Prediksi Curah Hujan Menggunakan Weighted Evolving Fuzzy Neural Network (WEFuNN)
PREDIKSI CURAH HUJAN MENGGUNAKAN WEIGHTED EVOLVING FUZZY NEURAL NETWORK (WEFuNN)
SKRIPSI
NURYULIANA 091402010
PROGRAM STUDI S1 TEKNOLOGI INFORMASI
FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI UNIVERSITAS SUMATERA UTARA
MEDAN 2015
(2)
PREDIKSI CURAH HUJAN MENGGUNAKAN WEIGHTED EVOLVING FUZZY NEURAL NETWORK (WEFuNN)
SKRIPSI
Diajukan untuk melengkapi tugas dan memenuhi syarat memperoleh ijazah Sarjana Teknologi Informasi
NURYULIANA 091402010
PROGRAM STUDI S1 TEKNOLOGI INFORMASI
FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI UNIVERSITAS SUMATERA UTARA
MEDAN 2015
(3)
PERSETUJUAN
Judul : PREDIKSI CURAH HUJAN MENGGUNAKAN
WEIGHTED EVOLVING FUZZY NEURAL
NETWORK (WEFuNN)
Kategori : SKRIPSI
Nama : NURYULIANA
Nomor Induk Mahasiswa : 091402010
Program Studi : SARJANA (S1) TEKNOLOGI INFORMASI
Departemen : TEKNOLOGI INFORMASI
Fakultas : ILMU KOMPUTER DAN TEKNOLOGI
INFORMASI (FASILKOM-TI) UNIVERSITAS SUMATERA UTARA
Diluluskan di
Medan, 25 Juni 2015 Komisi Pembimbing :
Diketahui/Disetujui oleh
Program Studi S1 Teknologi Informasi Ketua,
M. Anggia Muchtar, ST., MM.IT. NIP 19800110 200801 1 010
Pembimbing 2 Pembimbing 1
Dr. Erna Budhiarti Nababan, M.IT NIP. -
M. Fadly Syahputra, B.Sc, M.Sc.IT NIP. 19830129 200912 1003
(4)
iii
PERNYATAAN
Prediksi Curah Hujan Menggunakan Weighted Evolving Fuzzy Neural Network
(WEFuNN)
SKRIPSI
Saya mengakui bahwa skripsi ini adalah hasil karya saya sendiri, kecuali beberapa kutipan dan ringkasan yang masing-masing disebutkan sumbernya.
Medan, 25 Juni 2015
Nuryuliana 091402010
(5)
PENGHARGAAN
Alhamdulillah, segala puji dan syukur penulis ucapkan atas kehadirat Allah SWT beserta Nabi besar Muhammad SAW yang telah memberikan rahmat, hidayah-Nya, segala daya dan upaya sehingga penulis dapat menyelesaikan skripsi ini sebagai syarat untuk memperoleh gelar Sarjana Program Studi S-1 Teknologi Informasi Universitas Sumatera Utara, Ucapan terima kasih yang sebesar-besarnya penulis sampaikan kepada:
1. Kedua orang tua penulis, orang yang paling berharga dalam hidup penulis, ayahanda Alon Sutarman dan alm. ibunda Mariani yang telah membesarkan, mendidik, memberi dukungan, doa dan motivasi tanpa henti. Serta kepada abang-abang penulis Onggo Supiko dan Muhali Wirangga yang selalu ada membantu penulis dan orang-orang yang berperan sebagai orang tua penulis paklek Aulia, bulek Tumini, bulek Jumpriana, dan om Jentra Sinaga.
2. Ketua dan Sekretaris Program Studi Teknologi Informasi, Bapak Muhammad Anggia Muchtar, ST., MM. IT. dan Bapak Muhammad Fadly Syahputra, B.Sc, M.Sc.IT, Dekan dan Pembantu Dekan Fakultas Ilmu Komputer dan Teknologi Informasi Universitas Sumatera Utara, semua dosen serta pegawai di Program Studi S1 Teknologi Informasi.
3. Bapak Muhammad Fadly Syahputra, B.Sc, M.Sc.IT selaku pembimbing
pertama dan Ibu Dr. Erna Budhiarti Nababan, M.IT selaku pembimbing kedua, yang telah banyak meluangkan waktunya dan memberikan masukan-masukan
yang bermanfaat bagi penulis dalam menyelesaikan skripsi ini.
4. Bapak Muhammad Anggia Muchtar, ST., MM. IT dan Bapak Romi Fadillah
Rahmat, B.Comp.Sc., M.Sc yang telah bersedia menjadi dosen pembanding dan memberikan saran-saran yang baik bagi penulis dalam menyelesaikan skripsi ini.
5. Kepada Raisha, Khadijah, Yunisya, Ade, Fanny, Ibnu, Ammar, Reza, Ridzuan, Fadli Rizky, Julia, Hani, Ardiansyah, Fadli Rachman, Dezi, Kurniawan, Yogi yang selalu mendukung, membantu dan memberikan motivasi kepada penulis dalam menyelesaikan skripsi ini. Serta teman-teman yang mendukung dan
(6)
v
membantu penulis Donni, Endah, Andika, Fahkrur, Audiary, Ria, Irna dan seluruh teman-teman lainnya yang tidak dapat disebutkan satu persatu.
6. Kepada Ibu Mega, Abang Manaf dan Kak Umi yang selaku bagian tata usaha Program Studi S1 Teknologi Informasi yang telah membimbing dan membantu penulis dari awal proposal sampai sidang.
Sekali lagi penulis mengucapkan terima kasih yang sebesar-besarnya kepada semua pihak yang membantu dalam penyelesaian tugas akhir ini yang tidak dapat disebutkan. Terima kasih atas masukan, saran, dan motivasi yang diberikan. Semoga Allah SWT membalas dengan nikmat yang berlimpah.
(7)
ABSTRAK
Pada era globalisasi ini, rangkaian aktivitas manusia dituntut untuk memiliki sistem perencanaan yang efektif. Curah hujan sebagai salah satu kondisi cuaca yang dapat mempengaruhi aktifitas manusia memerlukan sistem prediksi yang akurat. Weighted Evolving Fuzzy Neural Network (WEFuNN) merupakan metode yang memiliki prinsip mengolah data dengan banyak kemungkinan dirasa sesuai untuk diterapkan pada sistem prediksi curah hujan. Tingkat keakuratan prediksi diukur dengan menggunakan MAPE (Mean Absolute Percentage Error). Hasil prediksi WEFuNN menunjukkan bahwa dengan MAPE untuk curah hujan dari tanggal 1 Januari 2011 s.d. 30 November 2012 menghasilkan nilai rata-rata error sebesar 0.235% dan nilai akurasi sebesar 96.148%. Berdasarkan hasil tersebut, sistem prediksi curah hujan menggunakan WEFuNN dapat dikatakan efisien dikarenakan memiliki tingkat rata-rata error yang sangat rendah dan tingkat akurasi yang tinggi.
Kata Kunci : Weighted Evolving Fuzzy Neural Network (WEFuNN), Curah Hujan, Sistem Prediksi
(8)
vii
RAINFALL PREDICTION USING WEIGHTED EVOLVING FUZZY NEURAL NETWORK
ABSTRACT
Nowadays, human activities required an effective design system. One of the weather conditions that can influences human activities and need a good prediction system is rainfall. Weighted Evolving Fuzzy Neural Network (WEFuNN) is a method that can process data with many possibilities is suitable to use in rainfall prediction system. The accuracy of the prediction system is measure using MAPE (Mean Absolute Percentage Error). The result of WEFuNN show that MAPE for the rainfall from January 1st 2011 until November 30 2012 is 0.235% and the accuracy is 96.148%. Based on that result, the rainfall prediction system using WEFuNN is efficient cause has lower error level and higher accuracy level.
Keyword : Weighted Evolving Fuzzy Neural Network (WEFuNN), Rainfall, Prediction System.
(9)
DAFTAR ISI
Hal
PERSETUJUAN iii
PERNYATAAN iv
PENGHARGAAN v
ABSTRAK vi
ABSTRACT vii
DAFTAR ISI viii
DAFTAR TABEL Ix
DAFTAR GAMBAR x
BAB 1 PENDAHULUAN 1
1.1Latar Belakang 1
1.2Rumusan Masalah 3
1.3Batasan Masalah 3
1.4Tujuan Penelitian 3
1.5Manfaat Penelitian 3
1.6Metodologi Penelitian 4
1.7Sistematika Penulisan 5
BAB 2 LANDASAN TEORI 6
2.1Prediksi Curah Hujan 6
2.2Intensitas Curah Hujan 7
2.3Logika Fuzzy 8
2.3.1 Himpunan Fuzzy 9
2.3.2 Fungsi Keanggotaan 9
2.3.3 Sistem Inferensi Fuzzy 14
2.3.3.1 Model Fuzzy Mamdani 15
2.3.3.2 Model Fuzzy Sugeno 16
(10)
ix
2.4Evolving Connection System (ECOS) 18
2.5Weighted Evolving Fuzzy Neural Network 20
2.5.1 Arsitektur Weighted Evolving Fuzzy Neural Network 20
2.5.2 Parameter Weighted Evolving Fuzzy Neural Network 21
2.5.3 Algoritma Weighted Evolving Fuzzy Neural Network 22
2.6 Penelitian Terdahulu 23
BAB 3 ANALISIS DAN PERANCANGAN SISTEM 28
3.1Data Yang Digunakan 28
3.2Analisis Sistem 31
3.2.1 Analisis Masalah 31
3.2.2 Analisis Perancangan Sistem 31
3.2.3 Arsitektur Umum 36
3.2.4 Diagram Aktivitas 37
3.3Perancangan Sistem 42
3.3.1 Rancangan Form Login 42
3.3.2 Rancangan Menu Utama 43
3.3.2.1 Rancangan Form Hasil Prediksi 43
3.3.2.2 Rancangan Form Data Klimatologi 44
3.3.3 Rancangan Form Laporan Data Prediksi 45
3.3.4 Rancangan Form Laporan Data Klimatologi 45
3.3.5 Rancangan Form Grafik 46
BAB 4 IMPLEMENTASI DAN PENGUJIAN 47
4.1Implementasi Sistem 47
4.1.1 Spesifikasi Perangkat Lunak dan Perangkat Keras 47
4.1.2 Implementasi Perancangan Antarmuka Sistem 48
4.1.3 Implementasi Data 51
4.2Pengujian Sistem 52
4.2.1 Rencana Pengujian Sistem 53
4.2.2 Hasil Pengujian Sistem 54
(11)
4.2.4 Pelatihan Data 63
4.2.5 Pengujian Data 64
BAB 5 KESIMPULAN DAN SARAN 66
5.1Kesimpulan 66
5.2Saran 66
(12)
xi
DAFTAR TABEL
Hal Tabel 2.1 Keadaan curah hujan dan intensitas curah hujan 8 Tabel 2.2 Ukuran, massa dan kecepatan jatuh butir hujan 8
Tabel 2.3 Penelitian terdahulu 25
Tabel 3.1 Rangkuman Data Curah Hujan 30
Tabel 4.1 Rangkuman Data Curah Hujan 52
Tabel 4.2 Rencan Pengujian 53
Tabel 4.3 Hasil Pengujian 54
Tabel 4.4 Data Curah Hujan 59
Tabel 4.5 Nilai Normalisasi Curah Hujan 59
Tabel 4.6 Nilai Fuzzy Input dan Fuzzy Output 60
Tabel 4.7 Hasil Prediksi Curah Hujan 60
Tabel 4.8 Hasil Denormalisasi 61
Tabel 4.9 Hasil Pengujian Sistem Untuk Data Curah Hujan 62 Tabel 4.10 Parameter dan Hasil Pengujian Data Curah Hujan 63
(13)
DAFTAR GAMBAR
Hal
Gambar 2.1 Representasi Linear Naik 10
Gambar 2.2 Himpunan Fuzzy untuk Temperature Naik 10
Gambar 2.3 Representasi Linear Turun 11
Gambar 2.4 Himpunan Fuzzy untuk Temperature Turun 11
Gambar 2.5 Kurva Segitiga 12
Gambar 2.6 Himpunan fuzzy untuk Kurva Segitiga 12
Gambar 2.7 Kurva Trapesium 13
Gambar 2.8 Himpunan fuzzy untuk Kurva Trapesium 13
Gambar 2.9 Fuzzy Inference System 15
Gambar 2.10 Sistem Inferensi Fuzzy Mamdani 15
Gambar 2.11 Defuzzifikasi dari sistem inferensi fuzzy mamdani 16
Gambar 2.12 Sistem inferensi Fuzzy Sugeno 17
Gambar 2.13 Sistem Inferensi Fuzzy Tsukamoto 17
