From this analysis of collected studies (Tables 1–4), it is observ- SUPPLEMENTARY MATERIAL

From this analysis of collected studies (Tables 1–4), it is observ- SUPPLEMENTARY MATERIAL

able from the available data that non-invasive stimulation may The Supplementary Material for this article can be found online beneficial in enhancing motor recovery. Specifically, it may lead at http://www.frontiersin.org/Neuropsychiatric_Imaging_and_ to clinically meaningful functional motor improvements in the Stimulation/10.3389/fpsyt.2012.00088/abstract stroke population. Future studies would benefit from future stan-

dardization of outcomes and stimulation parameters in order to Table S1 | Adverse events and safety outcome for selected peer-reviewed

decrease variability and heterogeneity of results. Future studies articles. MMSE, mini-mental state examination; EEG, electroencephalography.

meta-analysis detected by a simple, Ameli, M., Grefkes, C., Kemper, F.,

REFERENCES

Boggio, P. S., Rocha, R. R., da Silva, M.

al. (2012). rTMS with motor train-

graphical test. BMJ 315, 629–634. Riegg, F. P., Rehme, A. K., Karbe,

T., and Fregni, F. (2008). Differen-

ing modulates cortico-basal ganglia-

Emara, T. H., Moustafa, R. R., Elna- H., et al. (2009). Differential effects

tial modulatory effects of transcra-

thalamocortical circuits in stroke

has, N. M., Elganzoury, A. M., of high-frequency repetitive tran-

nial direct current stimulation on a

patients. Restor. Neurol. Neurosci. 30,

Abdo, T. A., Mohamed, S. A., et al. scranial magnetic stimulation over

facial expression go-no-go task in

(2010). Repetitive transcranial mag- ipsilesional primary motor cortex in

males and females. Neurosci. Lett.

Conforto, A. B., Anjos, S. M., Sapos-

netic stimulation at 1 Hz and 5 Hz cortical and subcortical middle cere-

nik, G., Mello, E. A., Nagaya, E.

produces sustained improvement in bral artery stroke. Ann. Neurol. 66,

Bolognini, N., Vallar, G., Casati, C.,

M., Santos, W. Jr., et al. (2012).

motor function and disability after 298–309.

Latif, L. A., El-Nazer, R., Williams,

Transcranial magnetic stimulation

ischaemic stroke. Eur. J. Neurol. 17, Avenanti, A., Coccia, M., Ladavas, E.,

J., et al. (2011). Neurophysio-

in mild to severe hemiparesis early

1203–1209. Provinciali, L., and Ceravolo, M.

logical and behavioral effects of

after stroke: a proof of principle

Filippi, M., Rocca, M. A., Mezzapesa, G. (2012). Low-frequency rTMS

tDCS combined with constraint-

and novel approach to improve

D. M., Ghezzi, A., Falini, A., Mar- promotes use-dependent motor

induced movement therapy in post-

motor function. J. Neurol. 259,

stroke patients. Neurorehabil. Neural

tinelli, V., et al. (2004). Simple

and complex movement-associated randomized trial. Neurology 78,

plasticity in chronic stroke: a Repair 25, 819–829.

Craig, L. E., Bernhardt, J., Langhorne,

functional MRI changes in patients 256–264.

Burn, J., Dennis, M., Bamford, J.,

P., and Wu, O. (2010). Early mobi-

at presentation with clinically iso- Bahn, M. M., Oser, A. B., and Cross,

Sandercock, P., Wade, D., and War-

lization after stroke: an example of

lated syndromes suggestive of mul- D. T. III. (1996). CT and MRI of

low, C. (1997). Epileptic seizures

an individual patient data meta-

tiple sclerosis. Hum. Brain Mapp. 21, stroke. J. Magn. Reson. Imaging 6,

after a first stroke: the Oxfordshire

analysis of a complex intervention.

Community Stroke Project. BMJ

Stroke 41, 2632–2636.

