Directory UMM :Journals:Journal_of_mathematics:VMJ:

‚« ¤¨ª ¢ª §áª¨© ¬ â¥¬ â¨ç¥áª¨© ¦ãà­ «
Ÿ­¢ àì{¬ àâ, 2002, ’®¬ 4, ‚ë¯ã᪠1

“„Š 517.518.1

Ž…€’ސ› ‘“…Ž‡ˆ–ˆˆ ‚ Ž‘’€‘’‚€• ‹……ƒ€
ˆ „ˆ””……–ˆ“…ŒŽ‘’œ
Š‚€‡ˆ€„„ˆ’ˆ‚›• ”“Š–ˆ‰ ŒŽ†…‘’‚€
‘. Š. ‚®¤®¯ìï­®¢, €. „. “å«®¢

‚ à ¡®â¥ ¯à¨¢®¤¨âáï ®¯¨á ­¨¥ ®¯¥à â®à®¢ á㯥௮§¨æ¨¨ ¢ ¯à®áâà ­áâ¢ å ‹¥¡¥£ . ‚ ⮬ á«ãç ¥, ª®£¤  ®¯¥à â®à ¯®­¨¦ ¥â á㬬¨à㥬®áâì, áãé¥á⢥­­ãî à®«ì ¯à¨ ®¯¨á ­¨¨ â ª¨å ®¯¥à â®à®¢ ¨£à îâ ᢮©á⢠ ª¢ §¨ ¤¤¨â¨¢­ëå ä㭪権, ®¯à¥¤¥«¥­­ëå ­  ®âªàëâëå ¯®¤¬­®¦¥á⢠å
®¤­®à®¤­ëå ¯à®áâà ­áâ¢. ‚ ¯¥à¢®© ç á⨠ࠡ®âë ¤®ª § ­  ®æ¥­ª  ¤«ï ¨­â¥£à «  ®â ¢¥àå­¥©
¯à®¨§¢®¤­®© ä㭪樨 ¬­®¦¥á⢠, ¨§ ª®â®à®© ¢ë⥪ ¥â ¯à®á⮥ ¤®ª § â¥«ìá⢮ â¥®à¥¬ë ‹¥¡¥£ 
® ¤¨ää¥à¥­æ¨à㥬®á⨠¨­â¥£à «  ¨ áãé¥á⢮¢ ­¨¥ ¯«®â­®á⨠¯®ç⨠¢áî¤ã. ®«ã祭ë â ª¦¥
¯à¨«®¦¥­¨ï ª £¥®¬¥âà¨ç¥áª®© ⥮ਨ ¬¥àë.
‚¢¥¤¥­¨¥

‚ à ¡®â å [1, 2] ¥áâ¥á⢥­­ë¬ ®¡à §®¬ ¢®§­¨ª ¥â (ª¢ §¨) ¤¤¨â¨¢­ ï äã­ªæ¨ï ¬­®¦¥á⢠, ®¯à¥¤¥«¥­­ ï ­  ®âªàëâëå ¯®¤¬­®¦¥áâ¢ å ¥¢ª«¨¤®¢  ¯à®áâà ­á⢠ Rn .  ¯®¬­¨¬ [2], çâ® ­¥®âà¨æ â¥«ì­ ï äã­ªæ¨ï , ®¯à¥¤¥«¥­­ ï ­  ®âªàëâëå
¯®¤¬­®¦¥áâ¢ å ®¡« á⨠ Rn ¨ ¯à¨­¨¬ îé ï ª®­¥ç­ë¥ §­ ç¥­¨ï, ­ §ë¢ ¥âáï
(ª®­¥ç­®-)ª¢ §¨ ¤¤¨â¨¢­®© ( ¤¤¨â¨¢­®©), ¥á«¨ ¤«ï ¢á类£® ­ ¡®à  ®âªàëâëå ¯®¯ à­® ­¥¯¥à¥á¥ª îé¨åáï ¬­®¦¥á⢠i  , = 1
,  | ®âªàë⮥ ¬­®¦¥á⢮,

¢ë¯®«­ï¥âáï ­¥à ¢¥­á⢮
0.1.

D

U

U

k
X

i

;::: ;k

k
P

S

k

D

( i ) 6 ( )
U

i=1

U

U



(ᮮ⭮襭¨¥ ( i ) = 
6 ( ); ¢ à ¡®â¥ [2] ¨¬¥¥âáï ®¯¥ç âª : ¯à ¢®¥
i
i=1
i=1

­¥à ¢¥­á⢮ ¢ í⮬ ᮮ⭮襭¨¨ ®âáãâáâ¢ã¥â). ’ ª¨¬ ®¡à §®¬, (ª¢ §¨) ¤¤¨â¨¢­ ï
äã­ªæ¨ï ¬­®¦¥á⢠ ¬®­®â®­­  ¯® ®¯à¥¤¥«¥­¨î.
‚ [1, 2] (ª¢ §¨) ¤¤¨â¨¢­ ï äã­ªæ¨ï ¬­®¦¥á⢠ ¤¨ää¥à¥­æ¨àã¥âáï ¨ ¨á¯®«ì§ã¥âáï
ä®à¬ã«  ¢®ááâ ­®¢«¥­¨ï ¥¥  ¡á®«îâ­® ­¥¯à¥à뢭®© ç áâ¨:
1)
(
)
2
U

¢ ¯®ç⨠ª ¦¤®©

¯à®¨§¢®¤­ ï

U

U

¢ «¥¡¥£®¢áª®¬ á¬ëá«¥


â®çª¥ x

( r ( )) = 0 ( )
lim
r !0 j r ( )j
B

B

x

x

x

D áãé¥áâ¢ã¥â ª®­¥ç­ ï

(1)

 ¡®â  ¢ë¯®«­¥­  ¯à¨ ç áâ¨ç­®© ¯®¤¤¥à¦ª¥ ®áᨩ᪮£® ä®­¤  äã­¤ ¬¥­â «ì­ëå ¨áá«¥¤®¢ ­¨©, ‘®¢¥â  £®á㤠àá⢥­­®© ¯®¤¤¥à¦ª¨ ¢¥¤ãé¨å ­ ãç­ëå 誮« ¨ INTAS-10170.


c 2002 ‚®¤®¯ìï­®¢ ‘. Š., “å«®¢ €. „.