Gambar 2.14 Proses Interaksi ECOS 19
Gambar 2.15 Arsitektur WEFuNN 20
Gambar 3.1 Algoritma WEFuNN untuk Prediksi Curah Hujan 32 Gambar 3.2 Himpunan Fuzzy untuk Data Curah Hujan 34
Gambar 3.3 Arsitektur Umum 36
Gambar 3.4 Diagram Aktivitas Untuk Login 37
Gambar 3.5 Diagram Aktivitas Prediksi Curah Hujan 38 Gambar 3.6 Diagram Aktivitas untuk Pengaturan Data Klimatologi 39 Gambar 3.7 Diagram Aktivitas untuk Pengaturan Parameter Prediksi 40 Gambar 3.8 Diagram Aktivitas Laporan Hasil Prediksi 40 Gambar 3.9 Diagram Aktivitas Laporan Data Klimatologi 41
Gambar 3.10 Diagram Aktivitas Laporan Grafik 41
Gambar 3.11 Rancangan Form Login 42
Gambar 3.12 Rancangan Form Hasil Prediksi 43
(14)
xiii
Gambar 3.14 Rancangan Form Laporan Data Prediksi 45
Gambar 3.15 Rancangan Form Laporan Data Klimatologi 46
Gambar 3.16 Rancangan Form Grafik 46
Gambar 4.1 Tampilan Login 48
Gambar 4.2 Tampilan Cetak 49
Gambar 4.3 Tampilan Data Prediksi Curah Hujan 49
Gambar 4.4 Tampilan Data Klimatologi 50
Gambar 4.5 Form Tambah 50
Gambar 4.6 Tampilan Grafik 51
Gambar 4.7 Grafik Hasil Prediksi 61
Gambar 4.8 Grafik Hasil Pelatihan (Rule Node) 64
Gambar 4.9 Grafik Hasil Pelatihan (Error) 64
(15)
ABSTRAK
Pada era globalisasi ini, rangkaian aktivitas manusia dituntut untuk memiliki sistem perencanaan yang efektif. Curah hujan sebagai salah satu kondisi cuaca yang dapat mempengaruhi aktifitas manusia memerlukan sistem prediksi yang akurat. Weighted Evolving Fuzzy Neural Network (WEFuNN) merupakan metode yang memiliki prinsip mengolah data dengan banyak kemungkinan dirasa sesuai untuk diterapkan pada sistem prediksi curah hujan. Tingkat keakuratan prediksi diukur dengan menggunakan MAPE (Mean Absolute Percentage Error). Hasil prediksi WEFuNN menunjukkan bahwa dengan MAPE untuk curah hujan dari tanggal 1 Januari 2011 s.d. 30 November 2012 menghasilkan nilai rata-rata error sebesar 0.235% dan nilai akurasi sebesar 96.148%. Berdasarkan hasil tersebut, sistem prediksi curah hujan menggunakan WEFuNN dapat dikatakan efisien dikarenakan memiliki tingkat rata-rata error yang sangat rendah dan tingkat akurasi yang tinggi.
Kata Kunci : Weighted Evolving Fuzzy Neural Network (WEFuNN), Curah Hujan, Sistem Prediksi
(16)
vii
RAINFALL PREDICTION USING WEIGHTED EVOLVING FUZZY NEURAL NETWORK
ABSTRACT
Nowadays, human activities required an effective design system. One of the weather conditions that can influences human activities and need a good prediction system is rainfall. Weighted Evolving Fuzzy Neural Network (WEFuNN) is a method that can process data with many possibilities is suitable to use in rainfall prediction system. The accuracy of the prediction system is measure using MAPE (Mean Absolute Percentage Error). The result of WEFuNN show that MAPE for the rainfall from January 1st 2011 until November 30 2012 is 0.235% and the accuracy is 96.148%. Based on that result, the rainfall prediction system using WEFuNN is efficient cause has lower error level and higher accuracy level.
Keyword : Weighted Evolving Fuzzy Neural Network (WEFuNN), Rainfall, Prediction System.
(17)
BAB I
PENDAHULUAN
1.1Latar Belakang
Teknologi dan perkembangan ilmu pengetahuan dewasa ini sudah mengalami perkembangan pesat. Seiring berjalannya waktu, perkembangan ini menyebabkan timbulnya kebutuhan untuk mengetahui peristiwa-peristiwa yang akan terjadi dimasa yang akan datang. Salah satu peristiwa tersebut adalah mengetahui kondisi cuaca khususnya curah hujan harian. Karena cuaca disuatu daerah menentukan rangkaian aktifitas manusia, sebagai contoh informasi iklim dan klasifikasinya banyak menjadi acuan untuk bidang pertanian, transportasi dan pariwisata dalam menentukan masa pola tanam, pelayaran dan penerbangan (Rizky et al. 2012). Kejadian hujan dapat dideteksi, diprediksi, dan pada kondisi tertentu manusia dapat mempengaruhi dalam proses pembentukannya. Untuk dapat mengetahui potensi dan kendala hujan bagi penggunaan tertentu. Dengan memperhatikan beberapa karakteristik hujan seperti jumlah atau volume, intensitas, peluang terjadinya hujan, variabilitas hujan antar waktu dan tempat (spatiotemporal variability) (Suriadikusumah, 2007). Ada beberapa factor yang mempengaruhi curah hujan yaitu tekanan udara, kelembapan udara, kecepatan angin, dan suhu udara (temperatur) (Suri et al. 2013).
Beberapa penelitian telah dilakukan dalam prediksi curah hujan. Penelitian yang telah dilakukan sebelumnya menggunakan model Feed Forward Neural Network (FFNN) dengan membandingkan algoritma Quasi Newton BFGS dan Levenberg-Marquardt untuk prediksi curah hujan kota Semarang. Pada algoritma Quasi Newton BFGS menghasilkan nilai mean square error (MSE) sebesar 1,8087% dan pada algoritma Levenberg-Marquardt menghasilkan nilai MSE sebesar 4,1123% (Warsito dan Sumiyati, 2007). Model General Regression Neural Network untuk prediksi curah Hujan sebagai dasar perancangan pola tanam padi dan palawija secara umum memberikan prediksi in-sample yang lebih baik dari model ARIMA sedangkan
(18)
2
prediksi out-sample memberikan hasil berimbang dengan model ARIMA (Warsito et al. 2008).Metode Kalman Filter dengan Prediktor SST NINO 3.4 untuk prediksi curah hujan bulanan menghasilkan nilai koefisien korelasi mencapai 75% (Tresnawati et al. 2010). Analisis dan perancangan program aplikasi dengan struksur Adaptive Neuro-Fuzzy Inference System (ANFIS) untuk prediksi curah hujan menghasilkan nilai RMSE sebesar 0,063313 dan reange of influence 0,320 (Linda, 2007). Penerapan
fuzzy inference system pada prediksi curah hujan di Surabaya Utara menghasilkan nilai keakuratan sebesar 77,68% (Rizky et al, 2012).
Walaupun metode computational intelligence seperti jaringan saraf tiruan (JST) sistem fuzzy, komputasi evolusioner, system hibrida, serta metode lainnya telah berhasil dikembangkan dan diterapkan, ada sejumlah masalah saat diterapkan teknik ini untuk proses perkembangan yang kompleks (Kasabov, 2007), seperti kesulitan dalam preselecting arsitektur sistem, sistem akan melupakan sejumlah besar pengetahuan lama sambil belajar data baru, memerlukan waktu pelatihan yang berlebihan, dan kurangnya fasilitas representasi pengetahuan.
Dalam skripsi ini, pengembangan sistem prediksi menggunakan metode weighted evolving fuzzy neural network (WEFuNN) yakni salah satu metode softcomputing yang memiliki struktur hybrid dari fuzzy inference system dan jaringan saraf tiruan yang mana di dalam jaringannya menerapkan prinsip-prinsip evolving connectionist system (ECOS). Evolving Connectionist System (ECOS) yakni sebuah metode pembelajaran yang adaptif, bertahap dan sistem representasi pengetahuan yang mengembangkan struktur dan fungsinya, dimana dalam inti sistem terdapat arsitektur koneksionis yang terdiri dari neuron (unit pengolahan informasi) dan hubungan antar neuron (Kasabov, 2007). Metode WEFuNN telah digunakan dalam beberapa kasus seperti memprediksi jumlah permintaan Printed Circuit Board (PCB) menghasilkan nilai MAPE sebesar 2.11% ( Chang et al, 2007), memprediksi kebutuhan listrik menghasilkan nilai MAPE sebesar 6.11% (Chang et al, 2009), memprediksi kebutuhan telur ayam menghasilkan tingkat error yang rendah yaitu dengan range
(19)
1.2Rumusan Masalah
Berdasarkan latar belakang tersebut, maka rumusan masalah dari penelitian ini adalah melakukan pendekatan untuk memprediksi curah hujan dengan mempertimbangkan beberapa variabel seperti tekanan udara, kelembapan udara, kecepatan angin, dan temperature.
1.3Batasan Masalah
Penelitian ini memiliki banyak cakupan sehingga penulis membatasi permasalahan pada penelitian ini. Batasan masalah tersebut adalah sebagai berikut:
1. data yang digunakan dalam penelitian ini adalah data curah hujan dari tanggal 1 Januari 2002 s.d. 30 November 2012 yang diambil dari Badan Meteorologi, Klimatologi dan Geofisika, Balai Besar Meterologi Klimatologi dan Geofisika (BMKG) Wilayah I Medan.
2. data yang menjadi variabel input dalam sistem ini adalah tekanan udara, kelembapan udara, kecepatan angin, dan temperatur,
3. data yang menjadi variabel output dalam sistem ini adalah prediksi curah hujan, 4. data yang digunakan dibagi menjadi dua bagian, yaitu data pelatihan (training)
dan data pengujian (testing),
5. data pelatihan menggunakan data curah hujan dari tanggal 1 Januari 2002 s.d. 31 Desember 2010,
6. data pengujian menggunakan data curah hujan pada tanggal 1 Januari 2011 s.d. 30 November 2012,
7. hasil penelitian ini tidak mempertimbangkan factor-faktor yang dipengaruhi oleh manusia.
1.4Tujuan Penelitian
Tujuan dari penelitian ini adalah untuk memprediksi curah hujan menggunakan metode weighted evolving fuzzy neural network (WEFuNN).
1.5Manfaat Penelitian
Penulis berharap penelitian ini dapat memberikan manfaat kepada penulis sendiri dan para pembaca. Adapun manfaat dari penelitian ini adalah sebagai berikut :
(20)
4
1. Membantu pengguna untuk mengetahui prediksi curah hujan di masa yang akan datang.
2. Sistem dapat digunakan sebagai alat bantu pengambilan keputusan dalam menentukan rangkaian kegiatan yang berhubungan dengan curah hujan khususnya untuk bidang pertanian, transportasi, dan pariwisata.
