Aplikasi Iradiasi Mesin Berkas Elektron untuk Disinfestasi Serangga Tribolium castaneum (Herbst) pada Tepung Terigu

APLIKASI IRADIASI MESIN BERKAS ELEKTRON
UNTUK DISINFESTASI SERANGGA
Tribolium castaneum (Herbst) PADA TEPUNG TERIGU

RINDY PANCA TANHINDARTO

SEKOLAH PASCASARJANA
INSTITUT PERTANIAN BOGOR
BOGOR
2006

PERNYATAAN MENGENAI TESIS DAN
SUMBER INFORMASI

Dengan ini saya menyatakan bahwa tesis Aplikasi Iradiasi Mesin Berkas
Elektron untuk Disinfestasi Serangga Tribolium castaneum (Herbst) pada Tepung
Terigu adalah karya saya sendiri dengan arahan Komisi Pembimbing dan belum
diajukan dalam bentuk apa pun kepada perguruan tinggi mana pun. Sumber
informasi yang berasal atau dikutip dari karya yang diterbitkan penulis lain, telah
disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir
tesis ini.


Bogor, Agustus 2006
Rindy Panca Tanhindarto
Nomor Pokok F 25 1024 011

ABSTRAK
RINDY PANCA TANHINDARTO. Aplikasi Iradiasi Mesin Berkas Elektron
untuk Disinfestasi Serangga Tribolium castaneum (Herbst) pada Tepung Terigu.
Dibimbing oleh PURWIYATNO HARIYADI, NURI ANDARWULAN dan
ZUBAIDAH IRAWATI.
Tribolium castaneum (Herbst) (T. castaneum) adalah hama gudang yang
dapat menimbulkan masalah pada penyimpanan tepung terigu. Teknik pengawetan secara konvensional untuk disinfestasi yang ada masih belum sepenuhnya
mampu membasmi sisa-sisa stadium telur, larva, pupa dan serangga dewasa T.
castaneum. Radiasi ionisasi mesin berkas elektron (MBE) adalah proses fisika
dapat diterapkan untuk tujuan disinfestasi serangga. Beberapa keunggulan dari
MBE adalah aman, efektif dan tidak meninggalkan residu pada bahan yang
disinari. Sampel dikelompokkan menjadi 2 bagian yaitu serangga uji tanpa tepung
terigu dan serangga uji diinfestasikan ke dalam tepung terigu dengan tebal
masing-masing 800 µm dan 1600 µm, lalu dikemas dengan plastik polietilen.
MBE diatur pada energi 300 keV dan sampel diiradiasi satu sisi dan dua sisi

dengan arus berkas 100-500 µA, kecepatan konveyor 4 cm/detik dan jarak
pemayar ke target 20 cm. Pengamatan dilakukan terhadap pertumbuhan populasi
serangga yang hidup terhadap fungsi waktu. Tujuan dari penelitian ini adalah
mempelajari efektivitas mesin berkas elektron untuk disinfestasi serangga dewasa
T. castaneum. Sebagai acuan menggunakan sumber radionuklida [60Co] sinar
gamma juga dilakukan. Perlakuan radiasi dengan arus berkas 300 µA dua sisi
pada infestasi sampel tanpa tepung terigu dapat membasmi semua serangga
dewasa T. castaneum segera setelah perlakuan iradiasi baik menggunakan berkas
elektron maupun sinar gamma dengan dosis 3 kGy. Berdasarkan efektivitas
iradiasi dua sisi dengan arus berkas 200 µA dapat menurunkan semua serangga
dewasa T. castaneum yang diinfestasikan kedalam tepung terigu dengan tebal 800
µm.

Kata kunci : disinfestasi, iradiasi pangan, mesin berkas elektron, tepung terigu,
Tribolium castaneum (Herbst).

ABSTRACT
RINDY PANCA TANHINDARTO. The Application of Irradiated Electron
Beam Machine to Disinfestation Tribolium castaneum (Herbst) on Wheat Flour.
Under the direction of PURWIYATNO HARIYADI, NURI ANDARWULAN,

ZUBAIDAH IRAWATI.
Tribolium castaneum (Herbst) (T. castaneum) is a storage pest can create
problem of wheat flour. The existing conventional preservation techniques for
insect disinfestation are mostly insufficient to eliminate stadium of eggs, larva,
pupae or imago of T. castaneum. Ionizing radiation using source electron beam
machine (EBM) is the physical processing could be applied for insect
disinfestation purposes. Some benefit using EBM are safe, effective and no
residues on foodstuffs after process. The samples were divided into two groups,
i.e. insect without wheat flour and insect infested in wheat flour thickness of 800
µm and thickness of 1600 µm, packed individually in polyethylene pouch,
respectively. The EBM was set up to the energy 300 keV, and the samples were
irradiated one and both sides at the beam currents of 100-500 ȝA, while conveyor
velocity was 4 cm/second and gap of windows-target surface was 20 cm. The
population of living insect at all stages by the strorage time was observed. The
objective of the study was to conduct the effectiveness of electron beam machine
in order to disinfested imago stage of T. castaneum. A comparative study using
radionuclide [60Co] of gamma rays source was also conducted. Radiation
treatment at the beam current of 300 ȝA on both sides of the infested samples
without wheat flour, could eliminate all imago stage of T. castaneum immediately
after the treatment as well as for gamma rays at 3 kGy. Base on the effectiveness

irradiation on both sides with the beam currents of 200 ȝA could decline T.
castaneum in all stages was infested into wheat flour at 800 µm thickness.

Key word: disinfestations, food irradiation, electron beam machine, wheat flour,
Tribolium castaneum (Herbst).

© Hak cipta milik Rindy Panca Tanhindarto, tahun 2006
Hak Cipta dilindungi
Dilarang mengutip dan memperbanyak tanpa izin tertulis dari
Institut Pertanian Bogor, sebagian atau seluruhnya dalam
bentuk apapun, baik cetak, fotokopi, mikrofilm dan sebagainya

APLIKASI IRADIASI MESIN BERKAS ELEKTRON
UNTUK DISINFESTASI SERANGGA
Tribolium castaneum (Herbst) PADA TEPUNG TERIGU

RINDY PANCA TANHINDARTO

Tesis
sebagai salah satu syarat untuk memperoleh gelar

Magister Sains pada
Program Studi Ilmu Pangan

SEKOLAH PASCASARJANA
INSTITUT PERTANIAN BOGOR
BOGOR
2006

Judul Tesis

: Aplikasi Iradiasi Mesin Berkas Elektron untuk Disinfestasi
Serangga Tribolium castaneum (Herbst) pada Tepung Terigu
Nama
: Rindy Panca Tanhindarto
Program Studi : Ilmu Pangan
Nomor Pokok : F 25 1024 011

Disetujui
Komisi Pembimbing


Dr. Ir. Purwiyatno Hariyadi, M.Sc
Ketua

Ir. Zubaidah Irawati, Ph.D
Anggota

Dr. Ir. Nuri Andarwulan, M.Si
Anggota

Diketahui

Ketua Program Studi Ilmu Pangan

Prof. Dr. Ir. Betty Sri Laksmi Jenie, MS

Tanggal Ujian: 31 Juli 2006

Dekan Sekolah Pascasarjana

Dr. Ir. Khairil Anwar Notodiputro, MS


Tanggal Lulus:

