Metode PROMETHEE Preference Ranking Organization Methods for

Metode ini merupakan metode yang paling dikenal dan paling banyak digunakan orang dalam menghadapi situasi MADM multiple attribute decision making. Metode ini mengharuskan pembuat keputusan menentukan bobot bagi setiap atribut. Skor total untuk sebuah alternatif diperoleh dengan menjumlahkan seluruh hasil perkalian antara rating yang dapat dibandingkan lintas atribut dan bobot tiap atribut. Rating tiap atribut haruslah bebas dimensi yang artinya telah melewati proses normalisasi sebelumnya [1].

2.3 Metode PROMETHEE Preference Ranking Organization Methods for

Enrichment Evaluations Metode Promethee termasuk ke dalam kelompok pemecahan masalah Multi Criteria Decision Making MCDM atau pengambilan keputusan kriteria majemuk yang merupakan disiplin ilmu yang sangat penting dalam pengambilan keputusan atas suatu masalah yang memiliki lebih dari satu kriteria multikriteria. Promethee yang merupakan singkatan dari Preference Ranking Organization Methods for Enrichment Evaluations adalah metode outranking yang menawarkan cara yang fleksibel dan sederhana kepada user pembuat keputusan untuk menganalisis masalah-masalah multikriteria [5]. Prinsip yang digunakan adalah penetapan prioritas alternatif yang telah ditetapkan berdasarkan pertimbangan , dengan kaidah dasar: Dimana A adalah sejumlah kumpulan alternatif, dan i = 1, 2, …, k merupakan nilaiukuran relatif kriteria untuk masing-masing alternatif. Dalam aplikasinya sejumlah kriteria telah ditetapkan untuk menjelaskan k yang merupakan penilaian dari real. Universitas Sumatera Utara Promethee termasuk dalam keluarga dari metode outranking yang dikembangkan oleh B. Roy, dan meliputi dua fase [6]: a. Membangun hubungan outranking dari A, dimana A adalah sejumlah kumpulan alternatif. b. Eksploitasi dari hubungan ini memberikan jawaban optimasi kriteria dalam paradigma permasalahan multikriteria. Langkah – langkah perhitungan dengan metode promethee adalah sebagai berikut : a. Penentuan alternatif – alternatif nilai dari data siswa terhadap kriteria –kriteria yang telah ditetapkan sebelumnya. b. Menentukan tipe fungsi preferensi dan nilai preferensi c. Perhitungan indeks preferensi. Perhitungan arah preferensi dipertimbangkan berdasarkan nilai indeks leaving flow Ф + , entering flow Ф - , dan net flow. 2.3.1 Tipe Preferensi dalam PROMETHEE Dalam Promethee disajikan enam bentuktipe fungsi preferensi kriteria. Hal ini tentu saja tidak mutlak, tatapi bentuk ini cukup baik untuk beberapa kasus. Untuk memberikan gambaran yang lebih baik terhadap area yang tidak sama, digunakan fungsi selisih nilai kriteria antar alternatif H d dimana hal ini mempunyai hubungan langsung pada fungsi preferensi P [6]. a Kriteria umum tipe I Usual Criterion Universitas Sumatera Utara Keterangan: 1. Hd = fungsi selisih kriteria antar alternatif 2. d = selisih nilai kriteria {d = fa-fb} Pada kriteria ini tidak beda antara a dan b jika dan hanya jika ƒa = ƒb, apabila nilai kriteria pada masing – masing alternatf memiliki nilai berbeda, pembuat keputusan mempunyai preferensi mutlak untuk alternatif memiliki nilai yang lebih baik. b Kriteria Quasi tipe II Quasi Kriteria Keterangan: 1. Hd = fungsi selisih kriteria antar alternatif 2. d = selisih nilai kriteria {d = fa – fb} 3. Parameter q = harus merupakan nilai yang tetap Pada kriteria ini dua alternatif memiliki preferensi yang sama penting selama selisih atau nilai Hd dari masing – masing alternatif untuk kriteria tertentu tidak melebihi nilai q dan apabila selisih hasil evaluasi untuk masing – masing alternative melebihi nilai q maka terjadi bentuk preferensi mutlak. Jika pembuat keputusan