3. Penelitian ini dapat menjadi bahan referensi untuk pengembangan penelitian lebih lanjut.
1.6Metodologi Penelitian
Metodologi penelitian yang digunakan pada penelitian ini adalah: 1. Studi Literatur
Pada tahap ini dilakukan studi kepustakaan yaitu mengumpulkan bahan referensi mengenai prediksi menggunakan weighted evolving fuzzy neural network
(WEFuNN) dari berbagai buku, jurnal, artikel, dan beberapa referensi lainnya. 2. Analisis
Pada tahap ini dilakukan analisis terhadap studi literatur untuk mengetahui dan mendapatkan pemahaman mengenai weighted evolving fuzzy neural network
(WEFuNN) untuk menyelesaikan masalah prediksi. 3. Perancangan
Pada tahap ini dilakukan perancangan sistem terhadap arsitektur sistem, pengumpulan data, pelatihan, dan merancang antarmuka. Proses dilakukan berdasarkan hasil analisis studi literatur yang telah didapatkan.
4. Implementasi
Pada tahap ini implementasi sistem akan dilakukan pengkodean program menggunakan Visual Basic. NET (VB.NET), dam MySQL.
5. Pengujian
Pada tahap ini dilakukan pengujian aplikasi prediksi curah hujan yang telah dibuat guna memastikan aplikasi telah berjalan sesuai dengan apa yang diharapkan. 6. Dokumentasi dan Penyusunan Laporan
Pada tahap ini dilakukan dokumentasi hasil analisis dan implementasi weighted evolving fuzzy neural network (WEFuNN) untuk melakukan prediksi curah hujan.
(21)
1.7Sistematika Penuliasan
Sistematika penulisan dan skripsi ini terdiri dari lima bagian utama sebagai berikut :
Bab 1: Pendahuluan
Bab ini berisi latar belakang , rumusan masalah, batasan masalah, tujuan penelitian, manfaat penelitian, metodologi penelitian, dan sistematika penulisan.
Bab 2: Landasan Teori
Bab ini berisi teori-teori yang digunakan untuk memahami permasalahan yang dibahas pada penelitian ini. Pada bab ini dijelaskan tentang penerapan metode weighted
evolving fuzzy neural network (WEFuNN) untuk memprediksi curah hujan dan data-data pendukungnya.
Bab 3: Analisis dan Perancangan
Bab ini berisi analisis dan penerapan metode weighted evolving fuzzy neural network
(WEFuNN) untuk memprediksi curah hujan pada masa yang akan dating, serta perancangan seperti pemodelan flowchart, dan antarmuka sistem.
Bab 4: Implementasi dan Pengujian
Bab ini berisi pembahasan tentang implementasi dari analisis dan perancangan yang disusun pada bab 3 dan pengujian apakah hasil yang didapatkan sesuai dengan yang diharapkan.
Bab 5: Kesimpulan dan Saran
Bab ini berisi kesimpulan dari keseluruhan uraian bab-bab sebelumnya dan saran-saran yang diajukan untuk pengembangan penelitian selanjutnya.
(22)
BAB 2
LANDASAN TEORI
Bab ini membahas tentang teori penunjang dan penelitian sebelumnya yang berhubungan dengan penerapan metode weighted evolving fuzzy neural network untuk prediksi curah hujan.
2.1Prediksi Curah Hujan
Dalam peramalan dikenal istilah prakiraan dan prediksi. Prakiraan adalah sebagai proses peramalan suatu variabel sebagai contoh curah hujan di masa datang dengan berdasarkan data curah hujan pada masa sebelumnya. Menggabungkan dan mengolah data masa lampau secara sistematik dengan suatu metode tertentu untuk menghasilkan prakiraan keadaan pada masa datang. Prediksi adalah proses peramalan suatu variabel di masa datang dengan lebih mendasarkan pada pertimbangan intuisi daripada data masa lampau, meskipun lebih menekankan pada intuisi, dalam prediksi juga sering digunakan data kuantitatif sebagai pelengkap informasi dalam melakukan peramalan (Herjanto, 2006).
Menurut sumber peramalannya, peramalan dapat dikelompokkan sebagai berikut (Heizer, 2005):
1. Model Data Times Series atau Runtun Waktu
Model data time series adalah suatu jenis peramalan secara kuantitatif dengan menggunakan waktu sebagai dasar peramalan. Model time series sering disebut model kuantitatif intrinsik. Model peramalan deret waktu seperti itu bertujuan untuk menemukan pola dalam deret data historis dan mengekstrapolasikan pola dalam deret data tersebut ke pola data masa depan.
2. Model Data Causal
Model data causal adalah model peramalan yang menggunakan hubungan sebab-akibat sebagai asumsi, yaitu bahwa apa yang terjadi di masa lalu akan terulang pada saat ini. Model ini merupakan teknik peramalan kuantitatif ekstrensik yang sesuai untuk pengambilan keputusan dan kebijakan.
(23)
3. Model Data Judgemental
Bila model peramalan time series dan causal bertumpu pada data kuantitatif, pada model judgemental faktor-faktor kualitatif/subjektif dimasukkan ke dalam metode peramalan. Secara khusus berguna bilamana faktor-faktor subjektif yang diharapkan menjadi sangat penting dan data kuantitatif yang akurat sudah diperoleh.
2.2 Intensitas Curah Hujan
Hujan merupakan jatuhnya hydrometeor yang berupa partikel-partikel air dengan diameter 0,5 mm atau lebih. Jika jatuhnya ketanah maka disebut hujan, akan tetapi jika apabila jatuhnya tidak dapat mencapai tanah karena menguap lagi maka jatuhan tersebut disebut virga. Hujan juga dapat didefinisikan dengan uap yang mengkodensasi dan jatuh ke tanah dalam rangkaian hidrologi (Sosrodarsono, 2003).
Penguapan terjadi pada tiap keaadaan suhu sampai udara diatas permukaan menjadi jenuh dengan uap. Tetapi kecepatan dan jumlah penguapan tergantung dari suhu, kelembaban, kecepatan angin, dan tekanan udara (Sosrodarsono, 2003).
Kelembaban merupakan massa uap yang terdapat dalam 1 udara, kerapatan uap disebut kelembaban mutlak (absolute). Kelembaban ralatif adalah perbandingan massa uap dalam suatu satuan volume dan massa uap yang jenuh dalam satuan volume itu pada suhu yang sama. Kelembapan ralatif dinyatakan dalam % (Sosrodarsono, 2003).
Intensitas curah hujan adalah besaran curah hujan dalam suatu satuan waktu. Satuan yang digunakan mm/jam. Keadaaan curah hujan dan intensitas curah hujan dapat dilihat pada tabel 2.1
(24)
8
Tabel 2.1 Keadaan curah hujan dan intensitas curah hujan (Sosrodarsono, 2003)
Keadaan curah hujan Intensitas curah hujan (mm)
1 jam 24 jam
Hujan sangat ringan <1 <5
Hujan ringan 1-5 5-20
Hujan normal 5-20 20-50
Hujan lebat 10-20 50-100
Hujan sangat lebat >20 >100
Nama dari butiran hujan berdasarkan dari ukurannya. Dalam meteorologi, butir hujan dengan diameter lebih besar dari 0,5 mm disebut hujan dan diameter antara 0,50-0,1 mm disebut gerimis (drizzle). Makin besar ukuran butir hujan, makin besar kecepatan jatuhnya. Kecepatan yang maksimum adalah kira-kira 9,2 m/det. Pada Tabel 2.2 menunjukkan jenis curah hujan , ukuran-ukuran butir hujan, massa dan kecepatan jatuh butir hujan.
Tabel 2.2 Ukuran, massa dan kecepatan jatuh butir hujan(Sosrodarsono, 2003).
Jenis Diameter bola
(mm)
Massa (mg)
Kecepatan jatuh (m/sec)
Hujan gerimis 0,15 0,0024 0,5
Hujan halus 0,5 0,065 2,1
Hujan normal lemah 1 0,52 4,0
Hujan normal deras 2 4,2 6,5
Hujan sangat deras 3 14 8,1
2.3Logika Fuzzy
Fuzzy logic merupakan salah satu cara untuk memetakan suatu ruang input ke ruang
output. Konsep fuzzy logic yang sangat sistematis pertama kali diusulkan oleh Lotfi A. Zadeh (Palit, 2005). Pada himpunan crisp, anggota himpunan memiliki batasan yang kaku. Sebagai contoh suatu himpunan konvensional didefinisikan sebagai berikut:
A = {x | x > 6}
Pada persamaan di atas terlihat batasan yang jelas yaitu 6 sehingga jika x lebih besar dari 6 maka x anggota himpunan A dan jika sebaliknya maka x bukan anggota
(25)
himpunan A. Berbeda dengan himpunan crisp, himpunan fuzzy adalah suatu himpunan
tanpa batasan yang kaku. Oleh karena itu transisi dari “anggota himpunan” ke “bukan anggota himpunan” terjadi secara bertahap dan transisi ini diimplementasikan dengan
fungsi keanggotaan himpunan fuzzy (membershipfunction).
2.3.1 Himpunan Fuzzy
Pada himpunan tegas (crisp), nilai keanggotaan suatu item x dalam suatu himpunan A, yang sering ditulis dengan µ[x], memiliki 2 kemungkinan (Kusumadewi, 2010), yaitu:
1. Satu (1), yang aberarti bahwa suatu item menjadi anggota dalam suatu himpunan, atau
2. Nol (0), yang berarti bahwa suatu item tidak menjadi anggota dalam suatu himpunan.
Himpunan fuzzy memiliki 2 atribut (Kusumadewi, 2010), yaitu:
1. Linguistik, yaitu penamaan suatu grup yang mewakili suatu keadaan atau kondisi tertentu dengan menggunakan bahasa alami, seperti: Hujan sangat ringan, Hujan ringan, Hujan Normal, Hujan Lebat, Hujan sangat lebat. 2. Numeris, yaitu suatu nilai (angka) yang menunjukkan ukuran dari suatu
variabel seperti : 5, 20, 50, 100, dsb.
2.3.2 Fungsi Keanggotaan
Derajat keanggotaan merupakan suatu kurva yang menunjukkan pemetaan titik-titik
input data ke dalam nilai keanggotaannya sering juga disebut dengan fungsi keanggotaan (membership function) yang memiliki interval antara 0 sampai 1 (Kusumadewi, 2010). Salah satu cara yang dapat digunakan untuk mendapatkan nilai keanggotaan adalah dengan melalui pendekatan fungsi. Ada beberapa fungsi yang bisa digunakan seperti fungsi linear, kurva segitiga, kurva trapesium, dan lain sebagainya.
1. Representasi Linear
Pada representasi linear, pemetaan input ke derajat keanggotannya membentuk suatu garis lurus. Bentuk ini paling sederhana dan menjadi pilihan yang baik untuk mendekati suatu konsep yang kurang jelas (Kusumadewi, 2010).
Ada dua keadaan himpunan fuzzy yang linear. Pertama, kenaikan himpunan dimulai pada nilai domain yang memiliki derajat keanggotaan nol bergerak ke
(26)
10
kanan menuju ke nilai domain yang memiliki derajat keanggotaan lebih tinggi (Kusumadewi, 2010). Bentuk grafiknya dapat dilihat pada Gambar 2.1.
0 1
a b
Derajat Keanggotaan
µ[X]
Gambar 2.1 Representasi Linear Naik (Kusumadewi, 2010)
Fungsi Keanggotaan:
[ ] {
(2.1) Contoh 1:
Fungsi keanggotaan untuk himpunan linear naik pada variabel temperature
ruangan seperti terlihat pada Gambar 2.2.
μPANAS[32] = (32-25)/(35-25) = 7/10 = 0,7
0 1
25 35
Derajat Keanggotaan
µ[X]
Temperatur (°C) 32
0.7
Gambar 2.2 Himpunan Fuzzy untuk Temperature Naik (Kusumadewi, 2010)
Kedua, merupakan kebalikan yang pertama. Garis lurus dimulai dari nilai domain dengan derajat keanggotaan tertinggi pada sisi kiri, kemudian bergerak menurun ke nilai domain yang memiliki derajat keanggotaan lebih rendah (Kusumadewi, 2010) yang grafiknya dapat dilihat pada Gambar 2.3.