PRAKATA
Puji syukur penulis panjatkan kepada Allah SWT atas segala karunia-Nya
sehingga karya ilmiah ini berhasil diselesaikan. Tema yang dipilih dalam
penelitian yang dilaksanakan sejak bulan Oktober sampai November 2004 dan
Juli 2005 sampai Maret 2006 ini ialah iradiasi pangan, dengan judul Aplikasi
Iradiasi Mesin Berkas Elektron untuk Disinfestasi Serangga Tribolium castaneum
(Herbst) pada Tepung Terigu.
Terima kasih dan penghargaan setingginya penulis ucapkan kepada Bapak
Dr. Ir. Purwiyatno Hariyadi, M.Sc selaku Ketua Komisi Pembimbing, Dr. Ir. Nuri
Andarwulan, M.Si dan Ir. Zubaidah Irawati, Ph.D selaku anggota pembimbing
yang telah banyak memberikan ide, saran dan masukannya. Demikian pula kepada
Pimpinan berserta staf Pusat Aplikasi Teknologi Isotop dan Radiasi BATAN
Jakarta, Pusat Teknologi Akselerator dan Proses Bahan BATAN Yogyakarta yang
telah membantu selama pengumpulan data.
Ungkapan terima kasih juga disampaikan kepada istri Nining Murtiningsih,
ke-2 anak yaitu Rafi Eko Hindarto dan Riany Dwi Delphia serta orang tua atas
segala doa, kasih sayang serta dorongan baik moril maupun materiil sampai

selesainya karya ilmiah ini.
Penulis menyadari dan berharap semoga karya ilmiah ini dapat dijadikan
landasan untuk pelaksanaan penelitian lanjutan yang memberi hasil yang
bermanfaat, khususnya di bidang ilmu pangan serta pengembangan ilmu dan
teknologi pada umumnya.

Bogor, Agustus 2006
Rindy Panca Tanhindarto

RIWAYAT HIDUP

Penulis dilahirkan di Bojonegoro pada tanggal 6 Juli 1964 dari
ayah D. Muryono (Alm) dan ibu S. Tatty Haryati. Penulis merupakan
putra ke lima dari lima bersaudara.
Tahun 1983 Penulis lulus dari SMA Negeri 7 Surabaya, pada
tahun yang sama lulus seleksi masuk IPB melalui jalur Undangan
Seleksi Masuk IPB (Program Perintis II). Pendidikan sarjana
ditempuh di Fakultas Teknologi Pertanian, Jurusan Teknologi Pangan
dan Gizi, lulus pada tahun 1989.
Pada tahun 1989 Penulis diterima bekerja di PT. Brataco cabang Surabaya,

kemudian bulan April tahun 1990 Penulis bekerja sebagai staf peneliti di Kelompok
Bahan Pangan, Bidang Proses Radiasi, Pusat Aplikasi Teknologi Isotop dan Radiasi
(PATIR) Badan Tenaga Nuklir Nasional (BATAN). Bidang penelitian yang menjadi
tanggung jawab peneliti ialah iradiasi pangan. Selama bekerja Penulis telah
dipercaya mengelola proyek penelitian pada Tahun Anggaran 1998/1999 sebagai
Sekretaris Proyek Pemanfaatan Teknologi Nuklir dalam Industri. Kemudian secara
berturut-turut Tahun Anggaran 1999/2000 - 2000 mendapat tugas sebagai Pemimpin
Proyek Pemanfaatan Teknologi Nuklir dalam Industri. Dilanjutkan tahun 2001
dipercaya sebagai Pemimpin Proyek Pengembangan Teknologi Proses Radiasi untuk
Industri dan Lingkungan. Beasiswa training dari International Atomic Energy
Agency (IAEA) TA No. INS/5/025 di Negara Bagian Philadelphia Amerika (USA),
2 Desember 1995 - 2 Agustus 1996, bertempat di USDA, ARS, ERRC tentang Food
Safety Laboratorium dengan program radiation safety, vitamine analysis,
hydrocarbon analysis and radiation dosimetry. Pada tahun 1999 Penulis mendapat
kesempatan workshop di Negara China atas biaya IAEA kode RAS/5/034 dengan
tema FAO/IAEA (RCA) Project Coordinator on Irradiation As a Sanitary and
Phytosanitary Treatment of Foods, 1-3 September 1999.
Tahun 2003 semester genap Tahun Akademik 2002/2003 Penulis melanjutkan
studi atas biaya sendiri dan diterima di Program Studi Ilmu Pangan pada Sekolah
Pascasarjana IPB.

Selama mengikuti program S2, karya ilmiah berjudul Proses Iradiasi Tepung
Terigu Dengan Menggunakan MBE (350 keV, 10 mA) telah disajikan pada Seminar
Nasional Teknologi dan Aplikasi Akselerator VIII, Yogyakarta 22 Nopember 2005.
Makalah lain berjudul Aplikasi Iradiasi Mesin Berkas Elektron Untuk Disinfestasi
Serangga Tribolium castaneum (Herbst) Pada Tepung Terigu telah disajikan pada
Seminar Nasional PATPI, Yogyakarta 2-3 Agustus 2006. Karya ilmiah tersebut
merupakan bagian dari program S2 Penulis.
e-mail : [email protected], rindypt @hotmail.com

DAFTAR SINGKATAN DAN NOTASI ATAU ISTILAH

Rad
Gy
KGy
eV
KeV
ESR
Ci
Bq
CTA

λ
Laju dosis
Dosis absorbsi

Satuan dosis radiasi
Gray (satuan unit dosis radiasi menurut SI)
Kilo Gray
Elektron Volt (satuan energi)
Kilo elektron Volt
Electron Spin Resonance
Curie
Becquerel
Cellulose Triacetate
Lamda (panjang gelombang)
adalah jumlah dosis absorbsi per satuan waktu
adalah jumlah radiasi yang diabsorbsi per unit massa.
Unit dosis absorbsi : Gray (Gy) = Joule / kg = 100 rad
Unit sumber radiasi Ci = Curie atau Bq = Becquerel (satuan unit sumber radiasi
menurut SI). Ci = 3,7 x 1010 Bq
Berkas elektron
adalah arus elektron yang dipercepat oleh mesin
Mesin Berkas elektron [MBE] adalah mesin yang menghasilkan arus elektron
yang dipercepat
Sinar gamma
adalah gelombang elektromagnetik yang dipancarkan oleh
isotop radioaktif
Radiasi pengion
adalah radiasi berenergi tinggi yang dapat penetrasi ke
dalam atom dengan menghasilkan partikel bermuatan listrik
yang disebut ion
Iradiasi
adalah perlakuan pada suatu produk dengan memaparkannya pada sinar gamma, sinar X atau elektron
Radioaktif
adalah sifat dari inti suatu atom yang tidak stabil, yang
secara spontan mengeluarkan sinar yang berenergi tinggi
seperti sinar gamma, beta dan alpha dalam menuju ke
keadaan stabil
Radioisotop
adalah unsur yang mengalami perubahan susunan intinya,
sehingga dalam keadaan tidak stabil
Dosimeter
adalah suatu sistem fisika atau kimia yang berubah secara
terukur dan proporsional jika dipaparkan pada radiasi.
Sistem ini dipakai untuk mengukur dosis absorbsi dari
bahan yang dipaparkan
Keseragaman dosis adalah perbandingan / rasio dosis absorbsi maksimum
terhadap dosis absorbsi minimum pada suatu unit produksi
yang dipaparkan terhadap radiasi
Shielding (perisai)
zat yang digunakan untuk mengurangi radiasi yang lewat
Pass
adalah perlakuan pada suatu produk dengan melewatkan
pada sumber radiasi

