Psstokt 0.0006 0.9998 0.0193 0.3899 Pskonsum 0.00000 0.81107 0.01450 0.10300
Pssosial 0.00000 0.49843 0.01698 0.11999 Pbepak 0.00000 0.16471 0.00000 0.00535
Descriptive Statistics: Psprod, Psberi, ... by Wilayah
Variable Wilayah N Mean Median TrMean StDev Psprod 1 127 0.8862 0.9046 0.8969 0.1198
2 90 0.96002 0.98119 0.96632 0.04812 Psberi 1 127 0.02469 0.00000 0.00951 0.08271
2 90 0.02189 0.00000 0.01474 0.04193 Psstok 1 127 0.09123 0.07661 0.08355 0.08670
2 90 0.01810 0.00741 0.01230 0.03316 Psjual 1 127 0.3667 0.3672 0.3577 0.3022
2 90 0.8649 0.9039 0.8749 0.1098 Psguna 1 127 0.2431 0.1895 0.2262 0.2164
2 90 0. 09330 0.06345 0.08260 0.08753 Psstokt 1 127 0.3904 0.3174 0.3795 0.3096
2 90 0.04177 0.01973 0.03274 0.05738 Pskonsum 1 127 0.1221 0.0646 0.1014 0.1551
2 90 0.03816 0.02309 0.03253 0.03954 Pssosial 1 127 0.11280 0.07978 0.10334 0.10986
2 90 0.05036 0.03175 0.04386 0.05250 Pbepak 1 127 0.00823 0.00000 0.00650 0.01361
2 90 0.00478 0.00000 0.00153 0.02102 Variable Wilayah SE Mean Minimum Maximum Q1 Q3
Psprod 1 0.0106 0.3873 1.1561 0.8492 0.9745 2 0.00507 0.77253 1.00000 0.93925 0.99086
Psberi 1 0.00734 0.00000 0.56301 0.00000 0.00000 2 0.00442 0.00000 0.19257 0.00000 0.02522
Psstok 1 0.00769 0.00000 0.37532 0.01442 0.14116 2 0.00350 0.00000 0.22747 0.00206 0.01654
Psjual 1 0.0268 0.0000 0.9785 0.0000 0.6284 2 0.0116 0.4601 0.9890 0.8047 0.9500
Psguna 1 0.0192 0.0000 0.9709 0.0730 0.3508 2 0.00923 0.00411 0.50033 0.03354 0.12718
Psstokt 1 0.0275 0.0061 0.9998 0.1045 0.6250 2 0.00605 0.00061 0.28606 0.00603 0.05546
Pskonsum 1 0.0138 0.0000 0.8111 0.0178 0.1697 2 0.00417 0.00080 0.21067 0.01199 0.04960
Pssosial 1 0.00975 0.00000 0.49843 0.01905 0.16808 2 0.00553 0.00000 0.28654 0.01547 0.06725
Pbepak 1 0.00121 0.00000 0.06675 0.00000 0.01322 2 0.00222 0.00000 0.16471 0.00000 0.00323
3. Deskripsi Rasio Stok terhadap Produksi Rasio Stok Terhadap Produksi Kabupaten Subang
Descriptive Statistics: Rt-1; Rt-2; Rt-3; Rt-4; Rt-5; Rt-6; Rt-7
Variable N N Mean Median TrMean StDev Rt-1 399 35 0,3415 0,2597 0,3229 0,2968
Rt-2 359 75 0,2349 0,1628 0,2181 0,2123 Rt-3 331 103 0,16022 0,10697 0,14708 0,15045
Rt-4 260 174 0,10691 0,06280 0,09396 0,11816 Rt-5 143 291 0,07596 0,04348 0,06737 0,08143
Rt-6 91 343 0,04755 0,02025 0,03915 0,06125 Rt-7 51 383 0,02695 0,00925 0,02118 0,03801
Variable SE Mean Minimum Maximum Q1 Q3 Rt-1 0,0149 0,0025 1,1838 0,0908 0,5196
Rt-2 0,0112 0,0007 0,9570 0,0648 0,3616 Rt-3 0,00827 0,00061 0,68788 0,04042 0,25765
Rt-4 0,00733 0,00000 0,71941 0,02206 0,16511 Rt-5 0,00681 0,00200 0,47979 0,01503 0,12417
Rt-6 0,00642 0,00000 0,37575 0,00870 0,07503 Rt-7 0,00532 0,00000 0,18426 0,00366 0,03042
Rasio Stok Terhadap Produksi Wilayah Non Pantura
Descriptive Statistics: Rt-1; Rt-2; Rt-3; Rt-4; Rt-5; Rt-6; Rt-7
Variable N N Mean Median TrMean StDev Rt-1 203 33 0,5037 0,4667 0,5004 0,2897
Rt-2 171 65 0,3564 0,3348 0,3494 0,2150 Rt-3 149 87 0,2432 0,2150 0,2366 0,1604
Rt-4 114 122 0,1538 0,1147 0,1412 0,1374 Rt-5 42 193 0,1349 0,1103 0,1262 0,1036
Rt-6 15 220 0,1189 0,0961 0,1080 0,0979 Rt-7 5 178 0,0936 0,0951 0,0936 0,0613
Variable SE Mean Minimum Maximum Q1 Q3 Rt-1 0,0203 0,0063 1,1838 0,2700 0,7627
Rt-2 0,0164 0,0063 0,8921 0,1688 0,5217 Rt-3 0,0131 0,0072 0,6879 0,1120 0,3437
Rt-4 0,0129 0,0000 0,7194 0,0419 0,2400 Rt-5 0,0160 0,0106 0,4798 0,0469 0,1823
