E = Sta PVI 5 + 1 4 Lv = 2 + 500 + 1 4 35 = 2 + 508,75 m Sta B = Sta PVI 5 + 1 2 Lv = 2 + 500 + 1 2 35 = 2 + 517,5 m c. Elevasi lengkung vertikal: Elevasi A = Elevasi PVI 5 - ½Lv x g 5 = 1842 - ½ 35 x -0 = 1842 m Elevasi C = Elevasi PVI 5 - ¼ Lv x g 5 + y = 1880 - ¼ 35 x 0 + 1,143x 10 -3 ¼ 35 2 = 1842,01 m Elevasi D = Elevasi PVI 5 + Ev = 1842 + 0,35 = 1842,35 m Elevasi E = Elevasi PVI 5 + ¼ Lv x g 6 + y = 1842 + ¼ 35 x 8 + 1,143 x 10 -3 ¼ 35 2 = 1842,79 m Elevasi B = Elevasi PVI 5 + ½Lv x g 6 = 1842 + ½ 35 x 8 = 1843,4 m 6. PVI 6 g7 = 8 STA A STA C STA D STA E Gambar 3.14 Lengkung Vertikal PVI 6 a. Perhitungan Lv:   2 8 10 5 6       g g  Syarat keluwesan bentuk m V Lv 24 40 6 , 6 ,       Syarat drainase m Lv 80 2 40 40        Syarat kenyamanan m m ik jam Km t V Lv 35 33 , 33 det 3 40        Pengurangan goncangan m V Lv 89 , 8 360 2 40 360 2 2       Diambil Lv = 80 m Lv Ev 2 , 800 8 2 800       2 4 2 2 10 25 , 1 80 200 2 200 X X Lv X Y            b. Stationing lengkung vertikal PVI 6 Sta A = Sta PVI 6 – 1 2 Lv = 2 + 750 - 1 2 80 = 2 + 710 m Sta C = Sta PVI 6 – 1 4 Lv = 2 + 750 - 1 4 80 = 2 + 730 m Sta D = Sta PVI 6 = 2 + 750 m Sta E = Sta PVI 6 + 1 4 Lv = 2 + 750 + 1 4 80 = 2 + 770 m Sta B = Sta PVI 6 + 1 2 Lv = 2 + 750 + 1 2 80 = 2 + 790 m c. Elevasi lengkung vertikal: Elevasi A = Elevasi PVI 6 - ½Lv x g 6 = 1862 - ½ 80 x 8 = 1858,8 m Elevasi C = Elevasi PVI 6 - ¼ Lv x g 6 + y = 1862 - ¼ 80 x 8 +1,25 x 10 -4 ¼ 80 2 = 1860,45 m Elevasi D = Elevasi PVI 6 + Ev = 1862 + 0,2 = 1862,2 m Elevasi E = Elevasi PVI 6 + ¼ Lv x g 7 + y = 1862 + ¼ 80 x 10 + 1,25 x 10 -4 ¼ 80 2 = 1864.05 m Elevasi B = Elevasi PVI 6 + ½Lv x g 7 = 1862 + ½ 80 x 10 = 1866 m 7. PVI 7 STA A STA C g8 = 10 Gambar 3.15 Lengkung Vertikal PVI 7 a. Perhitungan Lv: 72 , 7 10 28 , 2 7 8       g g  Syarat keluwesan bentuk m V Lv 24 40 6 , 6 ,       Syarat drainase m Lv 8 , 308 72 , 7 40 40        Syarat kenyamanan m m ik jam Km t V Lv 35 33 , 33 det 3 40        Pengurangan goncangan m V Lv 31 , 34 360 72 , 7 40 360 2 2       Diambil Lv = 35 karena lv terbesar overlap m Lv Ev 338 , 800 35 72 , 7 800       2 3 2 2 10 103 , 1 35 200 72 , 7 200 X X Lv X Y            b. Stationing lengkung vertikal PVI 7 Sta A = Sta PVI 7 – 1 2 