DAFTAR ISI

Halaman
DAFTAR TABEL .......................................................................................... xiii
DAFTAR GAMBAR ....................................................................................... xiv
DAFTAR LAMPIRAN ................................................................................... xvii
PENDAHULUAN ..........................................................................................
Latar Belakang ........................................................................................
Perumusan Masalah ................................................................................
Tujuan dan Manfaat Penelitian ...............................................................
Kegunaan Penelitian ...............................................................................

1
1
3
4
4

TINJAUAN PUSTAKA .................................................................................
Mutu Tepung Terigu ...............................................................................
Morfologi Serangga Tribolium castaneum (Herbst) ...............................
Faktor-faktor yang mempengaruhi Perkembangan Serangga
Tribolium sp ........................................................................................
Kerusakan yang ditimbulkan serangga Tribolium sp ..............................
Pertumbuhan Populasi Serangga .............................................................
Model Kinetika Reaksi Orde Satu ..........................................................
Pengendalian serangga Tribolium sp dengan Iradiasi .............................
Iradiasi Pangan ........................................................................................
Sumber Energi Radiasi ............................................................................
Mesin Berkas Elektron (MBE) 350 keV/10 mA .....................................
Dosis Radiasi ...........................................................................................
Dosimetri .................................................................................................
Fasilitas Radiasi ......................................................................................
Interaksi Radiasi Pengion dengan Bahan ................................................
Prinsip Iradiasi Pangan ............................................................................
Radiolisis Air ...........................................................................................

5
5
6

BAHAN DAN METODE PENELITIAN .......................................................
Tempat dan Waktu Penelitian .................................................................
Bahan dan Alat ........................................................................................
Metode Penelitian ...................................................................................
Proses Radiasi Mesin Berkas Elektron terhadap Tepung Terigu .............
Aplikasi Radiasi Pengion untuk Disinfestasi Serangga
T. castaneum ......................................................................................
Prosedur Pengukuran ..............................................................................

7
8
9
9
10
11
12
16
16
17
19
19
21
22
24
24
24
25
25
29
35

Halaman

HASIL DAN PEMBAHASAN ......................................................................
Aspek Dosimetri .....................................................................................
Dosimeter Penanda .................................................................................
Efisiensi Daerah Iradiasi Berkas Elektron ..............................................
Penetrasi Berkas Elektron pada Sampel Bubuk .......................................
Cara Iradiasi (Pass) dan Penetrasi Berkas Elektron ................................
Pengaruh Dosis Radiasi Sinar Gamma terhadap Populasi Serangga
T. castaneum .....................................................................................
Efektivitas Dosis Radiasi Sinar Gamma untuk Disinfestasi
Populasi Serangga Dewasa, Larva, Pupa T. cstaneum ......................
Pengaruh Arus Berkas Mesin Berkas Elektron terhadap Populasi
Serangga Dewasa T. castaneum .................
Efektivitas Arus Berkas Mesin Berkas Elektron untuk Disinfestasi
Populasi Serangga Dewasa T. cstaneum ...........................................

37
37
42
43
44
46
49
54
57
65

SIMPULAN DAN SARAN ............................................................................ 75
DAFTAR PUSTAKA ..................................................................................... 76
LAMPIRAN ...................................................................................................

83

DAFTAR TABEL
Halaman
1. Syarat mutu terigu .....................................................................................

6

2. Karakteristik radiasi berkas elektron dan sinar gamma [60Co] .................. 14
3. Persyaratan dosis dalam berbagai penerapan iradiasi pangan .................... 18
4. Hasil pengukuran iradiasi MBE pada arus berkas (100-500) ȝA
terhadap dosis serap dosimeter CTA film ................................................. 42
5. Ukuran tebal tepung dan berat sampel dengan luas tetap ......................... 46
6. Pengaruh dosis radiasi sinar gamma terhadap waktu bertahan hidup
masing-masing populasi dari ketiga stadium dewasa, larva dan pupa
T. castaneum .............................................................................................. 52
7. Persamaan regresi Ln y = a + b x pengaruh dosis radiasi sinar gamma
terhadap waktu bertahan hidup untuk masing-masing stadium serangga
T. castaneum ............................................................................................. 56
8. Pengaruh arus berkas elektron dengan iradiasi satu sisi permukaan
terhadap waktu bertahan hidup serangga dewasa T. castaneum ................ 60
9. Pengaruh arus berkas elektron dengan iradiasi dua sisi permukaan
yang berlawanan terhadap waktu bertahan hidup serangga dewasa
T. castaneum ............................................................................................. 64

DAFTAR GAMBAR
Halaman
1.

Siklus hidup metamorfosis sempurna ordo Coleoptera (a) dan
morfologi larva, pupa dan dewasa serangga T. castaneum (b) ..................

7

2.

Ukuran skala telur, larva, pupa dan serangga dewasa Tribolium sp. .........

8

3.

Grafik kenaikan pertumbuhan eksponensial populasi serangga ............... 10

4.

Logo makanan iradiasi .............................................................................. 13

5.

Kurva distribusi dosis-kedalaman penetrasi a) Berkas elektron
dengan variasi energi; b) Radiasi gamma dari [60Co] dan [137Cs] ........... 15
.
Kurva distribusi dosis-kedalaman penetrasi pada iradiasi 2 sisi
a) dengan radiasi gamma [60Co]; b) dengan 10 MeV elektron ................ 15

6.

7.

Blok diagram mesin berkas elektron tipe BA 350 keV/10 mA ................ 17

8.

Interaksi radiasi dengan materi a) Radiasi elektron; b) Radiasi sinar
gamma atau X ........................................................................................... 21

9.

Skema prinsip pengawetan bahan pangan dengan iradiasi ....................... 23

10. Tahap penelitian dan luarannya ...............................................................

26

11. Diagram alir pelaksanaan penelitian tahap I ............................................

28

12. Diagram alir pelaksanaan penelitian tahap II ........................................... 31
13. Ruang penyimpanan sampel serangga uji ................................................. 32
14. Kurva kalibrasi dosimeter Fricke ............................................................. 38
15. Spektrum ESR dosimeter alanin iradiasi ……………………………….. 39
16. Kurva kalibrasi dosimeter alanin yang diiradiasi dengan sinar
gamma pada daerah dosis 1-8 kGy ............................................................ 39
17. Kurva kalibrasi CTA film yang diiradiasi dengan berkas elektron .......... 40
18. Kurva kalibrasi dosimeter alanin yang diiradiasi dengan berkas
elektron pada daerah dosis 0-5 kGy .......................................................... 41

Halaman
19. Perubahan warna dosimeter penanda karena iradiasi MBE ..................... 43
20. Luasan penampang berkas iradiasi dari pemayar MBE ........................... 44
21. Kurva hubungan antara dosis relatif terhadap lintasan pemayar
sepanjang (a) 120 cm dan (b) 80 cm ........................................................ 44
22. Hubungan intensitas signal ESR alanin terhadap perlakuan pass ............ 47
23. Hubungan intensitas signal ESR tepung terigu terhadap perlakuan
pass ........................................................................................................... 48
24. Kurva pertumbuhan populasi serangga T. castaneum siklus radiasi
pada dosis radiasi 0,1-0,5 kGy ….............................................................