1{12

‘. Š. ‚®¤®¯ìï­®¢, €. „. “å«®¢

(§¤¥áì Br (x) | ®âªàëâë© è à á æ¥­â஬ ¢ x à ¤¨ãá  r,   ᨬ¢®«
‹¥¡¥£  ­  Rn );
2)
U
D
¤«ï «î¡®£® ®âªàë⮣® ¬­®¦¥á⢠

Z



jj


®¡®§­ ç ¥â ¬¥àã

á¯à ¢¥¤«¨¢® ­¥à ¢¥­á⢮

 (x) dx 6 (U ):

(2)

0

U

‚ ¥¢ª«¨¤®¢®¬ ¯à®áâà ­á⢥ ᢮©á⢠ (1) ¨ (2) ¤®ª § ­ë ¢ [3, ⥮६  1, á. 209]. Žç¥¢¨¤­®, à áá㦤¥­¨ï ¨§ [3] ¬®£ãâ ¡ëâì ®¡®¡é¥­ë ­  ¬¥âà¨ç¥áª¨¥ áâàãªâãàë ¡®«¥¥ ®¡é¥© ¯à¨à®¤ë, çâ®, ¢ ç áâ­®áâ¨, ®¯à ¢¤ë¢ ¥â ¯à¨¬¥­¥­¨¥ ä®à¬ã« (1) ¨ (2) ­  £à㯯 å
Š à­® ¢ à ¡®â¥  ¢â®à®¢ [2]. ¨¦¥ ¬ë ¢ë¢®¤¨¬ ä®à¬ã«ë (1) ¨ (2) ¨§ ¡®«¥¥ ®¡é¨å
१ã«ìâ â®¢ (á¬. á«¥¤á⢨¥ 5).
‚ ­ áâ®ï饩 à ¡®â¥ ¬ë ¨áá«¥¤ã¥¬ ᢮©á⢠ ®¡®¡é¥­­®© ª¢ §¨ ¤¤¨â¨¢­®© ä㭪樨, ®¯à¥¤¥«¥­­®© ­  ®âªàëâëå ¯®¤¬­®¦¥áâ¢ å ®¡« á⨠D ®¤­®à®¤­®£® ¬¥âà¨ç¥áª®£®
¯à®áâà ­á⢠ X (â®ç­®¥ ®¯à¥¤¥«¥­¨¥ ®¤­®à®¤­®£® ¬¥âà¨ç¥áª®£® ¯à®áâà ­á⢠ á¬. ­¨¦¥), ¤®ª §ë¢ ¥¬ ¤«ï ­¥¥  ­ «®£¨ ᢮©á⢠(1) ¨ (2). Žá®¡¥­­®áâì ­ è¥£® ¯®¤å®¤  á®á⮨⠢ ⮬, ç⮠᢮©á⢮ (1) ¬ë ¯®«ãç ¥¬ ª ª á«¥¤á⢨¥  ­ «®£  ­¥à ¢¥­á⢠ (2) ¤«ï
¢¥àå­¥© ¯à®¨§¢®¤­®© (⥮६ë 1 ¨ 3). ‚ ç áâ­®áâ¨, ¬ë ¯®«ãç ¥¬ ãá«®¢¨ï ­  ¬¥àã, ¯à¨
ª®â®àëå ¬®¦­® ¯®«ãç¨âì ⥠¨«¨ ¨­ë¥ ®¡®¡é¥­¨ï ᢮©á⢠(1) ¨ (2) ­  ¯à®áâà ­á⢠å
®¤­®à®¤­®£® ⨯ . ‚ ª ç¥á⢥ á«¥¤áâ¢¨ï ¬ë ¯®«ãç ¥¬ ¯à®á⮥ ¤®ª § â¥«ìá⢮ ª« áá¨ç¥áª®© â¥®à¥¬ë ‹¥¡¥£  ® ¤¨ää¥à¥­æ¨à®¢ ­¨¨ ¨­â¥£à «  (á«¥¤á⢨¥ 3). ‚® ¢â®à®©

ç á⨠ࠡ®âë ¬ë ¯à¨¬¥­ï¥¬ ¯®«ã祭­ë¥ १ã«ìâ âë ª ⥮ਨ ¯à®áâà ­á⢠‹¥¡¥£  ¨
£¥®¬¥âà¨ç¥áª®© ⥮ਨ ¬¥àë.
0.2.  ¯®¬­¨¬ ®¯à¥¤¥«¥­¨¥ ¯à®áâà ­á⢠ ®¤­®à®¤­®£® ⨯ . Š¢ §¨¬¥âਪ®© ­ 
X, £¤¥ X | ­¥ª®â®à®¥ ­¥¯ãá⮥ ¬­®¦¥á⢮, ­ §ë¢ ¥âáï ­¥®âà¨æ â¥«ì­ ï äã­ªæ¨ï d :
X X R+ 0 , ®¡« ¤ îé ï á«¥¤ãî騬¨ ᢮©á⢠¬¨ 1{3.
‘¢®©á⢮ 1.
x; y X
d(x; y ) = 0
x=y


!