Lv = 2 + 850 - 1 2 35 = 2 + 832,5 m Sta C = Sta PVI 7 – 1 4 Lv = 2 + 850 - 1 4 35 = 2 + 841,25 m Sta D = Sta PVI 7 = 2 + 850 m Sta E = Sta PVI 7 + 1 4 Lv = 2 + 850 + 1 4 35 = 2 + 858,75 m Sta B = Sta PVI 7 + 1 2 Lv = 2 + 850 + 1 2 35 = 2 + 867,5 m c. Elevasi lengkung vertikal: Elevasi A = Elevasi PVI 7 - ½Lv x g 7 = 1872 - ½ 35 x 10 = 1870,25 m Elevasi C = Elevasi PVI 7 - ¼ Lv x g 7 - y = 1872 - ¼ 35 x 10 - 1,103 x 10 -3 ¼ 35 2 = 1871,04 m Elevasi D = Elevasi PVI 7 - Ev = 1872 + 0,338 = 1871.662 m Elevasi E = Elevasi PVI 7 + ¼ Lv x g 8 - y = 1872 + ¼ 35 x 2,28 - 1,103 x 10 -3 ¼ 35 2 = 1872,115 m Elevasi B = Elevasi PVI 7 + ½Lv x g 8 = 1872 + ½ 35 x 2,28 = 1872,4 m Tabel 3.4 hasil elevasi tanah asli, rencana dan beda tinggi NO Stationing Elevasi Tanah Asli Elevasi Jalan Rencana Beda Tinggi 1 2 3 4 5 A 0 + 000 1900 1912 12 1 0 + 050 1910 1911,895 1,895 2 0 + 100 1910 1911,79 1,79 3 0 + 150 1912,5 1911,685 -0,815 4 0 + 200 1920 1911,58 -8,42 5 0 + 250 1923,3 1911,475 -11,825 6 0 + 300 1921 1911,37 -9,63 7 0 + 350 1916,2 1911,265 -4,935 8 0 + 400 1908 1911,16 3,16 9 0 + 450 1901,4 1911,055 9,655 10 0 + 500 1903 1910,95 7,95 11 0 + 550 1906,7 1910,845 4,145 Bersambung Lanjuitan Tabel 3.4 1 2 3 4 5 12 0 + 600 1910 1910,74 0,74 13 0 + 650 1915 1910,635 -4,365 14 0 + 700 1920 1910,53 -9,47 15 0 + 750 1921,7 1910,425 -11,275 16 0 + 800 1922,5 1910,32 -12,18 17 0 + 850 1920 1910,215 -9,785 18 0 + 900 1917 1910,11 -6,89 19 0 + 932,5 1914,67 1910,367 -4,303 20 0 + 941,25 1912,34 1910,268 -2,072 21 0 + 950 1910 1910 22 0 + 958,75 1906,67 1909,215 2,545 23 0 + 967,5 1093,33 1908,6 815,27 24 1 + 000 1900 1906 6 25 1 + 050 1890 1902 12 26 1 + 100 1884,4 1898 13,6 27 1 + 150 1880 1894 14 28 1 + 182,5 1879,67 1891,4 11,73 29 1 + 191,25 1879,33 1890,725 11,395 30 1 + 200 1879 1890 11 31 1 + 208,75 1879,33 1889,526 10,196 32 1 + 217,5 1879,67 1889,002 9,332 33 1 + 250 1880 1887,15 7,15 34 1 + 300 1880 1884,3 4,3 35 1 + 350 1878,2 1881,45 3,25 36 1 + 400 1875 1878,6 3,6 37 1 + 450 1870 1875,75 5,75 38 1 + 477,5 1866,65 1874,13 7,48 39 1 + 500 1863,3 1872,9 9,6 40 1 + 513,75 1858,1 1871,9 13,8 41 1 + 550 1852,9 1870 17,1 42 1 + 586,25 1849,15 1886,453 37,303 43 1 + 600 1845,4 1865,335 19,935 44 1 + 