Rt-6 0,0253 0,0032 0,3758 0,0476 0,1804 Rt-7 0,0274 0,0209 0,1843 0,0394 0,1469
Rasio Stok Tehadap Produksi Wilayah Pantura
Descriptive Statistics: Rt-1; Rt-2; Rt-3; Rt-4; Rt-5; Rt-6; Rt-7
Variable N N Mean Median TrMean StDev Rt-1 196 2 0,1735 0,1043 0,1479 0,1927
Rt-2 188 10 0,12443 0,07495 0,10893 0,13584 Rt-3 182 16 0,09232 0,05095 0,08127 0,09964
Rt-4 146 51 0,07032 0,03329 0,06019 0,08458 Rt-5 101 89 0,05146 0,02800 0,04616 0,05436
Rt-6 76 113 0,03347 0,01680 0,02913 0,03863 Rt-7 46 143 0,01971 0,00849 0,01673 0,02692
Variable SE Mean Minimum Maximum Q1 Q3 Rt-1 0,0138 0,0025 0,9914 0,0485 0,2223
Rt-2 0,00991 0,00073 0,95697 0,03355 0,16325 Rt-3 0,00739 0,00061 0,56978 0,02533 0,12429
Rt-4 0,00700 0,00073 0,52544 0,01687 0,08955 Rt-5 0,00541 0,00200 0,23323 0,01359 0,06729
Rt-6 0,00443 0,00000 0,17987 0,00771 0,04320 Rt-7 0,00397 0,00000 0,12651 0,00292 0,02361
90 Lampiran 2. Pendugaan Stok di Rumah Tangga Petani Berdasarkan Hasil Survei
No. Kecamatan
Dugaan Dugaan Stok
Jul Jun
Mei Apr
Mar Peb
Jan Juli
Juni Mei
April Maret
Feb Jan
Stok Gabah Setara Beras Ton 1 Sagalaherang
0,5182 -
0,2714 0,2740
0,2397 -
0,1296 3499
- 1072
7375 6569
- 490
5762,901 3642,153
2 Jalancagak -
- -
0,1536 0,1098
- 0,0523
- -
- 4033
5162 -
996 1238,328
782,623 3 Cisalak
0,3524 0,3210
0,2122 0,1301
0,1681 0,1654
- 6052
308,55 3777
2981 2812
6528 -
4973,505 3143,255
4 Tanjungsiang 0,7257
- 0,3146
0,1905 0,2023
0,1517 -
191 -
7826 3237
2440 256
- 3749,770
2369,855 5 Cijambe
0,5565 0,3487
0,2266 0,1335
0,1277 0,0664
0,0209 2950
31,9 801
4837 1510
1034 121
2744,075 1734,256
6 Cibogo 0,5859
- 0,3169
0,1350 0,1096
- -
409 -
597 4371
4112 -
- 1469,583
928,776 7 Cipunagara
0,2475 -
- 0,0572
0,0360 -
- 9622
- -
15617 1410
- -
3325,548 2101,746
8 Pagaden 0,3866
- -
0,1270 0,0876
0,0605 0,0417
5534 -
- 16967
1034 1436
968 4512,092
2851,642 9 Cipeundeuy
0,7126 -
0,3790 0,2562
0,1550 -
- 2510
- 301
5556 2159
- -
3660,797 2313,624
10 Purwadadi -
- -
0,1790 0,1096
- -
- -
- 5091
3031 -
- 1243,487
785,884 11 Ciasem
0,1192 -
0,0681 0,0471
0,0437 0,0294
- 1365
- 2363
9137 2709
1924 -
928,853 587,035
12 Binong -
- 0,0811
0,0616 0,0428
0,0334 -
- -
8095 28240
2447 360
- 2512,826
1588,106 13 Compreng
- -
0,0761 0,0639
0,0646 -
- -
- 4023
27064 8234
- -
2567,456 1622,632
14 Pusakanagara 0,2531
0,2075 0,1620
0,1382 -
0,0519 0,0370
1206 292,62
26248 1682
- 149,8
2065 4934,780
3118,781 15 Pamanukan
- 0,0448
0,0364 0,0307
- -
0,0044 -
204 11587
14889 -
- 1182
893,210 564,509
16 Blanakan -
- 0,0409
0,0344 0,0131
- -
- -
9202 17721
4200 -
- 1040,942
657,875 17 Legonkulon
0,1718 0,1363
0,1157 -
- -
- 2124
249,72 15239
- -
- -
2162,092 1366,442
18 Cikaum 0,5374
- -
- 0,1005
- -
5219 -
- -
1672 -
- 2972,646
1878,712 Rasio Stok Agustus terhadap panen bulan :
Produksi 2005 Ton
Lampiran 3 Model Stok Petani
Best Subsets Regression: Sagt versus Pjul, Pjun, Pmei, Papr, Pmar, D
Response is Sagt P P P P P
j j m a m u u e p a
Vars R-Sq R-Sqadj C-p S l n i r r D 1 28.3 23.8 47.8 849.76 X
1 9.7 4.0 63.9 953.82 X 2 35.2 26.6 43.8 834.26 X X
2 33.6 24.8 45.2 844.44 X X 3 58.9 50.1 25.4 687.58 X X X
3 45.3 33.6 37.1 793.26 X X X 4 76.6 69.4 12.1 538.14 X X X X
4 74.7 66.9 13.8 560.31 X X X X 5 86.3 80.6 5.8 428.29 X X X X X
5 79.0 70.2 12.1 531.15 X X X X X 6 87.2 80.3 7.0 432.36 X X X X X X
Regression Analysis: Sagt versus Pjul, Pmei, Papr, Pmar, D