menggunakan kriteria quasi, maka dia harus menentukan nilai q, dimana nilai ini dapat menjelaskan pengaruh yang signifikan dari suatu kriteria. Dengan demikian q adalah merupakan nilai threshold indifference yaitu nilai d terbesar yang masih memungkinkan terjadinya indifference antar alternatif. Universitas Sumatera Utara c Kriteria Preferensi Linier tipe III Keterangan: 1. Hd = fungsi selisih kriteria antar alternatif 2. d = selisih nilai kriteria {d = fa – fb} 3. p = nilai kecenderungan atas Kriteria preferensi linier dapat menjelaskan bahwa selama nilai selisih memiliki nilai yang lebih rendah dari p, preferensi dari pembuat keputusan meningkat secara linier dengan nilai d. Pada saat pembuat keputusan mengidentifikasi beberapa kriteria untuk tipe ini, pembuat keputusan harus menentukan nilai dari kecenderungan atas nilai p. Dalam hal ini nilai d di atas p telah dipertimbangkan akan memberikan preferensi mutlak dari satu alternatif. d Kriteria Level tipe IV level Criterion Keterangan : 1. Hd = fungsi selisih kriteria antar alternatif 2. p = nilai kecenderungan atas 3. parameter q = harus merupakan nilai yang tetap Disini nilai kecenderungan tidak berbeda nilai indifference threshold q dan kecenderungan preferensi preference threshold p adalah ditentukan secara simultan. Jika d berada diantara nilai q dan p, hal ini berarti situasi preferensi yang lemah Hd = 0,5. Universitas Sumatera Utara e Kriteria dengan preferensi linier dan area yang tidak berbeda tipe V Keterangan: 1. Hd = fungsi selisih kritaria antara alternatif 2. d = selisih nilai kriteria {d = fa – fb} 3. parameter p = nilai kecenderungan atas 4. parameter q = nilai kecenderungan bawah harus merupakan nilai tetap Pada kasus ini pengambil keputusan mempertimbangkan peningkatan preferensi secara linier dari tidak berbeda hingga preferensi mutlak dalam area antara dua kecenderungan q dan p, dua parameter tersebut telah ditentukan. f Kriteria Gaussian Gaussian Criterion Fung si ini bersyarat apabila telah ditentukan nilai σ, dimana dapat dibuat berdasarkan distribusi normal dalam statistik. Disini preferensi pengambil keputusan meningkat secara linier dari kondisi indifference ke preferensi mutlak di area antara q dan p. Indeks Preferensi Multikriteria , merupakan intensitas preferensi pembuat keputusan yang menyatakan bahwa alternatif lebih baik dari alternatif dengan pertimbangan secara simultan dari seluruh kriteria. Hal ini dapat disajikan dengan nilai antara 0 dan 1, dengan ketentuan sebagai berikut: Universitas Sumatera Utara a. , = 0, menunjukkan preferensi yang lemah untuk alternatif lebih dari alternatif berdasarkan semua kriteria. b. , = 1, menunjukkan preferensi yang kuat untuk alternative lebih dari alternatif berdasarkan semua kriteria. Indeks preferensi ditentukan berdasarkan nilai hubungan outranking pada sejumlah kriteria dari masing-masing alternatif. 2.3.2 Promethee ranking Perhitungan arah preferensi dipertimbangkan berdasarkan nilai indeks leaving flow Ф + , entering flow Ф - , dan net flow mengikuti persamaan: Keterangan: 1. = menunjukkan preferensi bahwa alternative lebih baik dari alternatif x. 2. = menunjukkan preferensi bahwa alternatif x lebih baik dari alternatif . 3. = Leaving flow, digunakan untuk menentukan urutan prioritas pada proses Promethee I yang menggunakan urutan parsial. 4. = Entering flow , digunakan untuk menentukan urutan priorotas pada proses Promethee I yang menggunakan urutan parsial. 5. = Net flow , digunakan untuk menghasilkan keputusan akhir penentuan urutan dalam menyelesaikan masalah sehingga menghasilkan urutan lengkap. Universitas Sumatera Utara BAB 3 ANALISIS DAN PERANCANGAN SISTEM

3.1 Analisis Sistem