(27)
0 1
a b
Derajat Keanggotaan
µ[X]
domain
Gambar 2.3 Representasi Linear Turun (Kusumadewi, 2010)
Fungsi Keanggotaan:
[ ] { Contoh 2:
Fungsi keanggotaan untuk himpunan linear turun pada variabel temperature
ruangan seperti terlihat pada Gambar 2.4.
μDINGIN[20] = (30-20)/(30-15) = 10/15 = 0,667
0 1
15 30
Derajat Keanggotaan
µ[X]
Temperatur (°C) DINGIN
20
0.667
Gambar 2.4 Himpunan Fuzzy untuk Temperature Turun (Kusumadewi, 2010)
2. Representasi Kurva Segitiga
Kurva segitiga pada dasarnya merupakan gabungan antara 2 garis (linear) seperti terlihat pada Gambar 2.5.
(28)
12
0 1
a b
Derajat Keanggotaan
µ[X]
domain c
Gambar 2.5 Kurva Segitiga (Kusumadewi, 2010)
Fungsi Keanggotaan:
[ ] {
(2.3) Contoh 3:
Fungsi keanggotaan untuk himpunan kurva segitiga pada variabel temperature
ruangan seperti terlihat pada Gambar 2.6.
μNORMAL[23] = (23-15)/(25-15) = 8/10 = 0,8
0 1
15 25
Derajat Keanggotaan
µ[X]
35 Temperatur (°C)
23 0.8
NORMAL
(29)
3. Representasi Kurva Trapesium
Kurva trapesium pada dasarnya seperti bentuk segitiga, hanya saja ada beberapa titik yang memiliki nilai keanggotaan 1 seperti terlihat pada Gambar 2.7.
0 1
a b
Derajat Keanggotaan
µ[X]
domain c d
Gambar 2.7 Kurva Trapesium (Kusumadewi, 2010)
Fungsi Keanggotaan:
[ ] {
(2.4)
Contoh 4:
Fungsi keanggotaan untuk himpunan kurva trapesium pada variabel temperature
ruangan seperti terlihat pada Gambar 2.8.
μNORMAL[23] = (35-32)/(35-27) = 3/8 = 0,375
(30)
14
2.3.3 Sistem Inferensi Fuzzy
Sistem inferensi fuzzy adalah sebuah kerangka kerja perhitungan yang berdasar pada konsep teori himpunan fuzzy, aturan fuzzy if-then, dan pemikiran fuzzy. Sistem inferensi fuzzy ini telah berhasil diaplikasikan pada berbagai bidang, seperti control otomatis, klasifikasi data, analisis keputusan, sistem pakar, prediksi time series, robotika, dan pengenalan pola. Sistem inferensi fuzzy juga dikenal dengan berbagainama seperti fuzzy rule based system (sistem berbasis aturan fuzzy ), fuzzy expert system (sistem pakar fuzzy), fuzzy model, fuzzy associative memory, fuzzy logic controller (pengendalian logika fuzzy), sistem fuzzy sederhana (Jang et al.
1997).
Struktur dasar dari sistem inferensi fuzzy berisi tiga komponen koseptual : 1. Dasar aturan yang mana berisi sebuah pemilihan aturan fuzzy.
2. Database yang mendefinisikan fungsi keanggotaan yang digunakan dalam aturan fuzzy.
3. Mekanisme pemikiran yang mengerjakan prosedur inferensi terhadap aturan dan kenyataan yang diketahui untuk menurunkan output atau kesimpulan yang masuk akal (Castillo et al. 2008).
Sistem inferensi fuzzy dapat mengambil input fuzzy ataupun crisp, tetapi ouputnya hampir selalu menghasilkan himpunan fuzzy. Untuk mendapatkan nilai crisp diperlukan suatu metode defuzzifikasi. Secara umum, suatu sistem yang berbasis
fuzzy logic diawali dengan fuzzifikasi yaitu konversi input crisp menjadi fuzzy
berdasarkan fungsi keanggotaan. Pada proses selanjutnya adalah proses inferensi, proses ini akan memperhitungkan semua aturan pada basis aturan dan menghasilkan himpunan fuzzy. Proses terakhir adalah defuzzifikasi, proses ini akan menentukan nilai
crisp untuk himpunan fuzzy yang dihasilkan pada proses inferensi (Castillo et al.
(31)
Gambar 2.9 Fuzzy Inference System (Jang et al. 1997) 2.3.3.1Model Fuzzy Mamdani
Sistem inferensi fuzzy mamdani sebagai usaha awal untuk mengendalikan mesin uap dan kombinasi boiler dengan sebuah himpunan aturan kendali linguistik yang diperoleh dari pengalaman operator manusia. Gambar 2.10 mengilustrasikan bagaimana dua aturan sistem inferensi mamdani menurunkan semua output z ketika ditunjuk oleh dua input crisp x dan y (Kusumadewi, 2010).
Gambar 2.10 Sistem Inferensi Fuzzy Mamdani (Jang et al. 1997)
Pada proses defuzzifikasi mengacu pada cara nilai crisp diekstrak dari sebuah himpunan fuzzy sabagai nilai representative. Pada umumnya, ada 5 metode untuk defuzzifikasi sebuah himpunan fuzzy A dari semesta Z (Kusumadewi, 2010) seperti pada Gambar 2.11.
(32)
16
Gambar 2.11 Defuzzifikasi dari sistem inferensi fuzzy mamdani (Jang et al. 1997) 1. Centroid of area :
∫ ∫
(2.5)
Dimana adalah output MF teragregasi.
2. Bisector of Area
∫ ∫ (2.6)
Dimana dan . z = membagi daerah antara z = , z = , y = 0 dan y = ke dalam dua daerah yang sama.
3. Mean of Maximum
adalah rata-rata dari maksimalisasi z pada MF yang mencapai maksimum
∫
∫ (2.7)
4. Smallest of Maximum
adalah minimum dari maksimasi z.
5. Largest of Maximum
adalah maksimum dari maksimasi z.
2.3.3.2Model Fuzzy Sugeno
Takagi, Sugeno dan Kang mengusulkan model fuzzy Sugeno dalam usaha membangun pendekatan sistematis untuk meng-generate aturan fuzzy dari dataset input-output
yang diberikan. Aturan fuzzy tipikal dalam sebuah model fuzzy Sugeno berbentuk, jika x adalah A dan y adalah B maka z = f(x,y) (Kusumadewi, 2010).
(33)
Gambar 2.12 Sistem inferensi Fuzzy Sugeno (Jang et al. 1997)
Fungsi crisp dalam consequent merupakan himpunan fuzzy dalam antecedent,
dapat dilihat pada Gambar 2.12. Sedangkan z = f(x,y). Biasanya f(x,y) adalah sebuah polynomial dalam variabel input x dan y, tetapi ini dapat menjadi suatu fungsi selama dapat menjelaskan output model dalam daerah fuzzy yang telah ditentukan oleh aturan
antecedent secara sesuai. Ketika f(x,y) adalah polynomial orde satu, menghasilkan system inferensi fuzzy disebut model fuzzy Sugeno orde satu. Model fuzzy Sugeno orde nol ketika f adalah konstan (Kusumadewi, 2010).
2.3.3.3Model Fuzzy Tsukamoto
Dalam model fuzzy Tsukamoto, consequent dari masing-masing aturan fuzzy if-then
direpresentasikan oleh satu set fuzzy dengan MF monoton. Menghasilkan output yang terinferensi dari masing-masing aturan yang didefinisikan sebagai nilai crisp
diinduksikan oleh aturan firing strength. Mengambil Output keseluruhan sebagai rata-rata terbobot dari tiap aturan output (Kusumadewi, 2010).
(34)
18
2.4Evolving Connection System (ECOS)
Walaupun metode computational intelligence seperti jaringan saraf tiruan (JST), sistem fuzzy, komputasi evolusioner, sistem hibrida, serta metode lainnya telah berhasil dikembangkan dan diterapkan. Ada beberapa masalah saat menerapkan metode ini dalam proses pengembangan yang kompleks (kasabov, 2007), seperti:
1. Kesulitan dalam preselecting arsitektur sistem. Umumnya model kecerdasan buatan memiliki arsitektur tetap seperti jumlah neuron dan koneksi tetap. Hal ini membuat sistem sulit untuk beradaptasi dengan data baru yang dengan distribusi yang tidak diketahui sebelumnya.
2. Adanya kemungkinan sistem akan melupakan beberapa besar pengetahuan lama ketika melakukan pembelajaran terhadap data yang baru.
3. Membutuhkan banyak waktu untuk pelatihan. Pelatihan JST dalam mode batch
umumnya melakukan perulangan pada saat proses propagasi data di dalam struksur JST. Hal tersebut sangat tidak cocok pada pembelajaran on-line dimana sistem membutuhkan proses adaptasi yang cepat.
4. Kurangnya fasilitas repersentasi pengetahuan. Banyaknya arsitektur komputasi cerdas menemukan beberapa parameter statistik selama pelatihan. Tetapi tidak memfasilitasi ekstraksi dari aturan-aturan yang ada ke dalam bentuk informasi linguistik yang mudah dimengerti.
Untuk mengatasi masalah tersebut, dibutuhkan metode hybrid dan
connectionist dalam hal pembelajaran algoritma maupun pengembangan sistem. Pada umumnya, sistem informasi akan membantu menentukan dan memahami model proses secara dinamika, aturan-aturan yang terus berkembang untuk mengambil jalan pintas dalam memecahkan masalah, serta meningkatkan kinerja proses yang berkembang sepanjang waktu. Kebutuhan tersebut merupakan bagian dari artificial intelligence (AI) yang disebut evolving intelligence system (EIS). EIS merupakan sistem informasi yang mengembangkan struktur, fungsi, dan pengetahuan dengan cara terus menerus, adaptif, dan interaktif terhadap informasi yang masuk dan melakukan beberapa tugas cerdas yang dilakukan manusia pada umumnya (Kasabov, 2007).
Bentuk dari metode EIS yaitu evolving connectionist system (ECOS). ECOS merupakan sistem computational intelligence berdasarkan jaringan saraf,
(35)
menggunakan teknik lain computational intelligence yang beroperasi secara terus menerus dan mengadaptasikan struktur dan fungsinya melalui interaksi terhadap lingkungan dan sistem lainnya (Kasabov, 2007). Proses adaptasi tersebut dilakukan melalui:
1. Aturan-aturan yang terus berkembang.
2. Parameter-parameter yang dapat berubah selama sistem beroperasi.
3. Informasi yang datang terus menerus, terutama pada distribusi data yang tidak diketahui sebelumnya.
4. Kriteria tujuan yang diterapkan untuk mengoptimalkan kinerja sistem dari waktu ke waktu.
Pada Gambar 2.14 merupakan ilustrasi yang menggambarkan bagian-bagian EIS yang memproses berbagai informasi dengan cara yang adaptif dan terus menerus. Pengolahan online dari semua informasi memungkinkan ECOS untuk berinteraksi terhadap pengguna dengan sistem (Kasabov, 2007). Proses interaksi ECOS dapat dilihat pada Gambar 2.14.
(36)
20
2.5Weighted Evolving Fuzzy Neural Network
Weighted Evolving Fuzzy Neural Network merupakan pengembangan dari metode
Evolving Fuzzy Neural Network walaupun memiliki struktur yang mirip tetapi memiliki aturan aturan yang beda pada prosesnya. Weighted Evolving Fuzzy Neural Network mengadopsi faktor bobot pendukung untuk menghitung setiap faktor penting dari fungsi fuzzy distance diantara aturan-aturan yang berbeda (Chang et al, 2009).