The regression equation is Sagt = 40 + 0.334 Pjul + 0.177 Pmei + 0.0506 Papr + 0.194 Pmar - 2103 D
Predictor Coef SE Coef T P VIF Constant 39.6 324.6 0.12 0.905
Pjul 0.33440 0.04592 7.28 0.000 1.5 Pmei 0.17718 0.02616 6.77 0.000 3.1
Papr 0.05062 0.01734 2.92 0.013 2.1 Pmar 0.19397 0.06058 3.20 0.008 1.7
D -2102.9 361.6 -5.82 0.000 3.2 S = 428.3 R-Sq = 86.3 R-Sqadj = 80.6
PRESS = 4372515 R-Sqpred = 72.87 Analysis of Variance
Source DF SS MS F P Regression 5 13913672 2782734 15.17 0.000
Residual Error 12 2201143 183429 Total 17 16114815
Source DF Seq SS Pjul 1 4561216
Pmei 1 1113759 Papr 1 56319
Pmar 1 1978923 D 1 6203454
Obs Pjul Sagt Fit SE Fit Residual St Resid 1 3499 3642 3047 263 595 1.76
2 0 783 1245 203 -462 -1.23 3 6052 3143 3429 226 -286 -0.79
4 191 2370 2127 193 243 0.63 5 2950 1734 1706 165 29 0.07
6 409 929 1301 174 -372 -0.95 7 9622 2102 2218 350 -116 -0.47
8 5534 2852 2950 295 -98 -0.32 9 2510 2314 1632 155 681 1.71
10 0 786 885 199 -99 -0.26 11 1365 587 53 274 534 1.62
12 0 1588 1275 284 313 0.98 13 0 1623 1616 323 6 0.02
14 1206 3119 3076 356 43 0.18 15 0 565 743 236 -179 -0.50
16 0 658 1279 181 -621 -1.60 17 2124 1366 1347 247 20 0.06
18 5219 1879 2109 189 -230 -0.60 Predicted Values for New Observations
New Obs Fit SE Fit 95.0 CI 95.0 PI 1 3047 263 2475, 3619 1952, 4142
2 1245 203 803, 1687 212, 2278 3 3429 226 2936, 3922 2373, 4484
4 2127 193 1708, 2547 1104, 3150 5 1706 165 1347, 2064 706, 2705
6 1301 174 921, 1681 294, 2308 7 2218 350 1457, 2980 1014, 3423
8 2950 295 2306, 3593 1816, 4083 9 1632 155 1296, 1969 640, 2624
10 885 199 452, 1318 -143, 1914 11 53 274 -545, 651 -1055, 1161
12 1275 284 657, 1893 156, 2394 13 1616 323 913, 2320 448, 2785
14 3076 356 2301, 3850 1863, 4289 15 743 236 229, 1257 -322, 1809
16 1279 181 884, 1673 266, 2292 17 1347 247 808, 1886 269, 2425
18 2109 189 1697, 2522 1089, 3129 19 3244 219 2767, 3720 2196, 4291
20 3828 310 3154, 4503 2677, 4980 21 1590 375 773, 2407 350, 2830
22 4560 740 2946, 6173 2696, 6423 XX X denotes a row with X values away from the center
XX denotes a row with very extreme X values Values of Predictors for New Observations
New Obs Pjul Pmei Papr Pmar D 1 3499 1072 7375 6569 0.00
2 0 0 4033 5162 0.00 3 6052 3777 2981 2812 0.00
4 191 7826 3237 2440 0.00 5 2950 801 4837 1510 0.00
6 409 597 4371 4112 0.00 7 9622 0 15617 1410 1.00
8 5534 0 16967 1034 0.00 9 2510 301 5556 2159 0.00
10 0 0 5091 3031 0.00 11 1365 4363 7137 2709 1.00
12 0 8095 28240 2447 1.00 13 0 4023 27064 8234 1.00
14 1206 26248 1682 0 1.00 15 0 11587 14889 0 1.00
16 0 9202 17721 4200 1.00 17 2124 15239 0 0 1.00
18 5219 0 0 1672 0.00 19 5164 3562 9379 1914 0.00
20 6177 656 8926 5956 0.00 21 8928 0 7200 1563 1.00
22 18511 0 0 2232 1.00
Normplot of Residuals for Sagt
500 -500
2 1
-1 -2
N o
rm a
l S c
o re
Residual
Normal Probability Plot of the Residuals
response is Sagt
Approximate P-Value 0.15 D+: 0.174 D-: 0.098 D : 0.174
Kolmogorov-Smirnov Normality Test N: 18
StDev: 359.832 Average: -0.0000000
500 -500
.999 .99
.95 .80
.50 .20
.05 .01
.001
P robab
ili ty
RESI3
Uji Kenormlan
Residuals vs Fits for Sagt
3500 3000
2500 2000
1500 1000
500 500
-500
Fitted Value R
e s
idua l
Residuals Versus the Fitted Values
response is Sagt
Correlations: Pjul, Pjun, Pmei, Papr, Pmar
Pjul Pjun Pmei Papr Pjun 0.073