50

25. Kurva pertumbuhan populasi serangga T. castaneum siklus radiasi
pada dosis radiasi 1-5 kGy ….............................................…………......

51

26. Hubungan antara waktu bertahan hidup serangga T. castaneum
terhadap dosis radiasi sinar gamma dari 0,1-5 kGy .................................

55

27. Persamaan regresi Ln y = a + b x pengaruh dosis radiasi sinar gamma
terhadap waktu bertahan hidup serangga T. castaneum pada dosis
radiasi 0,1- 5 kGy ..................................................................................... 56
28. Kurva populasi serangga dewasa T. castaneum setelah perlakuan
iradiasi satu sisi permukaan MBE arus berkas (100 -500) ȝA ............... 58
................….....
29. Kurva populasi serangga dewasa T. castaneum setelah perlakuan
iradiasi dua sisi permukaan yang berlawanan MBE arus berkas
(100-500) ȝA ............................................................................................ 62
30. Hubungan antara waktu bertahan hidup serangga dewasa T. castaneum
terhadap iradiasi MBE dari arus berkas (100-500) ȝA ............................. 65
31. Persamaan regresi Ln y = a + b x pengaruh iradiasi satu sisi
permukaan MBE arus berkas (200-500) ȝA pada sampel serangga
dewasa tanpa tepung terigu ......................................................................

67

32. Persamaan regresi Ln y = a + b x pengaruh iradiasi satu sisi
permukaan MBE arus berkas (100-500) ȝA pada sampel serangga
uji diinfestasikan ke dalam tepung masing-masing tebal 800 dan
1600 ȝA .................................................................................................... 67

Halaman
33. Hubungan antara individu hidup serangga dewasa T. castaneum
terhadap iradiasi satu sisi permukaan MBE arus berkas 100-500 ȝA .....

69

34. Persamaan regresi Ln y = a + b x pengaruh iradiasi satu sisi
permukaan MBE arus berkas (100-500) ȝA pada individu hidup .......... 69
35. Hubungan antara waktu bertahan hidup serangga dewasa
T. castaneum terhadap iradiasi MBE dari arus berkas 100-500 ȝA ........

70

36. Persamaan regresi Ln y = a + b x pengaruh iradiasi dua sisi
permukaan MBE arus berkas (100-500) ȝA pada sampel serangga
dewasa tanpa tepung terigu ....................................................................... 71
37. Persamaan regresi Ln y = a + b x pengaruh iradiasi dua sisi
permukaan MBE arus berkas (100-500) ȝA pada sampel tebal
tepung terigu 800 dan 1600 ȝm ............................................................... 72
38. Hubungan antara individu hidup serangga dewasa T. castaneum
terhadap iradiasi dua sisi permukaan MBE arus berkas 100-500 ȝA ...... 73
39

Persamaan regresi Ln y = a + b x pengaruh iradiasi dua sisi
permukaan MBE arus berkas (100-500) ȝA terhadap individu
hidup ........................................................................................................

74

DAFTAR LAMPIRAN

Halaman
1. Alat Ukur Parameter Penelitian Utama .................................................. 84
2. Data hasil pengukuran dosimeter larutan Fricke pada Ȝ = 305 nm ........ 87
3. Data hasil pengukuran dosimeter alanin diiradiasi dengan sinar
gamma pada daerah 1-8 kGy .................................................................

88

4. Data hasil pengukuran CTA film standar dengan alat ukur
CTA reader .............................................................................................. 89
5. Data hasil pengukuran dosimeter alanin diiradiasi dengan berkas
elektron pada daerah dosis serap 0-5 kGy .............................................

90

6. Perubahan warna dosimeter penanda yang diiradiasi dengan arus
berkas elektron 100-500 µA ................................................................... 91
7. Hasil pengukuran keseragaman dosis relatif sepanjang jendela
pemayar 120 cm .....................................................................................

92

8. Hasil pengukuran amplitudo spektrum ESR dosimeter alanin
diiradiasi dengan MBE ...........................................................................

93

9. Hasil pengukuran amplitudo spektrum ESR tepung terigu diiradiasi
dengan MBE …………………………………………………………..

94

10. Pertumbuhan populasi masing-masing stadium serangga dewasa,
larva, pupa T. castaneum yang diiradiasi dengan sinar gamma
pada dosis rendah (0,1-0,5) kGy dan dosis sedang (1-5) kGy ...............

95

11. Pertumbuhan populasi serangga dewasa T. castaneum yang diiradiasi
satu sisi permukaan dengan MBE arus berkas 100-500 µA pada
perlakuan sampel: tanpa tepung terigu, tebal tepung terigu 800 dan
1600 ȝm ................................................................................................

100

12. Pertumbuhan populasi serangga dewasa T. castaneum yang diiradiasi
dua sisi permukaan yang berlawanan dengan MBE arus berkas 100500 µA pada perlakuan sampel: tanpa tepung terigu, tebal tepung
terigu 800 dan 1600 ȝm .........................................................................

103

PENDAHULUAN

Latar Belakang
Tepung terigu merupakan bahan makanan pokok yang penting setelah beras.
Di lain pihak, sumber karbohidrat lainnya masih belum mencukupi maka mendorong kebutuhan konsumsi tepung terigu meningkat dari tahun ke tahun. Konsumsi
tepung terigu di Indonesia per kapita mencapai ± 15 kg/kapita lebih rendah dari
Singapura ( ± 71 kg/kapita ) dan Malaysia ( ± 40 kg/kapita ) pada tahun 2002
(Bogasari 2005). Secara umum, usaha-usaha untuk memenuhi kebutuhan diversifikasi pangan sumber karbohidrat dapat mendukung Ketahanan Pangan Nasional.
Serangga merupakan permasalahan yang dihadapi oleh industri tepung terigu khususnya pada kondisi penyimpanan. Salah satu jenis kumbang yang banyak
ditemukan pada tepung-tepungan adalah serangga Tribolium castaneum Herbst
(T. castaneum). Serangga ini dikenal sebagai ‘kumbang tepung merah’ (The Rust
Red Flour Beetle), termasuk ke dalam ordo Coleoptera famili Tenebrionidae.
Serangga T. castaneum ini adalah sebagai hama sekunder bersifat kosmopolitan
dan termasuk external feeder pada beras dan serealia lain, larva dan imago memakan bahan yang sama (Haines 1991; Sokoloff 1974).
Ternyata pengendalian serangga yang dilakukan secara konvensional, masih
belum sepenuhnya mampu membasmi sisa-sisa telur, larva dan pupa serangga
pada produk tersebut. Salah satu perkembangan pengendalian hama pasca panen
pada serangga T. castaneum untuk tujuan disinfestasi serangga sudah banyak
dilakukan, seperti penggunaan bahan kimia sebagai fumigasi yaitu metil bromin
dan etilen dibromin. The United State Environmental Protection Agency (EPA)
telah mengatur penggunaan metil bromin untuk dikurangi 25% sejak tahun 2000.
sedang berdasarkan The Montreal Protocol and Clean Air Act penggunaan metil
bromin untuk negara berkembang akan dihapus pada tahun 2015 (Gupta 2001).
Untuk mengatasi permasalahan pasca panen tepung terigu maka diperlukan
teknologi tepat guna agar supaya tepung terigu lebih berkualitas dan tahan lama
sehingga dapat terdistribusikan ke tempat lain tepat waktu. Salah satu teknik fisika
untuk mengatasi masalah tersebut adalah penggunaan radiasi pengion baik yang
1