[ f g

„«ï ¢á¥å â®ç¥ª

⮫쪮 ⮣¤ , ª®£¤ 

(


d x; y

(

d x; y

(

2

à ¢¥­á⢮

¢ë¯®«­ï¥âáï ⮣¤  ¨

.

c

‘¢®©á⢮ 2. ‘ãé¥áâ¢ã¥â ¯®«®¦¨â¥«ì­ ï ¯®áâ®ï­­ ï


) 6 cd(y; x)

¢ë¯®«­¥­® ¤«ï ¢á¥å â®ç¥ª

x

¨

y,

â ª ï, çâ® ­¥à ¢¥­á⢮

¯à¨­ ¤«¥¦ é¨å

X

.

c â ª ï, çâ® ­¥à ¢¥­á⢮

x, y ¨ z , ¯à¨­ ¤«¥¦ é¨å

‘¢®©á⢮ 3. ‘ãé¥áâ¢ã¥â ¯®«®¦¨â¥«ì­ ï ¯®áâ®ï­­ ï

) 6 c(d(x; z ) + d(y; z ))

¢ë¯®«­¥­® ¤«ï ¢á¥å â®ç¥ª

X

)
Œë ¯à¥¤¯®« £ ¥¬ â ª¦¥, çâ® äã­ªæ¨ï d ¯®«ã­¥¯à¥à뢭  ᢥàåã ¯® ¯¥à¢®© ¯¥à¥¬¥­­®©. ˆ§ í⮣® âॡ®¢ ­¨ï ¢ë⥪ ¥â, çâ® è àë B (x) = y X : d(y; x) <  , 0 < ,
®âªàëâë. (‚ ¤ «ì­¥©è¥¬ ¬ë â ª¦¥ ¡ã¤¥¬ ¨á¯®«ì§®¢ âì ®¡®§­ ç¥­¨¥ rad(B (x)) = .)
’ ª¨¬ ®¡à §®¬, ¤«ï ª ¦¤®© â®çª¨ x X ®¯à¥¤¥«¥­  á¨á⥬  B (x)  ®âªàëâëå è à®¢
¢ X, ¯ à ¬¥âਧ®¢ ­­ëå , 0 <  < . Žç¥¢¨¤­®, çâ® è àë ¬®­®â®­­ë ¯® ¢ª«î祭¨î
®â­®á¨â¥«ì­® , â. ¥., B1 (x) B2 (x) ¯à¨ 1 < 2 , ¨ ®¡« ¤ îâ ᢮©á⢮¬ ¯®£«®é¥­¨ï
[4]:
‘¢®©á⢮ 4.
c1 > 0
B (x) B (y ) = ?

B (y )
Bc1  (x)
x; y  > 0
Œë ¯à¥¤¯®« £ ¥¬, çâ® ­  X ®¯à¥¤¥«¥­  ¡®à¥«¥¢áª ï ¬¥à  , ᮣ« á®¢ ­­ ï á ¬¥âਪ®© d ¢ á«¥¤ãî饬 á¬ëá«¥:
®¡®¡é¥­­®¥ ­¥à ¢¥­á⢮ âà¥ã£®«ì­¨ª  .

f

2

f

1



‘ãé¥áâ¢ã¥â ¯®áâ®ï­­ ï
\

¤«ï ¢á¥å

¨

.

6

â ª ï, çâ®

)



2

g

g

1{13

ޝ¥à â®àë á㯥௮§¨æ¨¨ ¢ ¯à®áâà ­áâ¢ å ‹¥¡¥£ 

B (x)  X

‘¢®©á⢮ 5. „«ï «î¡®£® è à 
áãé¥áâ¢ã¥â ¯®áâ®ï­­ ï

c2 > 0

¢ë¯®«­¥­®

0

< (B (x)) < 1

, ¨

â ª ï, çâ®

(Bc1 (x)) 6 c2 (B (x))
¤«ï ¢á¥å

x2X >0
¨

.

X; d; )

ޤ­®à®¤­®¥ ¯à®áâà ­á⢮ (

X; d)

(

á®á⮨⠨§ ª¢ §¨¬¥âà¨ç¥áª®£® ¯à®áâà ­á⢠

¨ ®¯à¥¤¥«¥­­®© ­  ­¥¬ ¡®à¥«¥¢áª®© ¬¥àë

¢ëè¥ á¢®©á⢠¬¨ 1{5.

,

ª®â®àë¥ ®¡« ¤ îâ ®¯¨á ­­ë¬¨

E  X ­ §ë¢ ¥âáï "-á¥âìî ¤«ï ¬­®¦¥á⢠ A  X, " |
x 2 A ­ ©¤¥âáï å®âï ¡ë ®¤­ 
â®çª  y 2 E â ª ï, çâ® d(x; y ) < ".
‹¥¬¬  1.
(X; d; )
BX
"
">0
C  áᬮâਬ ¯à®¨§¢®«ì­ë© è à B (x; r), ᮤ¥à¦ é¨©áï ¢ X. ®ª ¦¥¬, çâ® ¤«ï
«î¡®£® ­ âãà «ì­®£® ç¨á«  k áãé¥áâ¢ã¥â ­¥ ¡®«¥¥ 祬 m (m § ¢¨á¨â ⮫쪮 ®â ç¨á« 
k ¨ ¯®áâ®ï­­ëå c1 ¨ c2 ) â®ç¥ª x1 ; : : : ; xm , ᮤ¥à¦ é¨åáï ¢ è à¥ B (x; r), â ª¨å, çâ®
d(xi ; xj ) > 2rk ¯à¨ i 6= j . ”¨ªá¨à㥬 ç¨á«® k, ⮣¤  B (xi; 2rk )  B (x; 2cr) ¨

r  \ B x ; r  = ? ¯à¨ i 6= j;
B xi; 2k+1
j 2k+1 c2
c2
£¤¥ c | ¯®áâ®ï­­ ï ¨§ ®¡®¡é¥­­®£® ­¥à ¢¥­á⢠ âà¥ã£®«ì­¨ª . ‘«¥¤®¢ â¥«ì­®,
 ¯®¬­¨¬, çâ® ¬­®¦¥á⢮

­¥ª®â®à®¥ ¯®«®¦¨â¥«ì­®¥ ç¨á«®, ¥á«¨ ¤«ï «î¡®© â®çª¨
ãáâì

| ®¤­®à®¤­®¥ ¯à®áâà ­á⢮.