Fox, M. D., Halko, M. A., Eldaief, Benninger, D. H., Lomarev, M., Wasser-

Dafotakis, M., Grefkes, C., Eickhoff,

M. C., and Pascual-Leone, A. mann, E. M., Lopez, G., Houdayer,

Burneo, J. G., Fang, J., and Saposnik, G.

S. B., Karbe, H., Fink, G. R., and

(2012). Measuring and manipulat- E., Fasano, R. E., et al. (2009). Safety

(2010). Impact of seizures on mor-

Nowak, D. A. (2008). Effects of rTMS

ing brain connectivity with resting study of 50 Hz repetitive transcra-

bidity and mortality after stroke: a

on grip force control following sub-

state functional connectivity mag- nial magnetic stimulation in patients

Canadian multi-centre cohort study.

cortical stroke. Exp. Neurol. 211,

netic resonance imaging (fcMRI) with Parkinson’s disease. Clin. Neu-

Eur. J. Neurol. 17, 52–58.

and transcranial magnetic stim- rophysiol. 120, 809–815.

Calautti, C., and Baron, J. C. (2003).

Decarli, C., Kawas, C., Morrison, J. H.,

Functional neuroimaging studies

Reuter-Lorenz, P. A., Sperling, R. A.,

ulation (TMS). Neuroimage 62,

Adeyemo et al. Systematic review noninvasive brain stimulation

Fumagalli, M., Vergari, M., Pasqualetti,

ischemic stroke. Acta Neurol. Scand. P., Marceglia, S., Mameli, F., Ferrucci,

lateral premotor-cerebellar-parietal

upper limb hemiparesis: preliminary

121, 30–37. R., et al. (2010). Brain switches util-

circuits in motor sequence control:

study of a 15-day protocol. Int. J.

Kilpatrick, C. J., Davis, S. M., Tress, B. itarian behavior: does gender make

a parametric fMRI study. Brain Res.

Rehabil. Res. 33, 339–345.

M., Rossiter, S. C., Hopper, J. L., and the difference? PLoS ONE 5, e8865.

Cogn. Brain Res. 13, 159–168.

Kakuda, W., Abo, M., Kobayashi, K.,

Vandendriesen, M. L. (1990). Epilep- doi:10.1371/journal.pone.0008865

Hellmann, J., Juttner, R., Roth, C.,

Momosaki, R., Yokoi, A., Fukuda,

tic seizures in acute stroke. Arch. Funke, K., and Benali, A. (2011). Mod-

Bajbouj, M., Kirste, I., Heuser,

A., et al. (2011a). Combina-

Neurol. 47, 157–160. ulation of cortical inhibition by

I., et al. (2012). Repetitive mag-

tion treatment of low-frequency

Kim, D. Y., Ku, J., Chang, W. H., rTMS – findings obtained from

netic stimulation of human-derived

rTMS and occupational therapy

Park, T. H., Lim, J. Y., Han, K., animal models. J. Physiol. (Lond.)

neuron-like cells activates cAMP-

et al. (2010a). Assessment of post- 589(Pt 18), 4423–4435.

CREB pathway. Eur. Arch. Psychiatry

an intensive neurorehabilitative

stroke extrapersonal neglect using Galea, J. M., Vazquez, A., Pasricha, N., de

Clin. Neurosci. 262, 87–91.

approach for upper limb hemipare-

a three-dimensional immersive vir- Xivry, J. J., and Celnik, P. (2011). Dis-

Hesse, S., Waldner, A., Mehrholz, J.,

sis after stroke. Int. J. Neurosci. 121,

tual street crossing program. Acta sociating the roles of the cerebellum

Tomelleri, C., Pohl, M., and Werner,

Neurol. Scand. 121, 171–177. and motor cortex during adaptive

C. (2011). Combined transcranial

Kakuda, W., Abo, M., Kobayashi, K.,

Kim, D. Y., Lim, J. Y., Kang, E. K., learning: the motor cortex retains

direct current stimulation and

Momosaki, R., Yokoi, A., Fukuda, A.,

You, D. S., Oh, M. K., Oh, B. M., what the cerebellum learns. Cereb.