Pendahuluan

2

berasal dari radionuklida seperti [60Co] dan [137Cs] maupun sumber listrik. Aplikasi teknik nuklir dengan menggunakan sinar gamma [60Co] untuk tujuan sanitasi
bahan pangan di Indonesia telah dimulai sejak tahun 1969 antara lain untuk komoditas bebijian. Sedang peraturan aplikasi iradiasi pangan telah dimulai sejak tahun
1987 telah ditetapkan peraturan Menteri Kesehatan nomor 826 dan diperbaharui
pada tahun 1995 nomor 152 dengan penambahan komoditas serta khususnya komoditas bebijian dosis maksimumnya dinaikkan dari 1 kGy menjadi 5 kGy.
Penggunaan mesin berkas elektron (MBE) khususnya bidang pangan di
Indonesia belum di aplikasikan secara luas (Tanhindarto 2002, 2003, 2005, 2006;
Tanhindarto & Irawati 2004; Irawati 2005a, 2005b), dibeberapa negara sudah
diterapkan untuk tujuan disinfestasi serangga hama gudang. Salimov et al. (2000)
mengemukakan bahwa mesin pemercepat elektron dengan energi 1,5 MeV sudah
dapat diaplikasikan untuk iradiasi disinfestasi bebijian. Hariyadi (2004) mengemukakan bahwa iradiasi mesin berkas elektron dapat berpotensi menjadi bagian
penting dalam pemecahan masalah keamanan pangan. Danu (2003) melaporkan
bahwa di Indonesia pemanfaatan MBE masih terbatas dalam aplikasi penggunaannya, seperti proses curing, prevulkanisasi karet ban. Cleghorn et al. (2002)
melaporkan bahwa berkas elektron energi 400 kV x 200 Gy dapat digunakan
mengontrol mortalitas 3 jenis serangga hama gudang (S oryzae, R dominica, T
castaneum). Menurut Hayashi et al. (2004) penggunaan elektron energi rendah
(soft electron) 60 keV telah digunakan untuk menginaktifkan telur, larva dan pupa
serangga hama gudang. Soft-electron 150 kV dapat digunakan untuk disinfestasi
bebijian yang terkontaminasi serangga external feeders (Imamura et al. 2004).
Iganatowicz (2004) menyatakan bahwa iradiasi sinar gamma dengan dosis 0,3
kGy sudah cukup untuk menghambat serangga hama gudang, serta dosis 0,6 kGy
disarankan untuk perlakuan karantina serangga dewasa lepidoptera. Gochangco et
al. (2004) melaporkan bahwa perlakuan iradiasi dapat digunakan sebagai perlakuan alternatif pengganti penggunaan metil bromin untuk disinfestasi serangga T.
castaneum pada penyimpanan coklat.
Beberapa tahun terakhir ini, penerimaan masyarakat tentang manfaat iradiasi
sebagai perlakuan phytosanitary sudah mulai meningkat guna mengontrol anthropoda pada komoditas segar dan penyimpanan produk. Sebagai contoh di Hawaii

Pendahuluan

3

USA bahwa iradiasi digunakan untuk mengontrol lalat buah pada 10 jenis buah
dan 4 jenis sayuran serta mangga, sedang di Florida iradiasi untuk mengontrol
kentang manis sebelum pengapalan ke California (IAEA 2004).
Noemi (1987) mengemukakan bahwa penggunaan sumber radiasi mesin
berkas elektron dan sinar gamma [60Co] tidak memiliki perbedaan yang nyata
untuk tujuan mengontrol infestasi serangga hama gudang. Sumber radiasi pengion
dengan MBE pada dosis 0,2-0,5 kGy cukup untuk mengontrol perkembangbiakan
serangga, bahkan beberapa minggu setelah iradiasi, dosis 1 kGy cukup efektif
untuk membunuh seluruh stadium serangga beberapa hari setelah iradiasi. Sedang
Hayashi et al. (2003) melaporkan penggunaan soft-electron (energi rendah berkas
elektron) dengan tegangan 60 kV efektif membasmi telur, larva dan pupa red flour
beetle (T. castaneum) dosis 1 kGy, sedang untuk serangga dewasa dosis 5 kGy.
Berdasarkan kenyataan tersebut perlu segera penggalian potensi penelitian
dan pengembangan untuk memecahkan permasalahan yang ada. Upaya ini dapat
mendukung peningkatan sarana dan teknologi pengelolaan gandum, yang nantinya
dapat dimanfaatkan untuk perlakuan karantina pada produk tepung terigu.
Perumusahan Masalah
Pengendalian serangga hama gudang ternyata masih belum sepenuhnya
mampu mengatasi sisa-sisa telur, larva dan pupa serangga T. castaneum pada
produk tepung terigu. Proses iradiasi mesin berkas elektron adalah proses fisika
tanpa residu merupakan proses yang lebih efektif yang dapat diterapkan untuk
mengatasi permasalahan ini, bahkan dapat memperpanjang umur simpan bahan
yang diproses. Teknik ini juga dapat digunakan sebagai bahan pertimbangan
karena pengendalian serangga yang dilakukan secara konvensional, masih belum
sepenuhnya mampu membasmi sisa-sisa telur, larva dan pupa serangga dan
pemakaian bahan kimia seperti metil bromin sudah dibatasi untuk perlakuan
karantina pada produk tepung terigu.

Pendahuluan

4

Tujuan dan Manfaat Penelitian
Tujuan Penelitian
Mempelajari proses radiasi mesin berkas elektron energi rendah terhadap
bahan pangan tepung terigu serta ada penguasaan teknologi mesin berkas elektron
untuk pengawetan makanan.
Tujuan khusus penelitian ini adalah :
1. Mengetahui proses iradiasi mesin berkas elektron terhadap tepung terigu,
2. Mengetahui teknik iradiasi berkas elektron untuk disinfestasi pada serangga
dewasa T. castaneum.
Manfaat Penelitian
Penelitian ini diharapkan dapat memberikan informasi awal bahwa sumber
radiasi dari mesin berkas elektron dapat digunakan untuk tindakan disinfestasi
terhadap serangga, sisa-sisa serangga seperti telur, larva, pupa dan imago T.
castaneum yang nantinya dapat dimanfaatkan untuk perlakuan karantina pada
produk berbasis tepung.
Kegunaan Penelitian
Penelitian ini diharapkan dapat dijadikan landasan untuk pengembangan
makanan iradiasi menggunakan sumber radiasi mesin berkas elektron, dan dapat
memberikan kontribusi terhadap aspek keamanan pangan pada produk tepung
terigu yang bebas terhadap serangga, sisa-sisa serangga seperti telur, larva dan
pupa. Disamping itu, dapat sebagai teknologi alternatif sebagai substitusi penggunaan bahan pengawet kimia (fumigasi).