áãé¥áâ¢ã¥â ª®­¥ç­ ï

-á¥âì ¤«ï «î¡®£®

(B (x; 2cr)) >

’®£¤  ¢ ª ¦¤®¬ è à¥

.

m  
X
i=1

r :
 B xi; 2k+1
c2

B (xi; 2cr)  B (x; r), ¨ â ª ª ª ᢮©á⢮ 5 íª¢¨¢ «¥­â­® ­¥à ¢¥­áâ¢ã
 

(B (x; r)) 6 c3  B x; 2rc2 ;
£¤¥ c3 | ­¥ª®â®à ï ¯®áâ®ï­­ ï, § ¢¨áïé ï ®â c, c1 ¨ c2 [4], â®
 
r :
(B (x; r)) 6 (B (xi ; 2cr)) 6 ck3 +2 B xi ; 2k+1
c2

‘ ¤à㣮© áâ®à®­ë,

ˆ§ ¯®á«¥¤­¨å ­¥à ¢¥­á⢠¯®«ãç ¥¬, çâ®

c3 (B (x; r)) > (B (x; 2cr)) >

m  
X
i=1

r  > m (B (x; r));
 B xi ; 2k+1
c2
ck+2
3

m 6 ck3 +3 . ’ ª¨¬ ®¡à §®¬, ¬­®¦¥á⢮ fx1 ; : : : ; xm g ®¡à §ã¥â ª®­¥ç­ãî
,
k
2 -á¥âì ¤«ï è à  B (x; r ), ¨ â ª ª ª ­ âãà «ì­®¥ ç¨á«® k ¡ë«® ¢ë¡à ­® ¯à®¨§¢®«ì­®,
¨, §­ ç¨â,

â® «¥¬¬  ¤®ª § ­ .

B

‘«¥¤á⢨¥ 1. ®«­®¥ ®¤­®à®¤­®¥ ¯à®áâà ­á⢮

(

X; d; )

«®ª «ì­® ª®¬¯ ªâ­®.

X; d) | ¯®«­®¥ ¬¥âà¨ç¥áª®¥ ¯à®áâà ­á⢮.

‚ ¤ «ì­¥©è¥¬, ¬ë ¯à¥¤¯®« £ ¥¬, çâ® (

1{14

‘. Š. ‚®¤®¯ìï­®¢, €. „. “å«®¢

à¨¬¥àë ®¤­®à®¤­ëå ¯à®áâà ­á⢠á¬., ­ ¯à¨¬¥à, ¢ [4]. ‚ ç áâ­®áâ¨, â ª®¢ë¬¨
ïîâáï ¥¢ª«¨¤®¢ë ¯à®áâà ­á⢠, £àã¯¯ë Š à­® ¨ ¯à®áâà ­á⢠ Š à­® | Š à â¥®¤®à¨.  ¯®¬­¨¬, çâ® £à㯯®© Š à­® [5], ­ §ë¢ ¥âáï á¢ï§­ ï ®¤­®á¢ï§­ ï ­¨«ì¯®â¥­â­ ï £à㯯  ‹¨ G ,  «£¥¡à  ‹¨ G ª®â®à®© à §« £ ¥âáï ¢ ¯àï¬ãî á㬬ã V1      Vm ,
dim V1 > 2, ¢¥ªâ®à­ëå ¯à®áâà ­á⢠⠪¨å, çâ® [V1 ; Vk ] = Vk+1 ¤«ï 1 6 k 6 m , 1 ¨
[V1 ; Vm ] = f0g.
1. ”㭪樨 ¬­®¦¥á⢠ ­  á¨á⥬¥ ®âªàëâëå ¯®¤¬­®¦¥áâ¢

ãáâì D | ®âªàë⮥ ¬­®¦¥á⢮ ¢ X. Žâ®¡à ¦¥­¨¥ , ®¯à¥¤¥«¥­­®¥ ­  ®âªàëâëå ¯®¤¬­®¦¥áâ¢ å ¨§ D ¨ ¯à¨­¨¬ î饥 ­¥®âà¨æ â¥«ì­ë¥ §­ ç¥­¨ï, ­ §ë¢ ¥âáï
q-ª¢ §¨ ¤¤¨â¨¢­®© ä㭪樥© ¬­®¦¥á⢠, £¤¥ q > 1 | 䨪á¨à®¢ ­­®¥ ç¨á«®, ¥á«¨
1) „«ï ¢á类© â®çª¨ x 2 D áãé¥áâ¢ã¥â , 0 <  < dist(x; @D), â ª®¥, çâ® 0 6
(B (x)) < 1;
2) (U1 ) 6 (U2 ), ¥á«¨ U1  U2  D | ®âªàëâë¥ ¬­®¦¥á⢠;
3) ¤«ï ¢á类£® ª®­¥ç­®£® ­ ¡®à  Ui  U , i = 1; : : : ; k, ¯®¯ à­® ­¥¯¥à¥á¥ª îé¨åáï
®âªàëâëå ¬­®¦¥áâ¢, U  D | ®âªàë⮥ ¬­®¦¥á⢮,
k
X
i=1

(Ui ) 6 q(U ):