robot-assisted arm training in suba-

et al. (2011b). Anti-spastic effect of

et al. (2010b). Effect of transcranial Cortex 21, 1761–1770.

cute stroke patients: an exploratory,

low-frequency rTMS applied with

direct current stimulation on motor Gao, F., Wang, S., Guo, Y., Wang, J.,

occupational therapy in post-stroke

recovery in patients with subacute Lou, M., Wu, J., et al. (2010). Protec-

Neurorehabil. Neural Repair 25,

patients with upper limb hemipare-

stroke. Am. J. Phys. Med. Rehabil. 89, tive effects of repetitive transcranial

sis. Brain Inj. 25, 496–502.

879–886. magnetic stimulation in a rat model

Hesse, S., Werner, C., Schonhardt, E.

Kakuda, W., Abo, M., Kobayashi, K.,

Kim, Y. H., You, S. H., Ko, M. H., of transient cerebral ischaemia: a

M., Bardeleben, A., Jenrich, W., and

Momosaki, R., Yokoi, A., Fukuda, A.,

Park, J. W., Lee, K. H., Jang, S. H., microPET study. Eur. J. Nucl. Med.

Kirker, S. G. (2007). Combined tran-

et al. (2011c). Application of com-

et al. (2006). Repetitive transcranial Mol. Imaging 37, 954–961.

scranial direct current stimulation

bined 6-Hz primed low-frequency

magnetic stimulation-induced cor- Grefkes, C., Nowak, D. A., Wang, L. E.,

and robot-assisted arm training in

rTMS and intensive occupational

ticomotor excitability and associated Dafotakis, M., Eickhoff, S. B., and

subacute stroke patients: a pilot

therapy for upper limb hemiparesis

motor skill acquisition in chronic Fink, G. R. (2010). Modulating cor-

study. Restor. Neurol. Neurosci. 25,

after stroke. Neurorehabilitation 29,

stroke. Stroke 37, 1471–1476. tical connectivity in stroke patients

Knops, A., Nuerk, H. C., Sparing, by rTMS assessed with fMRI and

Hummel, F., Celnik, P., Giraux, P., Floel,

Kakuda, W., Abo, M., Kobayashi, K.,

R., Foltys, H., and Willmes, K. dynamic causal modeling. Neuroim-

A., Wu, W. H., Gerloff, C., et al.

Takagishi, T., Momosaki, R., Yokoi,

(2006). On the functional role of age 50, 233–242.

(2005). Effects of non-invasive cor-

A., et al. (2011d). Baseline severity of

human parietal cortex in num- Haaland, K. Y., and Delaney, H. D.

tical stimulation on skilled motor

upper limb hemiparesis influences

ber processing: How gender medi- (1981). Motor deficits after left or

function in chronic stroke. Brain

the outcome of low-frequency rTMS

ates the impact of a ‘virtual lesion’ right hemisphere damage due to

128(Pt 3), 490–499.

combined with intensive occupa-

induced by rTMS. Neuropsychologia stroke or tumor. Neuropsychologia

Hummel, F. C., and Cohen, L. G. (2006).

tional therapy in patients who have

Non-invasive brain stimulation: a

had a stroke. PM R 3, 516–522; quiz

Koganemaru, S., Mima, T., Thabit, M. Haaland, K. Y., and Harrington, D. L.

new strategy to improve neuroreha-

N., Ikkaku, T., Shimada, K., Kane- (1989). Hemispheric control of the

bilitation after stroke? Lancet Neurol.

Kakuda, W., Abo, M., Shimizu, M.,

matsu, M., et al. (2010). Recov- initial and corrective components of

Sasanuma, J., Okamoto, T., Yokoi, A.,

ery of upper-limb function due to aiming movements. Neuropsycholo-

Ipek, M., Hilal, H., Nese, T., Aynur,

et al. (2012). A multi-center study

enhanced use-dependent plasticity gia 27, 961–969.