0.775 Pmei -0.330 0.694
0.181 0.001 Papr -0.113 -0.324 -0.060
0.654 0.190 0.814 Pmar -0.267 -0.479 -0.418 0.316
0.284 0.044 0.084 0.202 Cell Contents: Pearson correlation
P-Value
Lampiran 4 Pendugaan Stok Beras di Penggilingan Berdasarkan Hasil Survei
Kode Kecamatan
Jumlah Jumlah
Rataan Standar
Dugaan Kec
Contoh Populasi
Contoh Deviasi
Stok Kecamatan Kuintal Beras
1 Sagalaherang
3 11
26,5 32,6
291,5
2 Jalancagak
3 6
62,1 72,1
372,6
3 Cisalak
4 43
67,1 38,6
2885,3
4 Tanjungsiang
3 10
59,9 32,8
599,0
5 Cijambe
4 37
103,4 67,4
3825,8
6 Cibogo
3 9
147,7 105,7
1329,3
7 Cipunagara
3 62
185,2 126
11482,4
8 Pagaden
5 14
330 407
4620,0
9 Cipeundeuy
5 9
65,5 36,2
589,5
10 Purwadadi
3 3
340 218
1020,0
11 Ciasem
5 19
201,2 173,7
3822,8
12 Binong
5 47
278,33 404
13081,5
13 Compreng
3 16
130 48
2080,0
14 Pusakanagara
5 24
166,8 135,5
4003,2
15 Pamanukan
6 21
180,6 174,9
3792,6
16 Blanakan
5 15
320,1 202,3
4801,5
18 Cikaum
5 8
57,8 87,9
462,4
95
Ragam Dugaan Kecamatan
Batas Atas Batas bawah
31174,3 -54,56
637,56 31190,5
26,45 718,75
624665,7 1336,20
4434,40 25102,9
288,46 909,54
1386677,5 1517,76
6133,84 201104,8
450,34 2208,26
19358136,0 2858,82
20105,98 4174354,8
615,48 8624,52
9435,2 399,12
779,88 0,0
1020,00 1020,00
1605133,9 1339,60
6306,00 64437676,8
-2652,01 28815,03
159744,0 1296,63
2863,37 1674454,8
1466,95 6539,45
1605975,5 1308,75
6276,45 1227758,7
2629,74 6973,26
37086,8 84,94
839,86
Selang Kepercayaan 95
Lampiran 5 Model Stok Penggilingan
Best Subsets Regression: STagt versus Pjul, Pjun, ...
Response is STagt P P
P P P P P K K j j m a m j m
u u e p a u a Vars R-Sq R-Sqadj C-p S l n i r r l r
1 45.3 41.7 30.1 264.44 X 1 22.3 17.1 48.3 315.20 X
2 70.3 66.1 12.4 201.57 X X 2 67.4 62.8 14.7 211.21 X X
3 81.7 77.4 5.5 164.48 X X X 3 79.3 74.5 7.3 174.78 X X X
4 85.3 80.4 4.6 153.24 X X X X 4 82.8 77.0 6.6 165.97 X X X X
5 88.5 83.3 4.0 141.32 X X X X X 5 86.0 79.7 6.0 156.12 X X X X X
6 88.6 81.7 6.0 147.93 X X X X X X 6 88.5 81.7 6.0 148.18 X X X X X X
7 88.6 79.7 8.0 155.93 X X X X X X X
Regression Analysis: STagt versus Pjul, Pjun, Pmei, Papr, Pmar
The regression equation is STagt = 22 + 0.0521 Pjul - 0.427 Pjun + 0.0140 Pmei + 0.0316 Papr -
0.0547 Pmar Predictor Coef SE Coef T P VIF
Constant 21.5 144.7 0.15 0.884 Pjul 0.05214 0.02213 2.36 0.038 1.6
Pjun -0.4271 0.7034 -0.61 0.556 2.4
Pmei 0.01397 0.01209 1.16 0.272 2.9 Papr 0.031627 0.006162 5.13 0.000 1.2
Pmar -0.05465 0.02646 -2.07 0.063 1.4 S = 193.7 R-Sq = 78.5 R-Sqadj = 68.7
PRESS = 1343376 R-Sqpred = 29.94 Analysis of Variance
Source DF SS MS F P Regression 5 1504803 300961 8.02 0.002
Residual Error 11 412762 37524 Total 16 1917565
Source DF Seq SS Pjul 1 123195
Pjun 1 55 Pmei 1 355709
Papr 1 865721 Pmar 1 160123
Obs Pjul STagt Fit SE Fit Residual St Resid 1 3499 29.2 93.2 111.8 -64.1 -0.40
2 2505 37.3 -3.4 84.6 40.6 0.23
3 6052 288.5 198.7 170.6 89.9 0.98 4 191 59.9 109.8 97.2 -49.9 -0.30
5 2950 382.6 243.4 72.8 139.2 0.78 6 409 132.9 -35.3 83.1 168.2 0.96
7 9622 1148.2 940.1 152.8 208.2 1.75 8 5534 462.0 790.2 102.2 -328.2 -1.99
9 2510 59.0 214.3 69.4 -155.4 -0.86 10 0 102.0 16.9 93.4 85.1 0.50
11 1365 382.3 308.4 74.0 73.9 0.41 12 0 1169.0 894.0 123.1 275.0 1.84
13 0 325.0 483.7 149.1 -158.7 -1.28 14 1206 400.3 379.3 175.1 21.0 0.25
15 0 379.3 567.2 129.7 -187.9 -1.31 16 0 480.2 481.0 89.2 -0.9 -0.00