TINJAUAN PUSTAKA
Mutu Tepung Terigu
Tanaman gandum dengan nama latin Triticum aestivum L. dari subspesies
vulgare memiliki sekitar 4000 jenis varietas yang tumbuh di seluruh dunia
(Posner 2000).
Tepung terigu adalah tepung yang diperoleh dengan jalan menggiling bijibiji gandum yang sehat dan telah dibersihkan (SII 1975). Sedang tepung terigu
sebagai bahan makanan adalah tepung yang dibuat dari endosperma biji gandum
Triticum aestivum L. (Club wheat) dan / atau Triticum compactum Host. Adapun
persyaratan mutu terigu dapat dilihat pada Tabel 1 (SNI 2000). Dari Tabel terihat
bahwa syarat mutu terigu harus bebas dari serangga, sisa-sisa serangga seperti
telur, larva dan pupa. Tepung terigu di Indonesia dibedakan berdasarkan kadar
proteinnya yaitu tepung keras dengan kadar protein 12-13 %, medium dengan
kadar protein 9,5-10 % dan yang mengandung 7,5-8 % protein adalah tepung
lunak.
Dari hasil penelitian iradiasi sinar gamma [60Co] dosis sampai 0,4 kGy
untuk tujuan disinfestasi serangga terhadap 3 tepung terigu (cakra kembar, kunci
biru dan segitiga biru) ternyata perlakuan iradiasi tidak memberikan pengaruh
yang nyata terhadap warna, kadar protein dan sifat khas tepung (Chosdu & Maha
1980). Hayashi et al. (2003) mengemukakan dari hasil penelitian terdahulu terhadap biji-bijian dilaporkan bahwa penggunaan energi rendah berkas elektron (softelectron) dengan tegangan 60 keV untuk tujuan disinfestasi tidak memberikan
pengaruh yang nyata terhadap sifat fisiko-kimia biji-bijian.
Menurut Atnasov (1977) dalam Noemi (1987) mengemukakan dosis 225
Gy sudah dapat membunuh semua stadium red flour beetles pada penyimpanan
biji-bijian dalam 1 tahun setelah iradiasi.
Morfologi Serangga Tribolium castaneum (Herbst)
Serangga Tribolium castaneum H. termasuk ke dalam ordo Coleoptera
famili Tenebrionidae. Serangga ini tergolong serangga yang mengalami metamorfosis sempurna (holometabola) yaitu perkembangannya melalui fase-fase telur,

Tinjauan Pustaka

6

larva, pupa dan imago (Haines 1991). Siklus hidup metamorfosis sempurna ordo
Coleoptera dan morfologi larva, pupa dan imago serangga T. castaneum disajikan
pada Gambar 1. Perbedaan morfologi antara jantan dan betina dapat dibedakan,
berdasarkan femur. Serangga jantan dibagian depan sebelah kiri terdapat bintik hitam, sedangkan pada serangga betina tidak terdapat bintik hitam (Sokoloff 1974).

Tabel 1. Spesifikasi persyaratan mutu (SNI 01-3751-2000)
No.

Jenis uji

Satuan

Keadaaan
Bentuk
Bau
Rasa
Warna
Benda asing
Serangga dalam semua
bentuk stadia dan
potongan-potongannya
yang tampak*)
4
Kehalusan, lolos ayakan
212 milimikron
5
Air
%, b/b
6
Abu
%, b/b
7
Protein (N x 5,7)
%, b/b
8
Keasaman
mg KOH/100g
9
detik
Falling number
10
Besi (Fe)
mg/kg
11
Seng (Zn)
mg/kg
12
Vitamin B1 (thiamin)
mg/kg
13
Vitamin B2 (riboflavin)
mg/kg
14
Asam folat
mg/kg
15
Cemaran logam
15.1 Timbal (Pb)
mg/kg
15.2 Raksa (Hg)
mg/kg
15.3 Tembaga (Cu)
mg/kg
16
Cemaran arsen
mg/kg
Cemaran mikroba
17
koloni/g
17.1 Angka lempeng total
APM/g
17.2 E. coli
koloni/g
17.3 Kapang
*)
Tepung terigu di tingkat produsen
1
1.1
1.2
1.3
1.4
2
3

B

B

Persyaratan
serbuk
normal (bebas dari bau asing)
normal (bebas dari bau asing)
putih, khas terigu
tidak boleh ada
tidak boleh ada

min. 95 %
maks. 14,5 %
maks. 0,6 %
maks. 7,0 %
maks. 50/100 g contoh
min. 300
min. 50
min. 30
min. 2,5
min. 4
min. 2
maks. 1,10
maks. 0,05
maks. 10
maks. 0,5
maks. 106
maks. 10
maks. 104

Secara kasat mata telur berwarna putih dan berukuran kecil, diletakkan
oleh serangga betina diantara partikel yang diselubungi oleh cairan perekat sehingga partikel makanan menempel (Haines 1991).

Tinjauan Pustaka

7

(a)

(b)
Gambar 1. Siklus hidup metamorfosis sempurna ordo Coleoptera (a) dan
morfologi larva, pupa dan dewasa serangga T. castaneum (b)
(Haines 1991).
Larva berwarna kuning keputih-putihan dengan ukuran 6 mm, segmen
abdomen terakhir berwarna coklat tua sedikit melengkung dan terpisah dengan
baik, umur stadium larva berkisar 7-8 hari. Larva T. castaneum mempunyai bentuk khas yaitu adanya tonjolan runcing pada ruas terakhir dari abdomen yang
disebut Urogomphi (Syarief & Halid 1993).
Pupa serangga ini berwarna putih kekuning-kuningan dengan panjang 4 mm.
Stadium pupa 6 hari, sedangkan perkembangan telur hingga pupa 23 hari pada
suhu 29 °C.
Imago berbentuk pipih panjang tubuhnya 2,3-4,4 mm, berwarna coklat kemerahan, 3 segmen terakhir pada antena membentuk gada, mata terbagi oleh suatu
penjuluran dengan 3-4 mata faset. Ukuran skala telur, larva, pupa dan imago dapat
dilihat pada Gambar 2.