M., and Gazanfer, E. (2011). Neu-

on low-frequency rTMS combined

in chronic stroke patients. Brain 133, Hadley, D., Anderson, B. S., Borckardt,

ronal plasticity in a case with total

with intensive occupational therapy

3373–3384. J. J., Arana, A., Li, X., Nahas, Z.,

hemispheric lesion. J. Med. Life 4,

for upper limb hemiparesis in post-

Krakauer, J. W. (2005). Arm func- et al. (2011). Safety, tolerability,

stroke patients. J. Neuroeng. Rehabil.

tion after stroke: from physiol- and effectiveness of high doses of

Ivey, F. M., Hafer-Macko, C. E., and

Macko, R. F. (2006). Exercise reha-

Kent, T. A., Rutherford, D. G., Breier, J.

ogy to recovery. Semin. Neurol. 25,

Adeyemo et al. Systematic review noninvasive brain stimulation

chronic stroke patients. Neurology

Liang, F. (1998). Dexterity in adult 75, 2176–2184.

Santos, C. M., et al. (2005). A

Electroencephalogr. Clin. Neurophys-

monkeys following early lesion of Lloyd-Jones, D., Adams, R., Carnethon,

sham stimulation-controlled trial of

iol. 89, 120–130.

the motor cortical hand area: the role M., De Simone, G., Ferguson,

rTMS of the unaffected hemisphere

Pinto, P. S., Meoded, A., Poretti, A.,

of cortex adjacent to the lesion. Eur. T. B., Flegal, K., et al. (2009).

in stroke patients. Neurology 64,

Tekes, A., and Huisman, T. A. (2012).

J. Neurosci. 10, 729–740. Heart disease and stroke statistics –

The unique features of traumatic

Ryan, S., Bonilha, L., and Jackson, S. R. 2009 update: a report from the

Nahas, Z., Li, X., Kozel, F. A., Mirzki,

brain injury in children. Review

(2006). Individual variation in the American Heart Association Statis-

D., Memon, M., Miller, K., et

of the characteristics of the pedi-

location of the parietal eye fields: tics Committee and Stroke Statis-

al. (2004). Safety and benefits of

atric skull and brain, mechanisms

a TMS study. Exp. Brain Res. 173, tics Subcommittee. Circulation 119,

distance-adjusted prefrontal tran-

of trauma, patterns of injury, com-

389–394. e21–e181.

scranial magnetic stimulation in

plications, and their imaging find-

Sangvatanakul, P., Hillege, S., Lalor, E., Lo, E. H. (2008). A new penumbra:

depressed patients 55–75 years of

ings – part 2. J. Neuroimaging 22,

Levi, C., Hill, K., and Middleton, S. transitioning from injury into repair

age: a pilot study. Depress. Anxiety

e18–e41.

(2010). Setting stroke research pri- after stroke. Nat. Med. 14, 497–500.

Poldrack, R. A., Sabb, F. W., Foerde,

orities: the consumer perspective. J. Lomarev, M. P., Kim, D. Y., Richard-

Nair, D. G., Renga, V., Lindenberg, R.,

K., Tom, S. M., Asarnow, R. F.,

Vasc. Nurs. 28, 121–131. son, S. P., Voller, B., and Hal-

Zhu, L., and Schlaug, G. (2011).

Bookheimer, S. Y., et al. (2005). The

Sasaki, N., Mizutani, S., Kakuda, W., lett, M. (2007). Safety study of

neural correlates of motor skill auto-

and Abo, M. (2011). Comparison high-frequency transcranial mag-

through simultaneous occupational

maticity. J. Neurosci. 25, 5356–5364.

of the effects of high- and low- netic stimulation in patients with

therapy and non-invasive brain-

Pomeroy, V. M., Cloud, G., Tallis, R. C.,

frequency repetitive transcranial chronic stroke. Clin. Neurophysiol.

stimulation using tDCS. Restor.

Donaldson, C., Nayak, V., and Miller,

magnetic stimulation on upper limb 118, 2072–2075.

Neurol. Neurosci. 29, 411–420.