17 5219 46.2 202.3 95.5 -156.0 -0.93
Regression Analysis: STagt versus Pjul, Pmei, Papr, Pmar
The regression equation is STagt = 22 + 0.0472 Pjul + 0.00886 Pmei + 0.0328 Papr - 0.0543 Pmar
Predictor Coef SE Coef T P VIF Constant 21.6 140.8 0.15 0.881
Pjul 0.04716 0.02001 2.36 0.036 1.4 Pmei 0.008861 0.008453 1.05 0.315 1.5
Papr 0.032813 0.005688 5.77 0.000 1.1 Pmar -0.05428 0.02574 -2.11 0.057 1.4
S = 188.5 R-Sq = 77.8 R-Sqadj = 70.3 PRESS = 1168687 R-Sqpred = 39.05
Analysis of Variance Source DF SS MS F P
Regression 4 1490967 372742 10.49 0.001 Residual Error 12 426598 35550
Total 16 1917565 Source DF Seq SS
Pjul 1 123195 Pmei 1 162411
Papr 1 1047331 Pmar 1 158030
Obs Pjul STagt Fit SE Fit Residual St Resid 1 3499 29.2 81.6 107.2 -52.4 -0.34
2 2505 37.3 -9.1 81.8 46.4 0.27 3 6052 288.5 285.7 90.0 2.9 0.02
4 191 59.9 73.7 74.8 -13.8 -0.08 5 2950 382.6 244.6 70.8 138.0 0.79
6 409 132.9 -33.6 80.8 166.5 0.98
7 9622 1148.2 911.3 141.4 236.9 1.90 8 5534 462.0 783.2 98.9 -321.2 -2.00R
9 2510 59.0 207.8 66.7 -148.8 -0.84 10 0 102.0 24.1 90.2 77.9 0.47
11 1365 382.3 316.3 70.9 66.0 0.38 12 0 1169.0 887.2 119.3 281.8 1.93
13 0 325.0 498.4 143.2 -173.4 -1.41 14 1206 400.3 366.2 169.1 34.1 0.41
15 0 379.3 612.8 102.9 -233.6 -1.48
16 0 480.2 456.6 77.5 23.5 0.14 17 5219 46.2 177.0 83.6 -130.7 -0.77
R denotes an observation with a large standardized residual
Regression Analysis: STagt versus Pjul, Pmei, Papr, Pmar, PKjul, PKmar
The regression equation is STagt = - 222 - 0.0031 Pjul + 0.0180 Pmei + 0.0324 Papr + 0.114 Pmar
+0.000007 PKjul -0.000020 PKmar Predictor Coef SE Coef T P VIF
Constant -221.6 192.2 -1.15 0.276 Pjul -0.00311 0.04517 -0.07 0.947 11.6
Pmei 0.018006 0.008056 2.24 0.049 2.2 Papr 0.032416 0.005639 5.75 0.000 1.7
Pmar 0.11351 0.07021 1.62 0.137 17.3 PKjul 0.00000746 0.00000502 1.49 0.168 10.4
PKmar -0.00001960 0.00000815 -2.41 0.037 15.7 S = 148.2 R-Sq = 88.5 R-Sqadj = 81.7
PRESS = 1333831 R-Sqpred = 30.44 Analysis of Variance
Source DF SS MS F P Regression 6 1697992 282999 12.89 0.000
Residual Error 10 219573 21957 Total 16 1917565
Source DF Seq SS Pjul 1 123195
Pmei 1 162411 Papr 1 1047331
Pmar 1 158030 PKjul 1 79976
PKmar 1 127049 Obs Pjul STagt Fit SE Fit Residual St Resid
1 3499 29.2 17.2 88.1 12.0 0.10 2 2505 37.3 -35.9 77.9 73.2 0.58
3 6052 288.5 361.8 82.0 -73.3 -0.59 4 191 59.9 184.2 73.2 -124.3 -0.97
5 2950 382.6 132.1 67.1 250.5 1.90 6 409 132.9 66.2 76.6 66.7 0.53
7 9622 1148.2 1066.8 139.7 81.5 1.65 8 5534 462.0 636.2 99.4 -174.2 -1.58
9 2510 59.0 156.9 57.2 -97.9 -0.72 10 0 102.0 107.4 88.7 -5.4 -0.05
11 1365 382.3 324.5 58.6 57.7 0.42 12 0 1169.0 1000.0 114.7 169.0 1.80
13 0 325.0 334.0 134.1 -9.0 -0.14 14 1206 400.3 312.7 134.1 87.7 1.39
15 0 379.3 469.7 103.4 -90.4 -0.85 16 0 480.2 649.6 93.2 -169.4 -1.47
17 5219 46.2 100.5 70.3 -54.2 -0.42
Model Terbaik adalah
:
Regression Analysis: STagt versus Pjul, Pmei, Papr, Pmar, PKmar
The regression equation is STagt = - 341 + 0.0595 Pjul + 0.0203 Pmei + 0.0370 Papr + 0.125 Pmar
-0.000022 PKmar Predictor Coef SE Coef T P VIF
Constant -341.1 183.9 -1.85 0.091 Pjul 0.05947 0.01726 3.45 0.005 1.5
Pmei 0.020348 0.008323 2.44 0.033 2.1 Papr 0.036978 0.004985 7.42 0.000 1.2
Pmar 0.12513 0.07351 1.70 0.117 17.1 PKmar -0.00002159 0.00000847 -2.55 0.027 15.3
S = 156.1 R-Sq = 86.0 R-Sqadj = 79.7 PRESS = 859431 R-Sqpred = 55.18