622,5 1840,5 1863,23 22,73 45 1 + 650 1835,6 1860,67 25,07 46 1 + 700 1840 1856,005 16,005 47 1 + 750 1841,8 1851,34 9,54 48 1 + 800 1843 1846,675 3,675 Bersambung Lanjuitan Tabel 3.4 1 2 3 4 5 49 1 + 827,5 1842 1844,1 2,1 50 1 + 838,75 1841 1843,181 2,181 51 1 + 850 1840 1842.55 2.55 52 1 + 861,25 1836,67 1842.13 5.46 53 1 + 872,5 1833,33 1842 6.67 54 1 + 900 1830 1842 12 55 1 + 950 1830 1842 12 56 2 + 000 1840 1842 2 57 2 + 050 1840 1842 2 58 2 + 100 1836 1842 6 59 2 + 150 1830 1842 12 60 2 + 200 1820 1842 22 61 2 + 250 1805,6 1842 36,4 62 2 + 300 1803,3 1842 38,7 63 2 + 350 1822 1842 20 64 2 + 400 1830 1842 12 65 2 + 450 1820 1842 22 66 2 + 482,5 1818,9 1842 23,1 67 2 + 491,25 1817,8 1842 24,21 68 2 + 500 1816,7 1842 25,3 69 2 + 508,75 1816,7 1842,79 26,09 70 2 + 517,5 1816,7 1843,4 26,7 71 2 + 550 1816,7 1846 29,3 72 2 + 600 1830 1850 20 73 2 + 650 1855 1854 -1 74 2 + 700 1880 1858 -22 75 2 + 710 1880 1858,8 -21,2 76 2 + 730 1880 1860,45 -19,55 77 2 + 750 1880 1862 -18 78 2 + 770 1880 1864,05 -15,95 79 2 + 790 1880 1866 -14 80 2 + 800 1880 1867 -13 81 2 + 832,5 1880 1870,25 -9,75 82 2 + 841,25 1880 1871,04 -8,96 83 2 + 850 1880 1872 -8 84 2 + 858,75 1880,57 1872,115 -8,455 85 2 + 867,5 1881,33 1872,4 -8,93 Bersambung Lanjuitan Tabel 3.4 1 2 3 4 5 86 2 + 900 1881,7 1873,14 -8,56 87 2 + 950 1884 1874,28 -9,72 88 3 + 000 1890 1875,42 -14,58 89 3 + 050 1900 1876,56 -23,44 90 3 + 100 1895 1877,7 -17,3 91 3 + 150 1880 1878,84 -1,16 B 3 + 200 1860 1879,98 19,98 105

BAB 4 PERENCANAAN TEBAL PERKERASAN

4.1 Data Perencanaan Tebal Perkerasan:

1.. Data Lalu Lintas tahun 2008 a. Kendaraan ringan 2 ton1+1 = 252 kendaraan b. Bus besar 8 ton 3+5 = 24 kendaraan c. Truk 2 as 10 ton5+5 = 78 kendaraan + LHR S = 354 kendaraan hari 2 jalur 2. Jalan dibuka pada tahun = 2008. 3. pertumbuhan lalu lintas I 1 selama pelaksaaan = 2 4. pertumbuhan lalu lintas I 2 selama umur rencana = 7 5. Umur rencana UR = 15 tahun 6. Curah hujan rata-rata = 3550 mmth 7. Kelandaian = 6 9,38 8. Susunan lapis perkerasan Surface course = Laston MS 590 Base course = Batu pecahkelas A Sub base course = Sirtu kelas C

4.2 Menetapkan Perencanaan Tebal Perkerasan:

1. LHR 2007 awal umur rencana, i = 2 Rumus : LHR 2008 1 + i n