‚ ¤ «ì­¥©è¥¬, 1-ª¢ §¨ ¤¤¨â¨¢­ãî äã­ªæ¨î ¡ã¤¥¬ â ª¦¥ ­ §ë¢ âì ª¢ §¨ ¤¤¨â¨¢­®©
ä㭪樥©.
1.1. ãáâì  | ­¥®âà¨æ â¥«ì­ ï äã­ªæ¨ï, ®¯à¥¤¥«¥­­ ï ­  ®âªàëâëå ¯®¤¬­®¦¥áâ¢ å ®¡« á⨠D. Ž¯à¥¤¥«¨¬ (®â­®á¨â¥«ì­ãî) ¬ ªá¨¬ «ì­ãî äã­ªæ¨î MD ¯®
¯à ¢¨«ã
, D
B) ;
M (x) = sup (
(B )
x2B;BD

£¤¥ ¢¥àå­ïï £à ­ì ¡¥à¥âáï ¯® ¢á¥¬ ®âªàëâë¬ è à ¬ B  D, ᮤ¥à¦ é¨¬ â®çªã x.
à¥¤«®¦¥­¨¥ 1.

ãáâì

| ­¥®âà¨æ â¥«ì­ ï äã­ªæ¨ï, ®¯à¥¤¥«¥­­ ï ­  ®âªàë-

DX
M, D 
Et = fx 2 D : MD (x) > tg

âëå ¯®¤¬­®¦¥áâ¢ å ®¡« áâ¨

. ’®£¤ 

a)
b)
c) MD
C a) ”¨ªá¨à㥬 â®çªã x0 2 D. ® ®¯à¥¤¥«¥­¨î ¬ ªá¨¬ «ì­®© ä㭪樨 ¤«ï ¯à®¨§¢®«ì­®£® " > 0 ­ ©¤¥âáï è à B"  D, ᮤ¥à¦ é¨© â®çªã x0 , â ª®©, çâ® ¢ë¯®«­¥­ë
­¥à ¢¥­á⢠
(B" ) 6 ,M D (x ) < (B" ) + ":
 0
(B )
(B )
¯®«ã­¥¯à¥à뢭  á­¨§ã;

¬ ªá¨¬ «ì­ ï äã­ªæ¨ï
¬­®¦¥á⢮

®âªàëâ®;

| ¡®à¥«¥¢áª ï äã­ªæ¨ï.

"

"
1
 áᬮâਬ ¯®á«¥¤®¢ â¥«ì­®áâì â®ç¥ª fxn g1 , á室ïéãîáï ª â®çª¥ x0 . ‚롥६ ­ âãà «ì­®¥ ç¨á«® N â ª, çâ® ¯à¨ ¢á¥å n > N ¢ë¯®«­ï¥âáï xn 2 B" . ’®£¤ 

B" ) > M D (x ) , ":
MD (xn ) > (
 0
(B )

,

,



"



1{15

ޝ¥à â®àë á㯥௮§¨æ¨¨ ¢ ¯à®áâà ­áâ¢ å ‹¥¡¥£ 

D

,

’ ª ª ª " ¢ë¡à ­® ¯à®¨§¢®«ì­®, ¯®«ãç ¥¬ lim
inf M (xn ) > (MD )(x0 ).
, Dn!1
b) ’ ª ª ª ¬ ªá¨¬ «ì­ ï äã­ªæ¨ï M (x) ¯®«ã­¥¯à¥à뢭  á­¨§ã, â® ¬­®¦¥á⢮
Et ®âªàë⮥.
c) ’ ª ª ª ¬­®¦¥á⢮ Et ®âªàëâ® ¤«ï «î¡®£® t > 0, â® MD | ¡®à¥«¥¢áª ï äã­ªæ¨ï. B
à¥¤«®¦¥­¨¥ 2.
 q
D
X
U D
t>0
ãáâì

|

-ª¢ §¨ ¤¤¨â¨¢­ ï äã­ªæ¨ï, ®¯à¥¤¥«¥­­ ï ­  ®â-

ªàëâëå ¯®¤¬­®¦¥áâ¢ å ®¡« áâ¨

®âªàë⮣® ¬­®¦¥á⢠

®¤­®à®¤­®£® ¯à®áâà ­á⢠

.

’®£¤  ¤«ï «î¡®£®

¨ «î¡®£®

,

,





 x 2 U : MU (x) > t

6 q ct2 (U ):

„«ï ¤®ª § â¥«ìá⢠ ¯à¥¤«®¦¥­¨ï 2 ­ ¬ ¯®âॡã¥âáï á«¥¤ãîé ï
‹¥¬¬  2 [4, c. 12].
E
X
ãáâì

­¥­¨¥¬ ª®­¥ç­®£® ­ ¡®à  è à®¢
­¥¯¥à¥á¥ª îé¨åáï è à®¢

| ¨§¬¥à¨¬®¥ ¯®¤¬­®¦¥á⢮

fBj g

B1 ; : : : ; Bm
m
X
k=1

, ïî饥áï ®¡ê¥¤¨-

. ’®£¤  ¬®¦­® ¢ë¡à âì ª®­¥ç­ë© ­ ¡®à ¯®¯ à­®
¨§

fBj g

â ª®©, çâ®

1
(Bk ) > c,
2 (E ):

¥à¥©¤¥¬ ª ¤®ª § â¥«ìáâ¢ã ¯à¥¤«®¦¥­¨ï 2.
C Ž¯à¥¤¥«¨¬ ¬­®¦¥á⢮ Et á«¥¤ãî騬 ®¡à §®¬:


,





Et = x 2 U : MU (x) > t ;