Analysis of Variance Source DF SS MS F P
Regression 5 1649468 329894 13.54 0.000 Residual Error 11 268097 24372
Total 16 1917565 Source DF Seq SS
Pjul 1 123195 Pmei 1 162411
Papr 1 1047331 Pmar 1 158030
PKmar 1 158501 Obs Pjul STagt Fit SE Fit Residual St Resid
1 3499 29.2 51.8 89.5 -22.7 -0.18 2 2505 37.3 26.5 69.2 10.7 0.08
3 6052 288.5 387.1 84.5 -98.6 -0.75 4 191 59.9 126.0 65.2 -66.1 -0.47
5 2950 382.6 169.3 65.7 213.3 1.51 6 409 132.9 6.5 68.7 126.4 0.90
7 9622 1148.2 942.2 117.7 206.1 2.01R 8 5534 462.0 721.8 85.3 -259.8 -1.99
9 2510 59.0 189.3 55.7 -130.4 -0.89 10 0 102.0 28.1 74.7 73.9 0.54
11 1365 382.3 345.9 59.8 36.4 0.25 12 0 1169.0 1044.8 116.5 124.2 1.20
13 0 325.0 308.0 140.1 17.0 0.25 14 1206 400.3 327.0 140.9 73.4 1.09
15 0 379.3 445.3 107.6 -66.0 -0.58 16 0 480.2 646.1 98.2 -166.0 -1.37
17 5219 46.2 118.2 73.0 -72.0 -0.52 R denotes an observation with a large standardized residual
Normplot of Residuals for STagt
200 100
-100 -200
-300 2
1
-1 -2
N o
rm al
S c
o re
Residual
Normal Probability Plot of the Residuals
response is STagt
Approximate P-Value 0.15 D+: 0.107 D-: 0.067 D : 0.107
Kolmogorov-Smirnov Normality Test N: 17
StDev: 129.445 Average: -0.0000000
200 100
-100 -200
.999 .99
.95 .80
.50 .20
.05 .01
.001
P robab
il it
y
RESI1
Uji Kenormalan Sisaan
Residuals vs Fits for STagt
1000 500
200 100
-100 -200
-300
Fitted Value R
e si
dua l
Residuals Versus the Fitted Values
response is STagt
Predicted Values for New Observations New Obs Fit SE Fit 95.0 CI 95.0 PI
1 51.8 89.5 -145.3, 248.9 -344.3, 447.9 2 26.5 69.2 -125.7, 178.8 -349.3, 402.3
3 387.1 84.5 201.1, 573.1 -3.6, 777.8 4 126.0 65.2 -17.5, 269.5 -246.4, 498.4
5 169.3 65.7 24.8, 313.8 -203.5, 542.0 6 6.5 68.7 -144.8, 157.7 -368.9, 381.9
7 942.2 117.7 683.1, 1201.3 511.9, 1372.5 8 721.8 85.3 534.0, 909.6 330.2, 1113.4
9 189.3 55.7 66.7, 311.9 -175.5, 554.1 10 28.1 74.7 -136.3, 192.5 -352.8, 409.0
11 345.9 59.8 214.2, 477.6 -22.1, 713.9 12 1044.8 116.5 788.3, 1301.3 616.0, 1473.6
13 308.0 140.1 -0.4, 616.4 -153.8, 769.7 14 327.0 140.9 16.9, 637.0 -135.9, 789.8
15 445.3 107.6 208.5, 682.1 28.0, 862.6 16 646.1 98.2 430.0, 862.3 240.2, 1052.1
17 118.2 73.0 -42.5, 278.9 -261.1, 497.5 18 95.4 109.5 -145.7, 336.4 -324.4, 515.1
19 545.8 58.2 417.7, 673.8 179.1, 912.5 20 349.0 104.1 119.8, 578.2 -64.0, 762.1
21 599.0 99.1 380.8, 817.2 192.0, 1006.0 22 931.6 259.1 361.4, 1501.8 265.8, 1597.3 XX
X denotes a row with X values away from the center XX denotes a row with very extreme X values
Values of Predictors for New Observations New Obs Pjul Pmei Papr Pmar PKmar
1 3499 1072 7375 6569 43151761 2 2505 0 4003 5162 26646244
3 6052 3777 2981 2812 7907344 4 191 7826 3237 2440 5953600
5 2950 801 4837 1510 2280100 6 409 597 4371 4112 16908544
7 9622 0 15617 1410 1988100 8 5534 0 16967 1034 1069156
9 2510 301 5556 2159 4661281 10 0 0 5091 3031 9186961
11 1365 0 11500 2709 7338681 12 0 8095 28240 2447 5987809
13 0 4023 27064 8234 67798756 14 1206 26248 1682 0 0
15 0 11587 14889 0 0 16 0 9202 17721 4200 17640000
17 5219 0 0 1672 2795584 18 2124 15239 0 0 0
19 5164 3562 9379 1914 3663396 20 6177 656 8926 5956 35473936
21 8928 0 7200 1563 2442969 22 18511 0 0 2232 4981824
Lampiran 6 Model Stok Sub Dolog Plot data asli
Ja n
-9 8
N o
v- 98
S e
p- 99
Ju l-0
M a y
-0 1
M ar
-0 2
Ja n
-0 3
N o
v- 0 3
S e
p- 0 4