S. (2007). Transcranial magnetic

hemiparesis in the early phase of Lotze, M., Markert, J., Sauseng, P.,

Noskin, O., Krakauer, J. W., Lazar, R.

stimulation and muscle contraction

stroke. J. Stroke Cerebrovasc. Dis. Hoppe, J., Plewnia, C., and Gerloff,

M., Festa, J. R., Handy, C., O’Brien,

to enhance stroke recovery: a ran-

doi:10.1016/j.jstrokecerebrovasdis. C. (2006). The role of multiple

K. A., et al. (2008). Ipsilateral motor

domized proof-of-principle and fea-

2011.10.004 contralesional motor areas for com-

dysfunction from unilateral stroke:

sibility investigation. Neurorehabil.

Schmahmann, J. D., and Pandya, D. plex hand movements after inter-

implications for the functional

Neural Repair 21, 509–517.

N. (1997). The cerebrocerebellar nal capsular lesion. J. Neurosci. 26,

neuroanatomy of hemiparesis. J.

Quintana, H. (2005). Transcranial mag-

system. Int. Rev. Neurobiol. 41, 6096–6102.

Neurol. Neurosurg. Psychiatr. 79,

netic stimulation in persons younger

31–60. Luker, J. A., Wall, K., Bernhardt, J.,

than the age of 18. J. ECT 21,

Schwarzkopf, D. S., Silvanto, J., and Edwards, I., and Grimmer-Somers,

Nowak, D. A., Grefkes, C., Ameli, M.,

Rees, G. (2011). Stochastic res- K. A. (2011). Patients’ age as a deter-

and Fink, G. R. (2009). Interhemi-

Rachid, F., and Bertschy, G. (2006).

onance effects reveal the neural minant of care received following

spheric competition after stroke:

Safety and efficacy of repetitive tran-

mechanisms of transcranial mag- acute stroke: a systematic review.

brain stimulation to enhance recov-

scranial magnetic stimulation in the

netic stimulation. J. Neurosci. 31, BMC Health Serv. Res. 11, 161.

ery of function of the affected

treatment of depression: a critical

3143–3147. Lum, P., Reinkensmeyer, D., Mahoney,

hand. Neurorehabil. Neural Repair

appraisal of the last 10 years. Neu-

Shimizu, T., Hosaki, A., Hino, T., Sato, R., Rymer, W. Z., and Burgar, C.

rophysiol. Clin. 36, 157–183.

M., Komori, T., Hirai, S., et al. (2002). Robotic devices for move-

Nowak, D. A., Grefkes, C., Dafo-

Ratan, R. R., and Noble, M. (2009).

(2002). Motor cortical disinhibi- ment therapy after stroke: current

takis, M., Eickhoff, S., Kust, J.,

Novel multi-modal strategies to pro-

tion in the unaffected hemisphere status and challenges to clinical

Karbe, H., et al. (2008). Effects of

mote brain and spinal cord injury

after unilateral cortical stroke. Brain acceptance. Top. Stroke Rehabil. 8,

low-frequency repetitive transcra-

recovery. Stroke 40(3 Suppl), S130–

125(Pt 8), 1896–1907. 40–53.

nial magnetic stimulation of the

S132.

So, E. L., Annegers, J. F., Hauser, W. Madhavan, S., Weber, K. A. II, and Stin-

contralesional primary motor cortex

Reith, J., Jorgensen, H. S., Nakayama,

A., O’Brien, P. C., and Whisnant, ear, J. W. (2011). Non-invasive brain

on movement kinematics and neural

H., Raaschou, H. O., and Olsen, T.

J. P. (1996). Population-based study stimulation enhances fine motor

activity in subcortical stroke. Arch.

S. (1997). Seizures in acute stroke:

of seizure disorders after cerebral control of the hemiparetic ankle:

Neurol. 65, 741–747.

predictors and prognostic signif-

infarction. Neurology 46, 350–355. implications for rehabilitation. Exp.

Olivo, S. A., Macedo, L. G., Gadotti, I. C.,

icance. The Copenhagen Stroke

Fuentes, J., Stanton, T., and Magee,

Study. Stroke 28, 1585–1589.