¨ ¯ãáâì E ¡ã¤¥â ¯à®¨§¢®«ì­®¥ ª®¬¯ ªâ­®¥ ¯®¤¬­®¦¥á⢮ ¬­®¦¥á⢠ Et . ˆ§ ®¯à¥¤¥«¥­¨© ¬ ªá¨¬ «ì­®© ä㭪樨 MU ¨ ¬­®¦¥á⢠ Et á«¥¤ã¥â, çâ® ¤«ï «î¡®© â®çª¨ x 2 E
áãé¥áâ¢ã¥â è à B x  U , ᮤ¥à¦ é¨© â®çªã x, â ª®©, çâ®
(B x ) > t(B x ):

(3)

’ ª ª ª x 2 B x , â® ¢ ᨫ㠪®¬¯ ªâ­®á⨠¬­®¦¥á⢠ E ¬ë ¬®¦¥¬ ¢ë¡à âì ª®­¥ç­ãî
ᮢ®ªã¯­®áâì â ª¨å è à®¢, ¯®ªà뢠îéãî ¬­®¦¥á⢮ E . ® «¥¬¬¥ 2 ¨§ ­¥¥ ¬®¦­®
¢ë¡à âì ª®­¥ç­ë© ­ ¡®à ¯®¯ à­® à §«¨ç­ëå è à®¢ B1 ; : : : ; Bm â ª®©, çâ®
(E ) 6 c2

m
X
k=1

(Bk ):

(4)

à¨¬¥­ïï ª ª ¦¤®¬ã ¨§ è à®¢ Bk (3) ¨ § â¥¬ (4), ¯à¨å®¤¨¬ ª ­¥à ¢¥­á⢠¬
X
P

k

(Bk ) > t

m
X
k=1

1
(Bk ) > tc,
2 (E ):

ˆá¯®«ì§ãï ®æ¥­ªã (Bk ) 6 q(U ), ¨¬¥¥¬ (E ) 6 q ct2 (U ) ¤«ï ¯à®¨§¢®«ì­®£® ª®¬k
¯ ªâ­®£® ¯®¤¬­®¦¥á⢠ E  Et . ¥à¥å®¤ï ª â®ç­®© ¢¥àå­¥© £à ­¨ ¯® ¢á¥¬ â ª¨¬
E  Et , ¯®«ãç ¥¬ âॡ㥬®¥ ã⢥ত¥­¨¥. B

1{16

‘. Š. ‚®¤®¯ìï­®¢, €. „. “å«®¢

Bepå­ïï ¨ ­¨¦­ïï ¯à®¨§¢®¤­ë¥ q-ª¢ §¨ ¤¤¨â¨¢­®© ä㭪樨 ¬­®¦¥á⢠, § ¤ ­­®© ­  ®âªàëâëå ¬­®¦¥áâ¢ å ¨§ D, ®¯à¥¤¥«ïîâáï á«¥¤ãî騬 ®¡à §®¬:

B )
0
inf (B ) ;
0 (x) = hlim
sup (
!0  tg:

0 (x) < +1

¤«ï ¯®ç⨠¢á¥å

x2D

.

| ¯à®áâà ­á⢮ ®¤­®à®¤­®£® ⨯  á ®¯à¥¤¥«¥­­®© ­ 

®âªàëâëå ¯®¤¬­®¦¥áâ¢ å ®¡« áâ¨

DX q
U D

-ª¢ §¨ ¤¤¨â¨¢­®© ä㭪樥© ¬­®¦¥á⢠

Z 0(x) d(x) 6 c q (U ):



.

’®£¤  ¤«ï «î¡®£® ®âªàë⮣® ¬­®¦¥á⢠

2 2

U

C à¨ 1 < t < 1 ¬­®¦¥á⢮ A = fx 2 U : 0 < 0 (x) < 1g ¯à¥¤áâ ¢¨¬®0 ¢ ¢¨¤¥ ®¡ê¥¤¨­¥­¨ï ­¥¯¥à¥á¥ª îé¨åáï ¨§¬¥à¨¬ëå ¬­®¦¥á⢠Pn = fx 2 A : tn <  (x) 6 tn+1 g,
n 2 Z.  áᬮâਬ ¯à®¨§¢®«ì­®¥ ª®¬¯ ªâ­®¥ ¬­®¦¥á⢮ Fn  Pn ¨ ¤«ï 䨪á¨à®¢ ­­®£® ª®­¥ç­®£® ­ ¡®à  K  Z à áᬮâਬ ¯à®¨§¢®«ì­ë¥ ®âªàëâë¥ ¯®¯ à­® ­¥¯¥à¥á¥ª î騥áï ¬­®¦¥á⢠ Un  Fn , Un  U , n 2 K . ’®£¤ , ¯à¨¬¥­ïï á«¥¤á⢨¥ 2 ª
¬­®¦¥á⢠¬ Fn ¢¬¥áâ® Et ¨ Un ¢¬¥áâ® U , ¯®«ãç ¥¬ ­¥à ¢¥­á⢠

Z
X
X
X
1
1
,
t (F ) >
t
q(U ) > (U ) >
0 (x) d(x):
2

n K

n

c2 q n2K

n

n

c2 q n2K

1

Fn

1{17

ޝ¥à â®àë á㯥௮§¨æ¨¨ ¢ ¯à®áâà ­áâ¢ å ‹¥¡¥£ 

’ ª ª ª ¬­®¦¥á⢠
Fn  Pn , n 2 Z, ­ ¡®à K  Z ¨ ç¨á«® t > 1 ¯à®¨§¢®«ì­ë,  
0
(fx 2 U :  (x) = 1g) = 0, ⮠⥮६  ¤®ª § ­ . B
‘«¥¤á⢨¥ 3 (⥮६  ‹¥¡¥£ ).
X
D
X
f
L1;loc (D)
ãáâì

« áâì ¢
¢á¥å

.

x2D

à¥¤¯®«®¦¨¬, çâ® äã­ªæ¨ï

1



| ®¤­®à®¤­®¥ ¯à®áâà ­á⢮,

¯à¨­ ¤«¥¦¨â

.