2.5.1 Arsitektur Weighted Evolving Fuzzy Neural Network
Weighted Evolving Fuzzy Neural Network memiliki lima struktur layer seperti yang ditunjukkan pada Gambar 2.15. Dimana setiap node dan koneksinya dibentuk atau dikoneksikan berdasarkan data sampel yang ada satu per satu (Chang et al, 2009).
Gambar 2.15 Arsitektur WEFuNN (Kasabov, 1998)
Pada layer pertama merupakan input layer yang menggambarkan input dari variabel-variabel yang akan digunakan dalam proses training. Pada penelitian ini menggunakan beberapa variabel input seperti : curah hujan, suhu, tekanan udara, kelembapan udara, dan kecepatan angin.
(37)
Pada layer kedua setiap node mempersentasikan persamaan fuzzy dari masing-masing variabel input. Fungsi keanggotaan fuzzy dapat ditambahkan untuk mendapatkan derajat keanggotaan pada setiap variabel input. Jumlah dan jenis fungsi keanggotaan tersebut dapat secara dinamis dimodifikasi.
Pada layer ketiga setiap node berisi aturan-aturan yang dikembangkan melalui metode pembelajaran terawasi atau pembelajan tidak terawasi. Aturan di setiap node
mempersentasikan prototype dari kumpulan data input-output dalam bentuk grafik sebagai hyper- spheres (nilai maximum dari fungsi keanggotaan) dari fuzzy input dan
fuzzy output.
Pada layer keempat dilakukan kuantisasi variabel fuzzy output. Kuantisasi adalah operasi pemotongan atau pembulatan nilai data dengan suatu presisi tertentu untuk mendapatkan nilai luas kurva. Pada layer ini masukan bobot fungsi penjumlahan untuk menghitung derajat keanggotaan yang mana vector output yang terhubung dengan input vector yang diberikan masing-masing fungsi keanggotaan
output.
Pada layer kelima mempersentasikan nilai dari variabel output. Di layer ini fungsi aktivasi linier digunakan untuk menghitung nilai defuzzifikasi variabel output.
2.5.2 Parameter Weighted Evolving Fuzzy Neural Network
Weighted Evolving Fuzzy Neural Network memiliki beberapa parameter di dalam algoritmanya. Parameter-parameter tersebut digunakan sebagai batas kesalahan dalam melakukan pembelajaran, batas minimum dari sebuah fungsi aktivasi, dan control ukuran pada sebuah bobot. Parameter yang digunakan pada Weighted Evolving Fuzzy Neural Network adalah sebagai berikut (Kasabov, 2001):
1. Sensitive threshold (sThr) adalah parameter yang digunakan untuk mendefinisikan nilai minimum aktivasi. Nilai sensitive threshold harus lebih besar dari 0 dan lebih kecil sama dengan 0,9. Apabila nilai sensitive threshold lebih besar dari 0,9maka fungsi aktivasi akan menjadi chaotic dimana pola data akan semakin acak sehingga sulit untuk diprediksi.
2. Error threshold (errThr) adalah minimum nilai error sebagai batas kesalahan yang ditoleransi dalam proses pembelajaran.
(38)
22
3. Learning rate 1 (lr1) dan learning rate 2 (lr2) adalah parameter yang digunakan untuk mengontrol nilai bobot antara layer kedua dengan layer ketiga dan antara layer ketiga dengan layer ke empat. Nilai parameter learning rate lebih besar dari 0 dan lebih kecil sama dengan 1.
2.5.3 Algoritma Weighted Evolving Fuzzy Neural Network
Algoritma Weighted Evolving Fuzzy Neural Network yang digunakan untuk memprediksi data runtun waktu (Chann et al, 2006 ).
1. Melakukan fuzzifikasi terhadap data training menggunakan fungsi keanggotaan. Dimana : = indeks data.
= data training ke .
= jumlah data yang akan detraining. = hasil dari fuzzifikasi data ke . = fungsi keanggotaan.
2. Membangun rule node pertama r(1) untuk mempersentasi data yang pertama dan mengisi nilai bobot satu dan bobot dua.
Dimana : = rule node
= nilai bobot dari layer dua dan layer tiga = nilai bobot dari layer tiga dan layer empat
target = fuzzy output vector
3. Lakukan pengulangan selama i <= N
a. Menghitung normalized fuzzy local distance (D) diantara fuzzy input vector
(inpFi) dan fuzzy input vector yang berada di tempat penyimpanan sementara
pada saat rule node (rj), j=1…R, dimana R adalah nilai rule node pada saat ini. ( ) ∑ ∑| |
b. Menghitung nilai aktivasi ) dari rule node (rj) dengan menggunakan
fungsi radial basis (radbas).
(39)
( ) c. Cari rule node (rj*) yang memiliki nilai aktivasi tertinggi.
d. Jika nila lebih besar dari sThr maka menuju langkah (e). Sebaliknya, jika nila lebih kecil dari sThr, maka:
Ulangi dari langkah (a).
e. Melakukan propagasi terhadap aktivasi dari rule node (rj*)
(2.15) f. Menghitung fuzzy ouput error.
(2.16) g. Cari action node (k*) dengan nilai aktivasi tertinggi dari A2.
h. Jika Err(k*) lebih kecil dari errThr atau r sama dengan i maka menuju ke langkah (i). Sebaliknya, jika Err(k*) lebih besar dari errThr atau r tidak sama dengan i maka:
(2.17)
(2.18) Ulangi dari langkah (a).
i. Mengubah bobot W1 dan W2.
(2.19) (2.20) (
(2.22)
2.6Penelitian Terdahulu
Metode prediksi telah banyak dilakukan dengan berbagai cara baik dengan metode statistik maupun softcomputing. Metode-metode tersebut telah diimplementasikan untuk memprediksi berbagai hal, termasuk memprediksi curah hujan.
Pada tahun 2010 Tresnawati, Nuraini, dan Hanggoro melakukan penelitian prediksi curah hujan dengan menggunaknan metode Kalman Filter dengan Prediktor SST NINO 3.4. Adapun langkah-langkah dari metode Kalman Filter dengan Prediktor SST NINO 3.4 (Tresnawati et al, 2010) adalah :
(40)
24
1. Memproses variabel model menggunakan SST NINO 3.4. 2. Memilih data terbaik dari data prediksi SST NINO 3.4.
3. Data divalidasi menggunakan 3 persamaan yaitu : ARMAX, BOX Jenkins (BJ), dan Out Error (OE).
4. Output prediksi berupa data pada persamaan terbaik berdasarkan nilai koefisien korelasi tertinggi.
Pada tahun 2007 Linda melakukan penelitian prediksi curah hujan menggunakan metode Adaptive Neuro-Fuzzy Inference System (ANFIS). Adapun langkah-langkah dari metode ANFIS (Linda, 2007) adalah :
1. Menentukan label lingualistik pada data input dan menjadi parameter premis. 2. Mempersentasikan kuat penyulutan dari sebuah aturan.
3. Mengkalkulasi rasio kuat penyulutan aturan ke-I dan jumlah kuat penyulutan semua. Output yang dihasilkan disebut penyulutan ternormalisasi.
4. Membuat kuat penyulutan ternormalisasi menjadi parameter konsekuen.
5. Menghitung output keseluruhan sebagai penjumlahan dari semua sinyal yang masuk.
Pada tahun 2012 Rizki, Usadha, dan Widjajati melakukan penelitian prediksi curah hujan menggunakan metode Fuzzy Inference System. Adapun langkah-langkah dari Fuzzy Inference System (Rizki et al, 2012) adalah :
1. Membentuk variabel input dan variabel output. 2. Membentuk himpunan fuzzy pada data histori.
3. Membentuk himpunan semesta pembicaraan masing-masing variabel. 4. Menentukan fungsi keanggotaan tiap-tiap variabel.
5. Mengkombinasikan semua variabel input dengan menerapkan t-norm. 6. Membentuk basis aturan fuzzy.
7. Melakukan defuzzyfikasi terhadap output prediksi. 8. Validasi hasil prediksi menggunakan nilai Brier Score.
Pada tahun 2007 Warsito dan Sumiyati melakukan penelitian prediksi curah hujan dengan menggunakan Feed-Forward Neural Network dengan Algoritma Quasi Newton BFGS dan Levenberg-Marquard. Adapun langkah-langkah dari
(41)
Feed-Forward Neural Network dengan Algoritma Quasi Newton BFGS dan Levenberg-Marquard (Warsito dan Sumiyati, 2007) adalah :
1. Inisialisasi bobot awal, Epoch 0, MSE ≠ 0
2. Menetapkan nilai maksimum Epoch dan Target Error.
3. Membuat kondisi pemberhentian.
4. Menerima target pola yang berhubungan dengan pola input pelatihan. 5. Menggunakan fungsi line search untuk penampungan output sementara. 6. Menghitung perubahan bobot dan bias.
7. Mengulangi langkah keempat sampai kondisi pemberhentian terpenuhi.
Pada tahun 2008 Warsito, Torno, dan Sugiharto melakukan penelitian prediksi curah hujan dengan menggunakan Model General Regression Neural Network. Adapun langkah-langkah dari Model General Regression Neural Network (Warsito et al, 2008) adalah :
1. Menentukan vector input berdasarkan terminology outoregresif.
2. Pada neuron pola mempersentasikan neuronpola i dan σ.
3. Pada neuron jumlahan outputneuron pola ditambahkan.
4. Jumlah yang dihasilkan neuron jumlahan dikirim ke neuron output dan membentuk pembagian yang menghasilkan output prediksi.
Dari beberapa penelitian terdahulu menghasilkan hasil yang berbeda-beda. Adapun hasil yang telah dihasilkan peneliti terdahulu dirangkum pada Tabel 2.3.
Tabel 2.3 Penelitian Terdahulu
No. Peneliti Tahun Metode Penelitian Keterangan 1. Tresnawati, R
et al
2010 Kalman Filter Dengan Prediktor SST NINO 3.4
Memprediksi curah hujan bulanan menghasilkan nilai koefisien korelasi mencapai 75%.
(42)
26
Tabel 2.3 Penelitian Terdahulu (Lanjutan)
No. Peneliti Tahun Metode Penelitian Keterangan 2. Linda 2007 Adaptive
Neuro-Fuzzy Inference Systems (ANFIS)
Memprediksi curah hujan menghasilkan nilai RMSE sebesar 0,063313 dan reange of influence 0,320
3. Rizki, D.N et al
2012 Fuzzy Inference System
Prediksi curah hujan di Surabaya Utara
menghasilkan nilai keakuratan sebesar 77,68%
4. Warsito dan Sumiyati
2007 Feed-Forward Neural Network
Menggunakan Algoritma Quasi Newton BFGS dan Levenberg-Marquard
Menghasilkan nilai
mean square error
(MSE) sebesar 1,8087% dan pada algoritma Levenberg-Marquardt menghasilkan nilai MSE sebesar 4,1123%
5. Warsito, B et al
2008 General Regression Neural Network
memberikan prediksi in-sample yang lebih baik dari model ARIMA sedangkan prediksi out-sample memberikan hasil berimbang dengan model ARIMA
Berdasarkan penelitian sebelumnya penulis akan melakukan penelitian tentang prediksi curah hujan dengan menggunakan Weighted Evolving Fuzzy Neural Network
(WEFuNN), dimana WEFuNN merupakan salah satu metode softcomputing yang memiliki struktur hybrid dari fuzzy inference system dan jaringan saraf tiruan yang mana didalam jaringannya menerapkan prinsip-prinsip evolving connectionist system
(43)
sampel masukan. Dengan cara ini, WEFuNN dapat melakukan pelatihan secara online
dan data sample dapat ditambah tanpa harus mengubah parameter pada WEFuNN (Kasabov, 2007).