Tinjauan Pustaka

8

Gambar 2. Ukuran skala telur, larva, pupa dan serangga dewasa Tribolium sp.
(Sokoloff 1974).
Faktor-faktor yang mempengaruhi Perkembangan
Serangga Tribolium sp.
Pertumbuhan populasi Tribolium castaneum (Herbst) dipengaruhi oleh
banyak faktor seperti antara lain kondisi media dan kanibalisme. Menurut Syarief
& Halid (1993); Haines (1991) mengemukakan bahwa kondisi optimum untuk
perkembangan serangga Tribolium castaneum adalah suhu sekitar 35 °C dan kelembaban relatif 75%.
Telur yang dihasilkan oleh serangga betina dipengaruhi oleh suhu tetapi
tidak dipengaruhi kelembaban, serangga dewasa dapat hidup sampai 6 bulan. Pada
suhu 25 °C serangga betina bertelur rata-rata 2-5 butir per hari, jumlah ini
meningkat menjadi 11 butir per hari pada suhu 35,5 °C. Serangga dewasa melakukan kopulasi dan menghasilkan telur sepanjang waktu hidupnya. Serangga dewasa
bersifat kanibalistik baik pada sesamanya termasuk memakan telurnya maupun
serangga lainnya. Abdelsamad et al. (1987) menyatakan periode total perkembangan serangga dari telur sampai menjadi imago yang optimum adalah pada suhu
35 °C yaitu hanya berlangsung 19,1 hari, sedang Howe (1956) dalam Haines
(1991) menyatakan 20 hari.

Tinjauan Pustaka

9

Kerusakan yang Ditimbulkan Serangga Tribolium sp
Kerusakan yang ditimbulkan oleh Tribolium castaneum pada tepung terigu
antara lain mengakibatkan bau apek dan tengik yang berasal dari etil quinon yang
dihasilkan oleh kelenjar bau. Aroma etil quinon ini dapat menembus kantong
polietilen dengan tebal 0,075 mm (Grist & Lever 1969).
Terigu yang tiba di pelabuhan sering mengalami penurunan kualitas, seperti berkutu atau bau apek akibat distribusi dan transportasi yang relatif lama
sehingga kondisi dan kandungan gizi tepung terigu tersebut menjadi tidak optimal
(Bogasari 2005).
Serangan serangga dapat menimbulkan kerusakan secara langsung dan
tidak langsung. Kerusakan langsung terdiri dari konsumsi bahan yang disimpan,
kontaminasi serangga dewasa, pupa, larva, telur dan kulit serangga. Kerusakan
tidak langsung berupa kenaikan suhu akibat metabolisme serangga disebut hot
spot yaitu area sekitar serangga yang terinfeksi dalam jumlah yang sangat besar
dimana suhunya dapat mencapai 42,2 °C. Jika terjadi kenaikan kadar air maka
bahan akan lembab dan lengket, timbul storage fungi, bau apek tetapi apabila
kadar air bahan rendah karena terjadi perpindahan uap air, timbul mikroba lain,
berkurangnya nilai estetis produk (Cotton & Wilbur 1974).
Pertumbuhan Populasi Serangga
Pertumbuhan serangga antara lain ditentukan oleh nutrisi makanan dan
lingkungan. Haines (1991) mengemukakan bahwa pada umumnya, tahap awal
infestasi perkembangan serangga, akan mengikuti pertumbuhan populasi secara
eksponensial. Laju penambahan individu populasi adalah proporsional terhadap
jumlah individu yang ada serta laju kenaikan menjadi lebih besar terhadap waktu,
secara teoritis dapat diilustrasikan pada Gambar 3. Jumlah serangga dalam
pertumbuhan populasi eksponesial terhadap waktu adalah Nt = No.ert dimana Nt
= jumlah serangga setelah t (waktu), No = jumlah serangga awal dan nilai r laju
intrinsik kenaikan populasi. Menurut Hasibuan (1988) konstanta r, di dalam
ekologi, dikenal sebagai laju pertumbuhan populasi intrinsik, sedangkan di dalam
matematika r disebut sebagai parameter persamaan eksponensial. Satuan untuk
konstanta ini ialah jumlah per waktu. Model dengan r > 0 sebagai model pertum-

Tinjauan Pustaka

10

buhan eksponensial, sedangkan model dengan r < 0 disebut sebagai model peluruhan eksponensial.

Gambar 3. Grafik kenaikan pertumbuhan eksponensial populasi serangga
(Haines 1991).

Model Kinetika Reaksi Orde Satu
Selama proses pengolahan misalnya secara pemanasan dan pengeringan
pada bahan pangan, akan terjadi perubahan-perubahan sifat fisiko-kimia dan biokimia. Perubahan-perubahan tersebut akibat adanya reaksi dan interaksi di dalam
bahan tersebut. Perubahan tersebut dinyatakan dengan laju reaksi secara matematis ditulis sebagai (dN/dt). Banyak reaksi di alam yang dapat dijelaskan dengan
menggunakan model reaksi orde satu. Model kinetika bentuk sederhana dapat
diaplikasikan dengan memperhatikan asumsi-asumsi tertentu untuk menjelaskan
tingkah laku berbagai perubahan selama pengolahan, misalnya laju inaktivasi
mikroba dan inaktivasi enzim (Hariyadi 2004).
Pertumbuhan populasi serangga secara teoritis akan mengikuti model
eksponensial (Haines 1991). Persamaan tersebut dapat dinyatakan Nt = No.ert
yang artinya bahwa laju pertumbuhan populasi pada waktu t berbanding lurus
dengan ukuran populasi pada waktu t, sedangkan r merupakan konstanta kesebandingan. Persamaan pertumbuhan eksponensial adalah persamaan diferensial ordo
satu (Hasibuan 1988).

Tinjauan Pustaka

11

Proses perubahan pengolahan laju reaksi merupakan fungsi dari berbagai
variabel reaksi, jika proses reaksi mengikuti reaksi ordo satu, dengan persamaan
reaksi sebagai berikut,

-δ N
= r.N
δ t

(1)

Sifat persamaan Nt = No.ert bergantung pada tanda konstanta, jika r > 0 grafik
naik cekung keatas, r = 0 grafik konstan dan r < 0 grafik turun landai kebawah
(Causton 1993; Spain 1982). Jika dilakukan integrasi terhadap persamaan:



Nt

No

-δ N
= δ t

t

∫ r .δ t

(2)

0

dengan menggunakan persamaan logaritmik akan menghasilkan persamaan linear
yaitu ln Nt = ln No + kt.