| ®¡-

’®£¤  ¤«ï ¯®çâ¨

Z

jf (y) , f (x)j d(y) = 0:
!0lim
; B 3x (B )

(5)

B

C „«ï ä㭪樨 g 2 L1;loc(D) ¨ ®âªàë⮣® ¬­®¦¥á⢠ U  D ¯®«®¦¨¬
(U ) =

Z

g(y) d(y):

U

’ ª ª ª  | 1-ª¢ §¨ ¤¤¨â¨¢­ ï äã­ªæ¨ï ¬­®¦¥á⢠, â® ¯® ⥮६¥ 1 ¤«ï ¯à®¨§¢®«ì­®£® ®âªàë⮣® ¬­®¦¥á⢠ U  D ¢ë¯®«­¥­® ­¥à ¢¥­á⢮
Z

g(y) d(y) 6 c2

Z

g(y) d(y) = c2 (U );

U

U

£¤¥
g (x) = lim

1

sup
h!0 x2B ; t > 0
0

, â® ¤«ï «î¡®£® ®âªàë⮣® ¬­®¦¥á⢠

’®£-

¢ë¯®«­ï¥âáï ­¥à ¢¥­á⢮

,

, ¨¬¥¥¬

e(E ) 6 qt (U ):

(7)

C „¥©á⢨⥫쭮, ¢®§ì¬¥¬ ¯à®¨§¢®«ì­ãî â®çªã x 2 E . ’®£¤  ­ ©¤¥âáï ¯®á«¥¤®¢ â¥«ì­®áâì è à®¢ Bkx  U , x 2 Bkx , à ¤¨ãáë ª®â®àëå áâ६ïâáï ª ­ã«î, â ª ï, çâ®
­¥à ¢¥­á⢮
(Bkx ) > t > 0
(B x )
k



,S

S

¢ë¯®«­¥­® ¯à¨ ¢á¥å k 2 N . ‘¥¬¥©á⢮ x E k N Bkx ®¡à §ã¥â ¯®ªàë⨥ ¬­®¦¥á⢠
E ¢ á¬ëá«¥ ‚¨â «¨, §­ ç¨â, ­ ©¤¥âáï ¯®á«¥¤®¢ â¥«ì­®áâì
¯®¯ à­® ­¥¯¥à¥á¥ª îé¨åáï
S
è à®¢ Bm ¨§ í⮣® ᥬ¥©á⢠ â ª ï, çâ® e (E n m Bm ) = 0.
ˆ¬¥¥¬
X
e (E ) 6 (Bm );
2

2

m

¨ t(Bm ) < (Bm ) ¯à¨ ª ¦¤®¬ m. ‘«¥¤®¢ â¥«ì­®,

te (E ) 6 t

X

m

(Bm ) 6

X

m

(Bm ) 6 q(U )

¨ ¯®í⮬㠭㦭®¥ ­¥à ¢¥­á⢮ ãáâ ­®¢«¥­®. B
’¥®à¥¬  3. ãáâì
¬­®¦¥á⢠



X

| ®¤­®à®¤­®¥ ¯à®áâà ­á⢮,  

q

-ª¢ §¨ ¤¤¨â¨¢­ ï äã­ªæ¨ï

®¯à¥¤¥«¥­  ­  ®âªàëâëå ¯®¤¬­®¦¥áâ¢ å ®¡« áâ¨

«î¡®£® ®âªàë⮣® ¬­®¦¥á⢠

U D
Z

U

D

X.

’®£¤  ¤«ï

 (x) d(x) 6 q(U ):

(8)

0

€­ «®£¨ç­®¥ ­¥à ¢¥­á⢮ ¤«ï ­¨¦­¥© ¯à®¨§¢®¤­®©  ¢¬¥áâ®
¢¥àå­¥©  ¡ë«® ãáâ ­®¢«¥­® ¢ [8, «¥¬¬  2.3] ¯à¨ ¯à®¨§¢®«ì­®¬ q ¢ ¯à¥¤¯®«®¦¥­¨¨,
çâ® q-ª¢ §¨ ¤¤¨â¨¢­ ï äã­ªæ¨ï ¬­®¦¥á⢠ ®¯à¥¤¥«¥­  ­  ¡®à¥«¥¢áª¨å ¯®¤¬­®¦¥áâ¢ å ¥¢ª«¨¤®¢  ¯à®áâà ­á⢠ Rn .
C à¨ 1 < t < 1 ¬­®¦¥á⢮ A = fx 2 U : 0 <  (x) < 1g ¯à¥¤áâ ¢¨¬® ¢ ¢¨¤¥
®¡ê¥¤¨­¥­¨ï ­¥¯¥à¥á¥ª îé¨åáï ¬­®¦¥á⢠Pn = fx 2 A : tn <  (x) 6 tn+1 g, n 2 Z.
 áᬮâਬ ¯à®¨§¢®«ì­®¥ ª®¬¯ ªâ­®¥ ¬­®¦¥á⢮ Fn  Pn ¨ ¤«ï 䨪á¨à®¢ ­­®£® ª®­¥ç­®£® ­ ¡®à  K  Z à áᬮâਬ ¯à®¨§¢®«ì­ë¥ ®âªàëâë¥ ¯®¯ à­® ­¥¯¥à¥á¥ª î騥áï ¬­®¦¥á⢠ Un  Fn , Un  D, n 2 K . B®§ì¬¥¬ ¯à®¨§¢®«ì­ãî â®çªã x 2 Fn . ’®£¤ 
­ ©¤¥âáï ¯®á«¥¤®¢ â¥«ì­®áâì è à®¢ Bkx  Un , x 2 Bkx , à ¤¨ãáë ª®â®àëå áâ६ïâáï ª
­ã«î, â ª ï, çâ® ­¥à ¢¥­á⢮
0