Ju l-0
5 10000000
20000000 30000000
DateTime S
to k
Plot Data setelah di Logaritma
Ju l-0
5 S
e p-
0 4 N
o v-
0 3 Ja
n -0
3 M
ar -0
2 M
a y -0
1 Ju
l-0 S
e p-
99 N
o v-
98 Ja
n -9
8 7.5
6.5
5.5
4.5 DateTime
L st
o k
40 30
20 10
1.0 0.8
0.6 0.4
0.2 0.0
-0.2 -0.4
-0.6 -0.8
-1.0
A u
to c
o rr
e la
ti on
LBQ T
Corr Lag
LBQ T
Corr Lag
LBQ T
Corr Lag
LBQ T
Corr Lag
182.80 182.80
182.71 182.69
181.94 179.50
175.47 170.20
163.38 155.00
146.95 140.04
136.63 136.32
135.62 134.00
131.66 128.86
126.63 126.14
125.92 124.07
120.37 116.87
116.01 115.96
115.08 112.99
109.59 105.23
101.49 99.74
99.41 99.40
98.73 97.07
95.96 95.93
91.14 65.84
0.01 0.11
-0.05 -0.34
-0.61 -0.80
-0.93 -1.07
-1.22 -1.22
-1.15 -0.82
-0.25 0.38
0.58 0.71
0.78 0.71
0.33 -0.22
-0.66 -0.95
-0.93 -0.47
0.11 0.48
0.75 0.97
1.12 1.05
0.73 0.32
-0.05 -0.46
-0.73 -0.60
0.10 1.28
3.27 7.99
0.00 0.02
-0.01 -0.07
-0.12 -0.16
-0.18 -0.21
-0.24 -0.23
-0.22 -0.15
-0.05 0.07
0.11 0.13
0.14 0.13
0.06 -0.04
-0.12 -0.17
-0.17 -0.08
0.02 0.09
0.13 0.17
0.19 0.18
0.12 0.05
-0.01 -0.08
-0.12 -0.10
0.02 0.21
0.49 0.80
40 39
38 37
36 35
34 33
32 31
30 29
28 27
26 25
24 23
22 21
20 19
18 17
16 15
14 13
12 11
10 9
8 7
6 5
4 3
2 1
Plot ACF
40 30
20 10
1.0 0.8
0.6 0.4
0.2 0.0
-0.2 -0.4
-0.6 -0.8
-1.0
P a
rt ia
l A
u to
c o
rr e
la ti
on
T PAC
Lag T
PAC Lag
T PAC
Lag T
PAC Lag
-0.49 0.69
0.27 -0.26
0.74 0.70
-0.59 1.01
-1.70 -0.03
-0.01 -0.00
0.00 -1.46
0.22 0.82
-0.95 -0.32
-0.04 0.41
0.50 -0.45
-1.48 -0.99
-1.50 0.55
0.28 1.02
-1.68 0.27
0.73 0.80
0.28 0.81
2.15 0.13
-0.54 -1.17
-5.23 8.57
-0.05 0.07
0.03 -0.03
0.07 0.07
-0.06 0.10
-0.17 -0.00
-0.00 -0.00
0.00 -0.15
0.02 0.08
-0.09 -0.03
-0.00 0.04
0.05 -0.04
-0.15 -0.10
-0.15 0.05
0.03 0.10
-0.17 0.03
0.07 0.08
0.03 0.08
0.22 0.01
-0.05 -0.12
-0.52 0.86
40 39
38 37
36 35
34 33
32 31
30 29
28 27
26 25
24 23
22 21
20 19
18 17
16 15
14 13
12 11
10 9
8 7
6 5
4 3
2 1
Plot PACF
MODEL ARIMA 2,0,0
Final Estimates of Parameters Type Coef SE Coef T P
AR 1 1.6762 0.1060 15.81 0.000 AR 2 -0.6764 0.1060 -6.38 0.000
Number of observations: 100 Residuals: SS = 8.08800 backforecasts excluded
MS = 0.08253 DF = 98
Modified Box-Pierce Ljung-Box Chi-Square statistic Lag 12 24 36 48
Chi-Square 10.4 18.4 31.4 40.3 DF 10 22 34 46
P-Value 0.406 0.684 0.595 0.710 Forecasts from period 100
95 Percent Limits Period Forecast Lower Upper
101 7.1037 6.5405 7.6669 102 7.1677 6.0684 8.2669
103 7.2095 5.5811 8.8379 104 7.2364 5.1049 9.3678
105 7.2531 4.6510 9.8552 106 7.2630 4.2231 10.3029
Normplot of Residuals for Lstok
2 1
3 2
1
-1 -2
-3
N o
rm a
l S c
o re
Residual
Normal Probability Plot of the Residuals
response is Lstok
Residuals vs Order for Lstok
100 90
80 70
60 50
40 30
20 10
2
1
Observation Order R
e s
idua l
Residuals Versus the Order of the Data
response is Lstok
MODEL ARIMA 0,0,2
Final Estimates of Parameters Type Coef SE Coef T P
MA 1 -1.7420 0.0272 -64.11 0.000 MA 2 -0.9608 0.0123 -77.80 0.000
Number of observations: 100 Residuals: SS = 393.001 backforecasts excluded
MS = 4.010 DF = 98 Modified Box-Pierce Ljung-Box Chi-Square statistic
Lag 12 24 36 48 Chi-Square 281.7 364.1 409.9 444.4
DF 10 22 34 46 P-Value 0.000 0.000 0.000 0.000
Forecasts from period 100 95 Percent Limits
Period Forecast Lower Upper 101 5.6447 1.7189 9.5705
102 2.5542 -5.3311 10.4395 103 0.0000 -8.7410 8.7410