Sohn, Y. H., Jung, H. Y., Kaelin-Lang,

Adeyemo et al. Systematic review noninvasive brain stimulation

commercial or financial relationships enhances motor performance and

transcranical magnetic stimulation

the posterior parietal cortex. Exp.

Wong, S. S., Wilczynski, N. L.,

that could be construed as a potential training effect of the paretic hand

Brain Res. 176, 603–615.

and Haynes, R. B. (2006). Com-

conflict of interest. in patients with chronic stroke. J.

Wagner, T., Eden, U., Fregni, F.,

parison of top-performing search

Valero-Cabre, A., Ramos-Estebanez,

strategies for detecting clinically

Received: 31 May 2012; accepted: 22 Takeuchi, N., Tada, T., Toshima, M.,

Rehabil. Med. 40, 298–303.

C., Pronio-Stelluto, V., et al.

sound treatment studies and sys-

September 2012; published online: 12 Matsuo, Y., and Ikoma, K. (2009).

tematic reviews in MEDLINE and

November 2012. Repetitive transcranial magnetic

stimulation and brain atrophy:

EMBASE. J. Med. Libr. Assoc. 94,

Citation: Adeyemo BO, Simis M, Macea stimulation over bilateral hemi-

a computer-based human brain

451–455.

DD and Fregni F (2012) Systematic spheres enhances motor function

model study. Exp. Brain Res. 186,

Yoon, K. J., Lee, Y. T., and Han, T.

review of parameters of stimulation, clin- and training effect of paretic hand in

539–550.

R. (2011). Mechanism of functional

ical trial design characteristics, and motor patients after stroke. J. Rehabil. Med.

Ward, N. S., Brown, M. M., Thomp-

recovery after repetitive transcra-

outcomes in non-invasive brain stimula- 41, 1049–1054.

son, A. J., and Frackowiak, R. S.

nial magnetic stimulation (rTMS)

tion in stroke. Front. Psychiatry 3:88. doi: Tanaka, S., Takeda, K., Otaka, Y.,

(2003). Neural correlates of motor

in the subacute cerebral ischemic

10.3389/fpsyt.2012.00088 Kita, K., Osu, R., Honda, M., et

recovery after stroke: a longitudi-

rat model: neural plasticity or

This article was submitted to Frontiers in al. (2011). Single session of tran-

nal fMRI study. Brain 126(Pt 11),

anti-apoptosis? Exp. Brain Res. 214,

Neuropsychiatric Imaging and Stimula- scranial direct current stimulation

2476–2496.

549–556.

tion, a specialty of Frontiers in Psychiatry. transiently increases knee extensor

Werhahn, K. J., Conforto, A. B., Kadom,

Yozbatiran, N., Alonso-Alonso, M., See,

Copyright © 2012 Adeyemo, Simis, force in patients with hemiparetic

N., Hallett, M., and Cohen, L. G.

J., Demirtas-Tatlidede, A., Luu, D.,

Macea and Fregni. This is an open- stroke. Neurorehabil. Neural Repair

(2003). Contribution of the ipsilat-

Motiwala, R. R., et al. (2009).

access article distributed under the terms 25, 565–569.

eral motor cortex to recovery after

Safety and behavioral effects of

of the Creative Commons Attribution Valero-Cabre, A., Payne, B. R., and

chronic stroke. Ann. Neurol. 54,

high-frequency repetitive transcra-

License, which permits use, distribution Pascual-Leone, A. (2007). Oppo-

464–472.

nial magnetic stimulation in stroke.

and reproduction in other forums, pro- site impact on 14C-2-deoxyglucose

Williams, J. A., Pascual-Leone, A.,

Stroke 40, 309–312.

vided the original authors and source brain metabolism following patterns

and Fregni, F. (2010). Interhemi-

are credited and subject to any copy- of high and low frequency repetitive

spheric modulation induced by cor-

Conflict of Interest Statement: The

right notices concerning any third-party transcranial magnetic stimulation in

tical stimulation and motor training.

authors declare that the research was

Phys. Ther. 90, 398–410.

conducted in the absence of any

graphics etc.