(3)

Pengendalian Serangga Tribolium sp dengan Iradiasi
Pengendalian hama pasca panen dapat dilakukan dengan cara fisika, kimia,
biologi dan sistem pengendalian hama terpadu yang mengkombinasikan berbagai
cara pengendalian.
Noemi (1987) melaporkan bahwa perlakuan iradiasi dengan mesin berkas
elektron terhadap serangga hama gudang adalah (1) ketahanan serangga terhadap
radiasi akan meningkat dari stadium telur menjadi dewasa, (2) iradiasi antara
dosis 3 dan 5 kGy dapat membunuh berkembangnya serangga segera setelah
iradiasi, sedang dosis 1 kGy cukup untuk membunuh serangga beberapa hari setelah iradiasi, (3) iradiasi antara dosis 0,2 dan 0,5 kGy telah cukup untuk mengontrol sebagian besar kemungkinan berkembangnya serangga dan membu-nuh
serangga setelah beberapa minggu setelah iradiasi, (4) tidak ada perbedaan yang
nyata dosis iradiasi untuk mengontrol infestasi serangga antara berkas elektron
atau sinar gamma [60Co]. Iradiasi dosis 0,4 kGy secara praktis merupakan batas
minimal sterilitas untuk mengontrol setiap tingkat infestasi serangga T. castaneum
pada komoditas gandum, beras, jagung. Sedang Diehl (1990, 1995) menyatakan
bahwa dosis steril untuk serangga jantan dan betina T. castaneum yaitu 0,2 kGy.
Menurut Hayashi et al. (2003), soft-electron (energi rendah berkas elektron) dengan tegangan 60 keV efektif membunuh terhadap telur, larva dan pupa

Tinjauan Pustaka

12

red flour beetle (T. castaneum) pada dosis 1 kGy dan 5 kGy untuk serangga dewasa. Noemi (1987) melaporkan dosis radiasi yang digunakan untuk membunuh T.
confusum sebesar 99,9 % telur adalah 0,044 kGy, untuk larva 0,052 kGy, pupa
0,145 kGy dan untuk dewasa 0,120 kGy. Sedang Diehl (1995) mengemukakan
bahwa pada umumnya iradiasi stadium telur lebih sensitif terhadap radiasi dari
pada stadium dewasa sedangkan semua stadium serangga akan mati beberapa hari
setelah mendapat perlakuan iradiasi pada dosis 1-3 kGy
Iradiasi Pangan
Iradiasi adalah suatu istilah yang digunakan untuk pemakaian energi radiasi secara terukur dan terarah. Jenis iradiasi pangan yang dapat digunakan untuk
pengawetan bahan pangan yaitu radiasi elektromagnetik. Radiasi elektromagnetik
ialah radiasi yang menghasilkan foton yang berenergi tinggi sehingga sanggup
menyebabkan terjadinya ionisasi dan eksistasi pada materi yang dilaluinya. Jenis
iradiasi ini dinamakan iradiasi pengion, contoh iradiasi pengion adalah partikel
alpha (α), partikel beta (β), dan sinar gamma (γ). Ditinjau dari sifat radiasinya,
sinar pengion mempunyai beberapa manfaat diantaranya ialah dapat menunda pertunasan, memperpanjang umur simpan komoditas pertanian, membunuh serangga,
dekontaminasi kandungan mikroba dan membunuh mikroba patogen.
Sudah lebih dari 46 negara di dunia telah mengizinkan penggunaan teknologi iradiasi, termasuk Indonesia (Diehl 2001). Legalisasi tentang peraturan makanan iradiasi di Indonesia sudah berlaku sejak tahun 1987, tetapi masih terbatas
pada komoditas tertentu. Adapun landasan peraturan iradiasi pangan saat ini yaitu
Peraturan Menteri Kesehatan RI yaitu Permenkes No: 826/MENKES/PER/XII/
1987 dan diperbaharui pada tahun 1995 yaitu Permenkes No: 152/MENKES/SK/
II/1995. Peraturan tersebut selanjutnya digunakan sebagai bahan acuan dalam
penyusunan Undang-undang Pangan No: 7 tahun 1996. Pengaturan tentang Pelabelan pangan di Indonesia telah diatur dalam Peraturan Pemeritah RI No: 69 tahun
1999 dan khusus mengenai iradiasi pangan diatur pada pasal 34. Adapun logo
yang menunjukkan produk pangan telah diiradiasi dapat dilihat pada Gambar 4.
Pada tahun 2004 Badan POM telah mengeluarkan 10 pedoman iradiasi berdasarkan kelompok pangan (BPOM 2004a; 2004b; 2004c; 2004d; 2004e).

Tinjauan Pustaka

13

Gambar 4. Logo makanan iradiasi.

Sumber Energi Radiasi
Proses yang menggunakan energi radiasi dapat dilakukan dalam fasilitas
radiasi gamma (iradiator) atau dalam radiasi elektron tinggi (akselerator elektron). Radiasi pengion yang terbanyak digunakan adalah sinar γ (gamma). Sinar
gamma merupakan gelombang pendek yang disebut sinar piko dengan daya
penetrasi yang sangat kuat. Sumber radiasi sinar gamma berasal salah satunya dari
radionuklida kobalt-60 [60Co]. Kobalt-60 dibuat dalam reaktor atom dengan cara
menembak Kobalt-59 yang diperoleh dari alam dengan iradiasi sinar neutron yang
dilakukan di reaktor. Persamaan reaksinya adalah sebagai berikut :
59

Co27 +

N0 ⇒

1

60

Co27 + sinar γ

Sumber radiasi yang umum digunakan ada 2 macam yaitu radionuklida
dan mesin berkas elektron cepat. Radionuklida [60Co] dengan energi sinar gamma
1,17 MeV dan 1,33 MeV serta [137Cs] dengan energi 0,66 MeV merupakan 2 jenis
isotop radioaktif yang dapat dimanfaatkan secara komersial. Untuk sinar X dibatasi energinya sampai dengan 5 MeV dan mesin berkas elektron dibatasi dengan
energi maksimal 10 MeV (Diehl 1995).
Berdasarkan jenis radiasi pengion yang umum digunakan untuk pengawetan makanan ada dua yaitu sinar gamma yang dipancarkan oleh radionuklida
[60Co] dan [137Cs]. Keduanya merupakan gelombang elektromagnetik dengan
panjang gelombang pendek sekitar 10-9 m. Berkas elektron: dihasilkan oleh mesin
berkas elektron yang terdiri dari partikel-partikel bermuatan listrik. Kedua jenis
radiasi pengion ini memiliki pengaruh yang sama terhadap makanan dan perbedaan keduanya adalah pada daya tembusnya. Sinar gamma mengeluarkan energi
sebesar 1 MeV untuk dapat menembus air dengan kedalaman 20-30 cm, sedang

Tinjauan Pustaka

14

berkas elektron mengeluarkan energi sebesar 10 MeV untuk menembus air sedalam 3,5 cm (Diehl 1990, 1995).
Aplikasi mesin berkas elektron di bidang pangan, dibatasi energinya yaitu
maksimum 10 MeV. Berdasarkan tingkat energinya yang dimiliki, MBE dapat
digolongkan ke dalam 3 kategori yaitu elektron energi rendah (low energy
eccelerators/soft-electrons: 150 keV–2 MeV), elektron energi sedang (medium
energy accelerators : 2,5–8 MeV) dan energi tinggi (high energy accelerator: > 9
MeV) (Irawati 2005)
Perbedaan karakteristik radiasi berkas elektron dan sinar gamma [60Co]
disajikan pada Tabel 2. Semakin tinggi energi berkas elektron, semakin tinggi
pula daya penetrasinya. Elektron dipercepat akan berkurang energinya setelah
menembus bahan pada kedalaman tertentu. Pada Gambar 5 disajikan hubungan
energi dan penetrasi atau disebut kurva distribusi dosis-kedalaman penetrasi
(depth dose distribution) dengan variasi energi untuk masing-masing sumber
listrik dan radionuklida (Danu 2004; Diehl 1995). Kurva ini dipakai untuk menentukan hubungan kedalaman penetrasi dalam bahan dengan dosis relatif.
Tabel 2. Karakteristik