(44)
BAB 3
ANALISIS DAN PERANCANGAN SISTEM
Pada bab ini secara garis besar membahas analisis metode weighted evolving fuzzy
neural network (WEFuNN) pada sistem, seperti data yang akan digunkan, gambaran
umum cara kerja algoritma weighted evolving fuzzy neural network (WEFuNN) dan
tahapan-tahapan yang akan dilakukan dalam perancangan sistem yang akan dibangun.
3.1 Data yang digunakan
Data yang digunakan dalam penelitian ini adalah data curah hujan dan beberapa data yang menjadi variabel input seperti tekanan udara, kelembapan udara, kecepatan angin, dan suhu yang diambil dari Badan Meteorologi, Klimatologi dan Geofisika, Balai Besar Meterologi Klimatologi dan Geofisika (BMKG) Wilayah I Medan dari tanggal 1 Januari 2002 s.d. 30 November 2012. Seluruh data berjumlah 3984 data seperti yang telah dirangkum pada Tabel 3.1. Data akan dibagi menjadi dua bagian berupa data pelatihan dan data pengujian. Pada data pelatihan akan menggunakan data curah hujan yang diambil dari Badan Meteorologi, Klimatologi dan Geofisika, Balai Besar Meterologi Klimatologi dan Geofisika (BMKG) Wilayah I Medan dari tanggal 1 Januari 2002 s.d 31 Desember 2010. Sedangkan data yang akan digunakan untuk pengujian berupa data curah hujan yang diambil dari Badan Meteorologi, Klimatologi dan Geofisika, Balai Besar Meterologi Klimatologi dan Geofisika (BMKG) Wilayah I Medan dari tanggal 1 Januari 2011 s.d 30 November
(45)
Tabel 3.1 Rangkuman Data Curah Hujan
No. Tanggal Curah
Hujan (mm) Suhu (°C) Tekanan Udara (mb) Kelembapan Udara (%) Kecepatan Angin
1. 1/1/2002 0 26.0 1013.4 87 6
2. 2/1/2002 0 26.4 1014.3 86 6
3. 3/1/2002 3.6 25.8 1013.2 88 7
4. 4/1/2002 0 25.0 1013.4 83 6
5. 5/1/2002 0 26.1 1013.1 81 7
6. 6/1/2002 0 25.5 1011.5 83 6
7. 7/1/2002 20.5 26.8 1012.0 90 6
8. 8/1/2002 0 26.3 1012.2 87 7
9. 9/1/2002 0 26.1 1012.3 87 7
10. 10/1/2002 1 26.1 1012.2 87 5
11. 11/1/2002 2.6 26.7 1010.9 89 5
12. 12/1/2002 0 25.9 1010.1 86 7
13. 13/1/2002 43.4 25.4 1009.1 86 8
. . . . . . . . . . . . . . . . . . . . . 3980 .
26/11/2012 0 26.5 1009.9 85 6
3981 .
27/11/2012 2.8 26.9 1009.3 82 6
3982 .
28/11/2012 8.6 26.3 1009.7 85 6
3983 .
29/11/2012 0 26.6 1008.2 85 7
3984 .
(46)
31
3.2 Analisis Sistem
Sistem prediksi curah hujan menggunakan weighted evolving fuzzy neural network
(WEFuNN) merupakan suatu sistem yang memberikan prediksi curah hujan berdasarkan beberapa variabel input seperti tekanan udara, kelembapan udara, kecepatan angin, dan suhu. Kemudiann data-data tersebut akan diproses dengan
metode weighted evolving fuzzy neural network (WEFuNN) untuk mendapatkan hasil
prediksi curah hujan.
3.2.1 Analisis Masalah
Beberapa kasus yang sering kita jumpai kondisi cuaca di daerah tertentu menjadi acuan dalam menentukan rangkaian aktifitas manusia, sebagai contoh informasi iklim dan klasifikasinya banyak menjadi acuan pada bidang pertanian dalam menentukan masa pola tanam dan pada bidang transportasi dan pariwisata dalam
menentukan jadwal pelayaran dan penerbangan (Rizky et al.2012). Sehingga
dibutuhkan suatu sistem prediksi curah hujan yang menghasilkan nilai akurasi yang tinggi.
3.2.2 Analisis Perancangan Sistem
Sistem prediksi curah hujan ini dirancang untuk memberikan informasi curah hujan beberapa hari kedepan. Pada penelitian ini, proses utama dilakukan oleh user. User login sebagai admin dan melihat informasi curah hujan beberapa hari kedepan sesuai tanggal yang sudah dipilih. User juga bisa melakukan cetak hasil prediksi dalam bentuk tabelmaupun grafik. Sistem akan menerima masukan berupa data klimatologi harian seperti curah hujan, suhu, tekanan udara, kelembapan udara, dan kecepatan angina. Kemudian data tersebut diproses menggunakan metode weighted evolving fuzzy neural network untuk mendapatkan hasil prediksi. Adapun gambaran algoritma metode weighted evolving fuzzy neural network pada sistem ini dapat dilihat pada Gambar 3.1
(47)
MULAI
INPUT DATA CURAH HUJAN DAN VARIABEL PENDUKUNG :
TEKANAN UDARA, KELEMBAPAN UDARA, KECEPATAN ANGIN,SUHU
INPUT PARAMETER WEFuNN : Lr1, Lr2, SThr, Err
NORMALISASI DATA
MENGHITUNG FUNGSI KEANGGOTAAN MENGGUNAKAN MODEL FUZZY SUGENO
INISIALISASI NILAI BOBOT W1 DAN W2 UNTUK RULE NODE PERTAMA
DATA TRAINING
I <= N
MENGHITUNG NILAI NORMALISASI FUZZY LOCAL DISTANCE (D)
MENGHITUNG NILAI AKTIVASI A1rj DARI RULE NODE rj
MENCARI NILAI RULE NODE (rj*)
A1rj* > SThr
PROPOGASI TERHADAP AKTIVASI rj*
FUZZY OUTPUT ERROR
MENCARI ACTION NODE (k*) DARI A2
Err(k*) < errThr OR r=1
MENGUBAH NILAI W1 DAN W2
NILAI RULE NODE DITAMBAH SATU DAN MENGUBAH W1 DAN W2
DENORMALISASI OUTPUT HASIL PREDIKSI
MAPE
OUPUT MAPE
SELESAI T
Y
T
Y
T
Y
(48)
33
Cara kerja sistem prediksi curah hujan yang akan dibangun, dirancang berdasarkan rancangan pada gambar 3.1 sebagai berikut :
1. Input data curah hujan dan variabel pendukung seperti : suhu, tekanan udara, kelembapan udara, dan kecepatan angina ke dalam database.
2. Input nilai parameter seperti : sensitive threshold, error threshold, learning rate 1, dan learning rate 2.
3. Setiap data yang masuk ke dalam database dinormalisasi, data ditransformasikan antara 0,1 s.d. 0.9. formula yang digunakan untuk menormalisasi data :
(3.1)
Dimana : = nilai normalisasi
= nilai data curah hujan
= nilai minimum dari data curah hujan
= nilai maximum dari data curah hujan
4. Menghitung nilai fungsi keanggotaan dan target dari data yang telah dinormalisasi menggunakan triangular membership function sesuai dengan persamaan (2.3). Dari data curah hujan dari tanggal 1 Januari 2002 s.d. 30 November 2012 yang diambil dari Badan Meteorologi, Klimatologi dan Geofisika, Balai Besar Meterologi Klimatologi dan Geofisika (BMKG) Wilayah I Medan, dengan menggunakan beberapa variabel seperti suhu, tekanan udara, kelembapan udara dan kecepatan angina dimana curah hujan akan menjadi target prediksi. Setiap variabel dibagi menjadi 3 himpunan fuzzy yaitu RENDAH, NORMAL, dan TINGGI.
a. Inp = 0, jika nilai lebih kecil dari
b. Inp = (x - a)/(b - a), jika nilai lebih besar sama dengan dan lebih kecil dari .
c. Inp = (c - x) / (c - b), jika nilai lebih besar sama dengan dan lebih keci dari .
(49)
Gambar 3.2 Himpunan Fuzzy untuk Data Curah Hujan
5. Menentukan rule node pertama r(1) untuk merepresentasikan data yang pertama dan mengisi nilai dari bobot satu dan bobot dua dengan menggunakan persamaan (2.9).
6. Menghitung normalized fuzzy local distance diantara fuzzy input vector dan fuzzy input vector yang ada di penyimpanan sementara dengan menggunakan persamaan (2.10).
7. Dari hasil perhitungan normalized fuzzy local distance dihitung nilai aktivasi ( ) dari rule node menggunakan persamaan (2.12).
8. Mencari nilai rule node (rj*) yang memiliki nilai aktivasi tertinggi.
9. Mengecek apakah nilai dari lebih besar dari sensitive threshold. Jika nilai lebih kecil dari sensitive threshold maka nilai bobot W1 dan W2 akan diubahdengan menggunakan persamaan (2.14), kemudian nilai rule node
ditambah dengan menggunakan persamaan (2.13), dan menuju ke langkah (6). 10.Melakukan propagasi terhadap aktivasi tertinggi dari irule node (rj*) dengan
menggunakan persamaan (2.15).
(50)
35
12.Mencari action node (k*) dengan nilai aktivasi tertinggi dari A2.
13.Mengecek apakah nilai dari err(k*) lebih kecil dari error threshold atau r sama dengan i. Jika nilai err(k*) lebih besar dari error threshold maka nilai bobot W1 dan W2 diubah dengan menggunakan persamaan (2.18), kemudian nilai rule node
ditambah dengan menggunakan persamaan (2.17), dan menuju ke langkah (6). 14.Mengubah bobot W1 dan W2 dengan menggunakan persamaan (2.19), (2.20), dan
(2.21).
15.(6) sebanyak jumlah data yang ada, jika semua data sudah ditraining, maka menuju langkah ke (16).
16.Melakukan denormalisasi data hasil prediksi untuk mendapatkan nilai yang sebenarnya dengan menggunakan persamaan :
(3.2)
Dimana = = nilai hasil prediksi.
= nilai hasil dinormalisasi.
= nilai minimum dari curah hujan
= nilai maximum dari curah hujan.
17.Menghitung kesalahan dari hasil prediksi dengan menggunakan MAPE (mean absolute percentage error), dengan menggunakan persamaan :
∑
(3.3)
Dimana : = data aktual
= data prediksi
= banyak data curah hujan
3.2.3 Arsitektur Umum
Rancangan keseluruhan sistem yang akan dibuat dalam bentuk arsitektur umum dapat dilihat pada Gambar 3.3.
(51)
Gambar 3.3 Arsitektur Umum
Pada Gambar 3.3 menggambarkan proses dan interaksi antar komponen dalam suatu sistem. Adapun komponen-komponen tersebut adalah :
1. Database
Database yang digunakan berisi data curah hujan dari tanggal 1 Januari 2002 s.d. 30 November 2012 yang diambil dari Badan Meteorologi, Klimatologi dan Geofisika, Balai Besar Meterologi Klimatologi dan Geofisika (BMKG) Wilayah I Medan. Dengan variabel input berupa tekanan udara, kelembapan udara, kecepatan angina, suhu, dan curah hujan menjadi variabel output. Data tersebut dibagi menjadi dua bagian yaitu sebanyak 70% sebagai data training set yang akan digunakan pada proses training dan sebanyak 30% sebagai data testing set yang akan digunakan pada proses testing.
2. Normalisasi
Pada tahap ini, nilai aktual dari data curah hujan diubah ke dalam rentang 0,1 s.d 0,9.
3. WEFuNN
Pada bagian ini memilii lima struktur layer dimana setiap node dan koneksinya dibentuk dan dikoneksikan berdasarkan data sampel yang ada satu per satu. Pada
layer pertama berupa data input variabel, layer kedua setiap node
mempersentasikan persamaan fuzzy dari setiap variabel input, pada layer ketiga setiap node berisi aturan-aturan, aturan-aturan di setiap node mempersentasikan
prototype dari kumpulan data fuzzy input-output. Layer keempat dilakukan pembulan pada nilai variabel fuzzy output dan memasukkan nilai bobot fungsi
(52)
37
penjumlahan untuk menghitung derajat keanggotaan yang mana vector output
yang terhubung dengan input vector yang diberikan masing-masing fungsi keanggotaan output. Pada layer kelima mempersentasikan nilai output prediksi.