104 0.0000 -8.7410 8.7410 105 0.0000 -8.7410 8.7410
106 0.0000 -8.7410 8.7410
MODEL ARIMA 2,0,2
Final Estimates of Parameters Type Coef SE Coef T P
AR 1 1.6694 0.0897 18.62 0.000 AR 2 -0.6693 0.0897 -7.46 0.000
MA 1 0.6215 0.1097 5.66 0.000 MA 2 0.3660 0.1091 3.36 0.001
Number of observations: 100 Residuals: SS = 5.86690 backforecasts excluded
MS = 0.06111 DF = 96 Modified Box-Pierce Ljung-Box Chi-Square statistic
Lag 12 24 36 48 Chi-Square 9.7 18.7 31.0 38.5
DF 8 20 32 44 P-Value 0.288 0.542 0.518 0.704
Forecasts from period 100 95 Percent Limits
Period Forecast Lower Upper 101 7.04689 6.56226 7.53152
102 7.02274 6.32076 7.72473 103 7.00674 6.22411 7.78937
104 6.99619 6.17826 7.81412 105 6.98928 6.15483 7.82373
106 6.98482 6.14225 7.82739
Normplot of Residuals for Lstok
1 -1
3 2
1
-1 -2
-3
N o
rm a
l S c
o re
Residual
Normal Probability Plot of the Residuals
response is Lstok
Residuals vs Order for Lstok
10 20
30 40
50 60
70 80
90 100
-1 1
Observation Order R
e si
dua l
Residuals Versus the Order of the Data
response is Lstok
Approximate P-Value 0.01 D+: 0.124 D-: 0.133 D : 0.133
Kolmogorov-Smirnov Normality Test N: 100
StDev: 0.243432 Average: -0.0016175
1 -1
.999 .99
.95 .80
.50 .20
.05 .01
.001
P robab
ili ty
RESI3
Uji kenormalan galat
MODEL ARIMA 3,0,0
Final Estimates of Parameters Type Coef SE Coef T P
AR 1 1.6739 0.1085 15.43 0.000 AR 2 -0.7778 0.1726 -4.51 0.000
AR 3 0.1038 0.1085 0.96 0.341 Number of observations: 100
Residuals: SS = 7.77631 backforecasts excluded MS = 0.08017 DF = 97
Modified Box-Pierce Ljung-Box Chi-Square statistic Lag 12 24 36 48
Chi-Square 12.0 19.2 33.0 42.6 DF 9 21 33 45
P-Value 0.215 0.570 0.469 0.572 Forecasts from period 100
95 Percent Limits Period Forecast Lower Upper
101 7.11366 6.55860 7.66873 102 7.16985 6.08755 8.25215
103 7.19609 5.63607 8.75611 104 7.20738 5.22966 9.18509
105 7.21169 4.86811 9.55527 106 7.21285 4.54448 9.88123
MODEL ARIMA 0,0,3
Final Estimates of Parameters Type Coef SE Coef T P
MA 1 -2.0155 0.0130 -155.35 0.000 MA 2 -1.9421 0.0155 -125.20 0.000
MA 3 -0.8652 0.0411 -21.07 0.000 Number of observations: 100
Residuals: SS = 164.701 backforecasts excluded MS = 1.698 DF = 97
Modified Box-Pierce Ljung-Box Chi-Square statistic Lag 12 24 36 48
Chi-Square 153.0 168.9 227.5 284.6 DF 9 21 33 45
P-Value 0.000 0.000 0.000 0.000 Forecasts from period 100
95 Percent Limits Period Forecast Lower Upper
101 6.17636 3.62186 8.73086 102 4.16801 -1.57940 9.91543
103 1.40093 -6.19159 8.99346 104 0.00000 -7.90767 7.90767
105 0.00000 -7.90767 7.90767 106 0.00000 -7.90767 7.90767
MODEL ARIMA 3,0,3
Final Estimates of Parameters Type Coef SE Coef T P
AR 1 1.7723 0.1035 17.12 0.000 AR 2 -0.9367 0.1971 -4.75 0.000
AR 3 0.1643 0.1193 1.38 0.171 MA 1 0.6463 0.0182 35.56 0.000
MA 2 0.1865 0.1247 1.50 0.138 MA 3 0.1699 0.1124 1.51 0.134
Number of observations: 100 Residuals: SS = 5.55919 backforecasts excluded
MS = 0.05914 DF = 94 Modified Box-Pierce Ljung-Box Chi-Square statistic
Lag 12 24 36 48 Chi-Square 3.7 11.8 23.9 31.6
DF 6 18 30 42 P-Value 0.713 0.859 0.774 0.879
Forecasts from period 100 95 Percent Limits
Period Forecast Lower Upper Actual 101 7.05176 6.57501 7.52850
102 7.04469 6.32674 7.76265 103 7.00484 6.17510 7.83458
104 6.97499 6.11350 7.83647 105 6.95825 6.08987 7.82664
106 6.95001 6.08046 7.81956
Model memenuhi Kriteria :
1. ARIMA 2,0,0