4. Denormalisasi
Pada tahap denormalisasi, mengubah hasil output prediksi yang masih dalam rentang nilai 0,1 s.d 0,9 ke dalam nilai sebenarnya.
5. Validasi
Pada tahap ini akan ditampilkan hasil prediksi curah hujan dan dibandingkan dengan nilai curah hujan actual. Nilai MAPE akan dihitung untuk mengetahui seberapa besar nilai error yang didapat dari hasil prediksi tersebut. Semakin kecil nilai error yang dihasilkan, maka semakin akurat nilai prediksi yang dihasilkan.
3.2.4 Diagram Aktivitas
Diagram aktivitas (activity diagram) ini berguna untuk menggambarkan urutan
aktivitas pada sistem yang dirancang. Aktivitas yang digambarkan menekankan pada aktivitas yang dapat dilakukan oleh sistem tanpa memperhatikan apa yang dilakukan
oleh aktor. Tujuan activity diagram ini adalah untuk membantu proses perancangan
sistem secara keseluruhan. Tahapan aktivitas dalam sistem prediksi curah hujan yang akan dibangun.
LOGIN
MENGISI USERNAME DAN PASSWORD
MENAMPILKAN FORM LOGIN
MENAMPILKAN HALAMAN UTAMA SISTEM
PENGGUNA SISTEM
(53)
Pada Gambar 3.4 jika pengguna ingin masuk ke sistem, maka pengguna harus melakukan login terlebih dahulu dengan cara mengisi form username dan password kemudian sistem akan menampilkan halaman utama sistem.
PENGGUNA SISTEM
MENENTUKAN HIMPUNAN FAUZZY
PR0SES PREDIKSI
MELAKUKAN NORMALISASI DATA
MENGAMBIL DATA DARI DATABASE
MENENTUKAN TANGGAL
AWAL DAN TANGGAL AKHIR PREDIKSI
HASIL PREDIKSI MENAMPILKAN HASIL PREDIKSI
Gambar 3.5 Diagram Aktivitas Prediksi Curah Hujan
Pada Gambar 3.5 jika pengguna ingin melakukan prediksi curah hujan dapat dilakukan dengan cara mengklik tombol proses pada bagian proses prediksi. Kemudian sistem mengambil data yang ada di database, lalu melakukan normalisasi pada data tersebut dan menentukan himpunan fuzzy, kemudian sistem melakukan
prediksi dengan menggunakan weigthted evolving fuzzy neural network. Setelah
sistem selesai melakukan prediksi pengguna mengisi form tanggal untuk menentukan tanggal yang ingin diprediksi, kemudian pengguna mengklik tombol hasil prediksi. Kemudian sistem menampilkan hasil prediksi.
(54)
39
PENGGUNA SISTEM
MELAKUKAN AKTIFITAS TERHADAP DATA MENENTUKAN TANGGAL AWAL DAN TANGGAL AKHIR
DATA
KLIK DATA KLIMATOLOGI MENAMPILKAN DATA YANG TELAH DIFILTER
MENAMBAH DATA MENAMBAH DATA BARU KE DATABASE
MENGUBAH DATA
MENGHAPUS DATA
MENGUBAH DATA DARI DATABASE
MENGHAPUS DATA DARI DATABASE TAMBAH
UBAH
HAPUS
Gambar 3.6 Diagram Aktivitas untuk Pengaturan Data Klimatologi
Pada Gambar 3.6 Administrator dapat melakukan pengaturan data klimatologi berupa data curah hujan, suhu, kelembapan udara, tekanan udara, dan kecepatan angin, dengan cara pengguna menentukan tanggal awal dan akhir data yang ingin dilihat, kemudian mengklik tombol data klimatologi. Kemudian sistem menampilkan data klimatologi yang telah difilter. Administrator juga dapat melakukan beberapa aktivita terhadap data klimatologi, yaitu menambah, mengubah, dan menghapus data. Kemudian sistem memproses aktivitas yang diinginkan administrator.
(55)
PENGGUNA SISTEM
MENGISI TEXTBOX PARAMETER
MENYIMPAN DATA MENYIMPAN DATA KE DATABASE
SIMPAN
Gambar 3.7 Diagram Aktivitas untuk Pengaturan Parameter Prediksi
Pada Gambar 3.7 Administrator dapat mengubah parameter EFuNN dengan cara pada bagian setting parameter pengguna mengisi form parameter. Kemudian sistem akan memproses dan menyimpan parameter yang ditentukan ke dalam database.
PENGGUNA SISTEM
PILIH LAPORAN HASIL PREDIKSI
MENENTUKAN BULAN DAN TAHUN DATA
MENAMPILKAN FORM CETAK
PILIH CETAK MENCETAK HASIL PREDIKSI YANG TELAH DIFILTER
Gambar 3.8 Diagram Aktivitas Laporan Hasil Prediksi
Pada Gambar 3.8 Pengguna dapat mencetak laporan hasil prediksi, dengan cara memilih menu laporan hasil prediksi. kemudian sistem menampilkan form cetak. Pengguna mengisi form berupa bualan dan tahun yang ingin dicetak, setelah itu
(56)
41
pengguna mengklik tombol cetak. Kemudian sistem mencetak hasil prediksi sesuai bulan dan tahun yang diinginkan pengguna.
PENGGUNA SISTEM
PILIH LAPORAN DATA KLIMATOLOGI MENENTUKAN BULAN
DAN TAHUN DATA
MENAMPILKAN FORM CETAK
PILIH CETAK
MENCETAK DATA KLIMATOLOGI YANG TELAH
DIFILTER
Gambar 3.9 Diagram Aktivitas Laporan Data Klimatologi
Pada Gambar 3.9 Pengguna dapat mencetak laporan data klimatologi, dengan cara memilih menu laporan data klimatologi. kemudian sistem menampilkan form cetak. Pengguna mengisi form berupa bualan dan tahun yang ingin dicetak, setelah itu pengguna mengklik tombol cetak. Kemudian sistem mencetak data klimatologi sesuai bulan dan tahun yang diinginkan pengguna.
PENGGUNA SISTEM
LAPORAN GRAFIK
MENENTUKAN BULAN DAN TAHUN
MENAMPILKAN FORM GRAFIK
KLIK OK
MENCETAK GRAFIK KLIK CETAK
MENAMPILKAN GRAFIK CURAH HUJAN
Gambar 3.10 Diagram Aktivitas Laporan Grafik
Pada Gambar 3.10 Pengguna ingin melihat dan mencetak laporan dalam bentuk grafik, dengan cara pilih menu laporan grafik, kemudian sistem akan
(57)
menampilkan form grafik. Pengguna menentukan bulan dan tahun data yang ingin dilihat dan dicetak, kemudian pengguna mengklik tombol OK. Sistem menampilkan grafik curah hujan sesuai dengan bulan dan tahun yang diinginkan pengguna. Untuk mencetak tampilan grafik pengguna dapat mengklik tombol cetak. Kemudian sistem mencetak grafik sesuai dengan bulan dan tahun yang diinginkan pengguna.
3.3 Perancangan Sistem
Pada bagian perancangan sistem, penulis akan menjelaskan dan menggambarkan konsep perancangan antarmuka sistem yang berisi gambaran umum tentang perancangan setiap tampilan yang terdapat pada sistem yang akan dibang un. 3.3.1 Rancangan Form Login
Pada form login terdapat username dan password yang harus diisi terlebih dahulu sebelum masuk ke menu utama. Rancangan tampilan form login dapat dilihat pada Gambar 3.11
(58)
43
3.3.2 Rancangan Menu Utama
Setelah pengguna melakukan aktifitas login, pengguna akna masuk ke halaman utama. Pada halaman ini pengguna dapat melakukan beberapa aktifitas seperti melihat hasil prediksi dan melihat data klimatologi. Rancangan form hasil prediksi dan form data klimatologi dapat dilihat pada Gambar 3.12 dan Gambar 3.13.
3.3.2.1Rancangan Form Hasil Prediksi
Pada halaman ini pengguna dapat melakukan prediksi curah hujan dengan mengeklik tombol proses pada bagian proses prediksi. Setelah proses selesai pengguna dapat melihat hasil prediksi dengan menentukan tanggal yang ingin dilihat. Kemudian mengklik tombol hasil prediksi. Rancangan form hasil prediksi dapat dilihat pada Gambar 3.12.
Gambar 3.12 Rancangan Form Hasil Prediksi
Keterangan :
a. Bagian proses prediksi terdapat tombol proses yang berfungsi memproses data training.
(59)
b. Pengguna dapat melakukan prediksi dengan menentukan tanggal awal dan tanggal akhir data prediksi yang ingin dilihat dan menekan tombol “Hasil
Prediksi” untuk menampilkan hasil prediksi.
c. Tampilan dari data prediksi.
d. Pengguna dapat mengedit data parameter WEFuNN pada textbox yang
telah di sediakan dan menekan tombol “Simpan” untuk menyimpan
perubahan data.
3.3.2.2Rancangan Form Data Klimatologi
Pada halaman ini pengguna dapat melihat data klimatologi berupa curah hujan, suhu, tekanan udara, kelembapan udara, dan kecepatan angin. Dengan menentukan tanggal terlebih dahulu, kemudian mengklik tombol data klimatologi. Maka, data akan muncul sesuai tanggal yang diinginkan pengguna. Pengguna juga dapat melakukan beberapa aktivitas terhadap data seperti menambah data, mengubah data, dan menghapus data. Rancangan form data klimatologi dapat dilihat pada Gambar 3.13.
(60)
45
Keterangan :
a. Pengguna dapat melihat data klimatologi dengan menentukan tanggal awal dan tanggal akhir data klimatologi yang ingin dilihat. Kemudian
mengklik tombol “Data Klimatologi” untuk menampilkan data klimatologi yang diinginkan.
b. Tampilan data klimatologi
c. Pengguna dapat melakukan beberapa aktifitas terhadap data seperti menambah , mengubah, dan menghapus data.
3.3.3 Rancangan Form Laporan Data Prediksi
Pada menu laporan pengguna dapat mencetak data dalam bentuk print-out .
Dengan menentukan bulan dan tahun data yang ingin dicetak.Kemudian
pengguna mengklik tombol “Cetak” untuk mencetak data prediksi. Rancangan
form laporan data prediksi dapat dilihat pada Gambar 3.14
Gambar 3.14 Rancangan Form Laporan Data Prediksi
3.3.4 Rancangan Form Laporan Data Klimatologi
Pada menu laporan pengguna dapat mencetak data dalam bentuk print-out .
Dengan menentukan bulan dan tahun data yang ingin dicetak.Kemudian
pengguna mengklik tombol “Cetak” untuk mencetak data klimatologi. Rancangan form laporan data prediksi dapat dilihat pada Gambar 3.15
(61)
Gambar 3.15 Rancangan Form Laporan Data Klimatologi 3.3.5 Rancangan From Grafik
Pada form grafik pengguna dapat melihat grafik data curah hujan dengan menentukan bulan dan tahun data yang ingin dilihat. Kemudian pengguna
dapat mengklik tombol”OK” untuk melihat grafik data curah hujan. Pengguna
juga dapat mencetak grafik dalam bentuk print-out dengan mengklik tombol
“Cetak”.Rancangan form grafik dapat dilihat pada Gambar 3.16
(62)
BAB 4
IMPLEMENTASI DAN PENGUJIAN SISTEM
Implementasi dan pengujian sistem sesuai dengan analisis dan perancangan sistem pada Bab 3, yang akan dijelaskan pada bab ini tentang proses implementasi metode
weighted evolving fuzzy neural network (WEFuNN) pada sistem prediksi curah hujan
serta melakukan pengujian terhadap sistem yang telah dibangun.
4.1. Implementasi
Metode weighted evolving fuzzy neural network (WEFuNN) diimplementasikan ke dalam sistem menggunakan bahasa pemrograman Visual Basic.Net 2010 dan
database MySQL sesuai perancangan yang telah dibuat pada Bab 3.
4.1.1 Spesifikasi Perangkat Lunak dan Perangkat Keras
Spesifikasi perangkat lunak yang digunakan dalam pembangunan sistem sebagai berikut:
a. Sistem operasi yang digunakan Windows 8 Pro Build 9200 b. Microsoft visual studio 2010 Ultimate
c. XAMPP 3.2.1 d. DatabaseMysql
e. MySQL Connector.Net 6.8.3
Spesifikasi perangkat keras yang digunakan dalam pembangunan sistem sebagai berikut:
a. Processor Intel(R)Core(TM)2 Duo CPU P8400 @2.26GHz 2.27 GHz b. Memory RAM yang digunakan 3.00 GB
(1)
63
Tabel 4.9 Hasil Pengujian Sistem Untuk Data Curah Hujan
No. Range Periode Banyak Data Rule Node MAPE
8. Mei 2012 s.d Juni 2012
61 28 0.234
9. Juli 2012 s.d Agustus 2012
62 27 0.236
10. September 2012 s.d November 2012
91 41 0.236
4.2.4 Pelatihan Data
Pada tahap ini melakukan pelatihan untuk mengetahui tingkat keakuratan dari hasil prediksi yang dilakukan. Pada tahap data dibagi menjadi dua bagian yaitu data
training dan data testing. Data training yang digunakan berupa data curah hujan pada tanggal 1 Januari 2002 s.d 31 Desember 2010 dengan jumlah data sebanyak 3283 data. Sedangkan data testing yang digunakan berupa data curah hujan pada tanggal 1 Januari 2011 s.d 30 November 2012 dengan jumlah data sebanyak 701 data. Hasil Pelatihan data curah hujan dengan menggunakan kombinasi parameter yang berbeda-beda dapat dilihat pada Tabel 4.10.
Tabel 4.10 Parameter dan Hasil Pelatihan Data Curah Hujan No. Sensitive
Threshold
Error Threshold
Learning Rate 1
Learning
Rate 2 Rule Node Error
1. 0.9 0.1 0.1 0.1 1632 0.4172
2. 0.1 0.1 0.1 0.9 1646 0.2513
3. 0.01 0.09 0.01 0.01 1632 0.2117
4. 0.09 0.001 0.02 0.03 3966 0.2445
5. 0.02 0.09 0.01 0.01 1632 0.2384
6. 0.001 0.009 0.001 0.001 3964 0.2513
7. 0.009 0.001 0.003 0.003 3966 0.3146
8. 0.001 0.005 0.005 0.005 3964 0.2517
9. 0.002 0.009 0.001 0.001 3964 0.2614
(2)
64
Berdasarkan hasil pengujian pada Tabel 4.10 dengan kombinasi parameter yang berbeda-beda, maka didapat tingkat rule node dan error yang berbeda. Perbedaan tingkat rule node dan error dapat dilihat pada Gambar 4.8 dan Gambar 4.9.
Gambar 4.8 Grafik Hasil Pelatihan (Rule Node)
Gambar 4.9 Grafik Hasil Pelatihan (Error) 4.2.5 Pengujian Data
Pengujian data dilakukan terhadap 701 data testing yaitu data curah hujan yang diambil dari Badan Meteorologi, Klimatologi dan Geofisika, Balai Besar Meterologi Klimatologi dan Geofisika (BMKG) Wilayah I Medan dari tanggal 1 Januari 2011 s.d 30 November 2012. Arsitektur jaringan yang digunakan untuk pengujian adalah arsitektur jaringan yang memiliki tingkat error paling kecil selama proses pelatihan. Tingkat error pada selama proses pelatihan dapat dilihat pada Gambar 4.9 dan Tabel 4.10. Berdasarkan Tabel 4.10, arsitektur dengan nilai parameter sensitive threshold =
0.01, error threshold = 0.09, learning rate 1 = 0.01, learing rate 2= 0.01 menghasilkan nilai error terkecil selama pelatihan yakni 0.2117. Pengujian ini bertujuan untuk
(3)
65
menguji keakuratan arsitektur jaringan WEFuNN dalam mengenali pola data. Dari hasil pengujian, diperoleh nilai MAPE sebesar 0.235%. Grafi Pola Data hasil pengujian dapat dilihat pada Gambar 4.10.
Gambar 4.10 Grafik Hasil Pengujian
Pada pengujian data tingkat akurasi nilai curah hujan prediksi dibandingkan dengan nilai curah hujan aktual. Dengan cara melihat kecocokan pola pada masing-masing data. Data pengujian untuk tingkat akurasi telah dirangkum pada Tabel 4.11. Berdasarkan Tabel 4.11 dihasilkan nilai akurasi sebesar 96,148 %. Dengan nilai kesalahan pola terdapat 27 data dan nilai kebenaran pola 674 data.
Tabel 4.11 Pengujian Tingkat Akurasi Prediksi Tanggal Aktual Prediksi Akurasi
01 Januari 2011 50.40 50.46 -
02 Januari 2011 0.00 0.01 Benar
03 Januari 2011 2.40 2.41 Benar
04 Januari 2011 0.00 0.01 Benar
05 Januari 2011 51.80 51.82 Benar
06 Januari 2011 0.00 0.01 Benar
07 Januari 2011 3.50 3.51 Benar
08 Januari 2011 0.00 0.02 Benar
09 Januari 2011 0.00 0.01 Salah
. . . .
. . . .
. . . .
29 November 2012 0.00 0.01 Benar
(4)
BAB 5
KESIMPULAN DAN SARAN
5.1 Kesimpulan
Berdasarkan pengujian sistem prediksi curah hujan dengan menggunakan Weighted Evolving Fuzzy Neural Network (WEFuNN) didapat beberapa kesimpulan yaitu : 1. Dari hasil pelatihan didapatkan hasil error terkecil yaitu 0.2117% dengan
menggunakan data curah hujan pada tanggal 1 Januari 2002 s.d 31 Desember 2010 pada saat parameter sensitive threshold = 0.01, error threshold = 0.09, learning rate 1 = 0.01, learning rate 2 = 0.01.
2. Hasil pengujian dengan menggunakan data curah hujan pada tanggal 1 Januari 2011 s.d 30 November 2012 mendapatkan hasil error rata-rata sebesar 0.235 % dan nilai akurasi sebesar 96,148 % dengan kesalahan pola sebanyak 27 data dan kebenaran pola sebanyak 674 data.
3. Weighted Evolving Fuzzy Neural Network(WEFuNN) dapat digunakan untuk data yang selalu berubah-ubah atau selalu bertambah karena jaringan arsitektur WEFuNN dibentuk dapa saat dilakukan pelatihan.
Berdasarkan kesimpulan diatas WEFuNN berhasil diimplementasikan pada suatu sistem untuk memprediksi curah hujan dengan tingkat error rata- rata sekitar 0.235% dan tingkat akurasi sebesar 96.148%.
5.2 Saran
Pada penelitia selanjutnya, disarankan untuk menerapkan metode lain yang dapat bekerja lebih efektif dan cepat dalam pengolahan sistem dengan skala data yang besar. Diharapkan metode Weighted Evolving Fuzzy Neural Network (WEFuNN) dapat dibandingkan dan dianalisis kinerjanya dengan metode lain pada data penelitian yang sama, agar hasil prediksi yang didapatkan lebih akurat ketika error rata-rata dibandingkan diantara metode-metode yang lain.
(5)
DAFTAR PUSTAKA
Castillo, O., Melin, P. & Pedrycz, W. (Editor). 2008. Soft Computing for Hybrid Intelligent System. Springer : London.
Chang, P.-C., Fan, C.-Y. & Hsieh, J.-C. 2009. A Weighted Evolving Fuzzy Neural Network for Electricity Demand Forecasting. First Asian Conference on Intelligent Information and Database System : 330 – 335.
Chang, P.-C., Wang, Y.-W. & Liu, C.-H. 2007. The Development of A Weighted Evolving Fuzzy Neural Network For PCB Sales Forecasting. Expert System With Applications 32 : 86-96.
Chang, P.-C., Liu, C.-H., Yeh, C.-H. & Chen, S.-H. 2006. The Development of a Weighted Evolving Fuzzy Neural Network. In Huang, D.-S. & Irwin, G.W. (Eds). Intelligent Computing : Internasional Conference On Intelligent Computing. pp. 212-221. Springer : Berlin Heidelberg.
Heizer, J. & Rander, B. 2005. Operations Management: Manajemen Operasi. Salemba Empat: Jakarta.
Herjanto, E. 2006. Manajemen Operasi. Grasindo: Jakarta.
Jang, J.-S.R., Sun, C.-T. & Mizutani, T. 1997. Neuro-Fuzzy and Soft Computing. Prentice-Hall : London.
Kasabov, N. 2001. Evolving Fuzzy Neural Network for Supervised/Unsupervised on-line, knowledge-based learning. IEEE Transaction of System, man and Cybernetics 31(6): 902-018.
Kasabov, N. 2007. Evolving Connectionist System. Springer: London.
Kusumadewi, Sri & Hartati, Sri. 2010. NEURO-FUZZY : Integrasi Sistem Fuzzy & Jaringan Syaraf. Graha Ilmu: Yogyakarta.
Linda. 2007. Analisis dan Perancangan Program Aplikasi dengan Struktur Adaptive Neuro-Fuzzy Inference Systems (ANFIS) Untuk Prediksi Curah Hujan. Skripsi. Universitas Bina Nusantara.
Palit, A.K. & Popovic, D. 2005. Computation Intelegent in Time Series Forcasting: Theory and Engineering Application. Springer: London.
(6)
69
Rizky, D.N, Gusti, I.N.R.U, & Agustini, F.W. 2012. Penerapan Fuzzy Inference System pada Prediksi Curah Hujan di Surabaya Utara. Jurnal SAINS dan SENI ITS 1(1): 23-28.
Sommerville, I. 2004. Software Engineering. 7th Edition. Pearson Education : Harlow. Sosrodarsono, S. & Takeda, K. 2003. Hidrologi Untuk Perairan. Pradnya Paramita :
Jakarta.
Suri, N.P., Sembiring, P., & Bangun, P. 2013. Analisis Pengaruh Curah Hujan di Kota Medan. Saintia Matematika 1(5): 459-468.
Suriadikusumah, A. 2007. Analisis Curah Hujan Perhitungan dan Penggunaannya. Rekayasa Sains: Bandung.
“yahputra, M.F., Rah at, R.F. & “a i, M.F. . Forecasti g A alysis o Chicke ’s
Egg Demand With Weighted Evolving Fuzzy Neural Network. Proceeding of The 2nd Internasional Seminar on Operational Research, pp. 177-180.
Tresnawati, R., Nuraini, T.A. & Hanggoro, W. 2010. Prediksi Curah Hujan Bulanan Menggunakan Kalman Filter Dengan Prediktor SST NINO 3.4 Diprediksi. Jurnal Meterologi dan Geofisika 11(2): 106-66.
Warsito, B. & Sumiyati, S. 2007. Prediksi Curah Hujan Kota Semarang dengan Feed-Forward Neural Network Menggunakan Algoritma Quasi Newton BFGS dan Levenberg-Marquard. Jurnal PRESIPITASI 3(2): 46-52.
Warsito, B., Tarno & Sugiharto, A. 2008. Prediksi Curah Hujan Sebagai Dasar Perencanaan Pola Tanam Padi dan Palawija Menggunakan Model General Regression Neural Network. http://eprints.undip.ac.id/3523/1/P_Budi_1.pdf (2 juni 2013).