‡ ¬¥ç ­¨¥ 1.
0

0

0

(Bkx ) > tn (Bkx ) > 0

1{20

‘. Š. ‚®¤®¯ìï­®¢, €. „. “å«®¢

S

¯à¨¢á¥å k 2 N . ãáâì F = n Fn ; n 2 K . Žç¥¢¨¤­®, ç⮠ᥬ¥©á⢮ è à®¢
x
x2F k2N Bk ®¡à §ã¥â ¯®ªàë⨥ ¬­®¦¥á⢠ F ¢ á¬ëá«¥ ‚¨â «¨. ‘«¥¤®¢ â¥«ì­®,
­ ©¤¥âáï ¯®á«¥¤®¢ â¥«ì­®áâì
¯®¯ à­® ­¥¯¥à¥á¥ª îé¨åáï è à®¢ Bm ¨§ í⮣® ᥬ¥©á⢠
S
â ª ï, çâ®
(F n m Bm ) = 0. ‡ ¬¥â¨¬, çâ® ¢ á¨«ã ¢ë¡®à  è à®¢ á¯à ¢¥¤«¨¢® ᢮©á⢮
S
(Fn n fBm : Bm \ Fn 6= ?g) = 0 ¤«ï «î¡®£® n 2 K . „ «¥¥ ¨¬¥¥¬
¢ë¯®«­¥­®
,S
S

q (U )

>

X

m2N

(Bm ) =

X

X

n2K Bm \Fn 6=?

(Bm ) >
=

X

n2K
X

n2 K

tn





X

Bm \Fn 6=?

tn (Fn ) >

(Bm )

X

n2K

t,1

Z

Fn

0 (x) d(x):

’ ª ª ª ¬­®¦¥á⢠ Fn  Pn , n 2 Z, ­ ¡®à K  Z ¨ ç¨á«® t > 1 ¯à®¨§¢®«ì­ë, ­¥à ¢¥­á⢮ (8) ¤®ª § ­®. B
‘«¥¤á⢨¥ 4. ãáâì
æ¨ï ¬­®¦¥á⢠
¯®ç⨠¢á¥å

x



2X

X

| ®¤­®à®¤­®¥ ¯à®áâà ­á⢮,  

®¯à¥¤¥«¥­  ­  ®âªàëâëå ¯®¤¬­®¦¥á⢠å

q -ª¢ §¨ ¤¤¨â¨¢­ ï äã­ª®¡« á⨠D
. ’®£¤  ¤«ï

X

0 (x) 6 q0 (x):

C ˆ§ ­¥à ¢¥­á⢠ (8) á«¥¤ã¥â, çâ® ¤«ï ¯à®¨§¢®«ì­®£® è à  B  D á¯à ¢¥¤«¨¢®
1

(B )

Z

B

1 (B ):
0 (x) d(x) 6 q (B

)

¥à¥å®¤ï ¢ ¯®á«¥¤­¥¬0 ­¥à ¢¥­á⢥ ª ­¨¦­¥¬ã ¯à¥¤¥«ã ¯à¨  ! 0 ¨ ¯à¨¬¥­ïï á«¥¤á⢨¥ 3, ­ å®¤¨¬, çâ®  (x) 6 q0 (x). B
ˆ§ ⥮६ë 3 ¨ á«¥¤á⢨ï 4 ¢ë⥪ îâ ᢮©á⢠ (ª¢ §¨) ¤¤¨â¨¢­®© ä㭪樨, ®¯à¥¤¥«¥­­®© ­  ®âªàëâëå ¯®¤¬­®¦¥áâ¢ å ®¤­®à®¤­®£® ¯à®áâà ­á⢠ X, ®¡®¡é î騥 ᮮ⢥âáâ¢ãî騥 १ã«ìâ âë ¨§ [3], ¢ ç áâ­®áâ¨, ᮮ⭮襭¨ï (1) ¨ (2) ¯à¨ X = Rn .
‘«¥¤á⢨¥ 5.
X
1(
)

DX
a)
x2D
ãáâì

æ¨ï ¬­®¦¥á⢠

| ®¤­®à®¤­®¥ ¯à®áâà ­á⢮,  

- ª¢ §¨  ¤¤¨â¨¢­ ï äã­ª-

®¯à¥¤¥«¥­  ­  ®âªàëâëå ¯®¤¬­®¦¥áâ¢ å ®¡« áâ¨

¢ ¯®ç⨠ª ¦¤®© â®çª¥

. ’®£¤ 

áãé¥áâ¢ã¥â ª®­¥ç­ ï ¯à®¨§¢®¤­ ï

lim (B ) = 0 (x);
!0; B 3x (B )
b)

¤«ï «î¡®£® ®âªàë⮣® ¬­®¦¥á⢠

Z

U

U

D

á¯à ¢¥¤«¨¢® ­¥à ¢¥­á⢮

0 (x) d(x) 6 (U ):

‡ ¬¥â¨¬, ç⮠ᮮ⭮襭¨¥ ¬¥¦¤ã ¢¥àå­¥© ¨ ­¨¦­¥© ¯à®¨§¢®¤­ë¬¨ q-ª¢ §¨ ¤¤¨â¨¢­®© ä㭪樨 (á«¥¤á⢨¥ 4) ¬®¦¥â ¡ëâì ¤®ª § ­® ­¥§ ¢¨á¨¬ë¬ ®¡à §®¬. à¨¢®¤¨¬®¥ ­¨¦¥ ¤®ª § â¥«ìá⢮ ®¡®¡é ¥â à áá㦤¥­¨ï ¨§ [3, ⥮६  5, c. 207; 9, á. 33{35].

1{21

ޝ¥à â®àë á㯥௮§¨æ¨¨ ¢ ¯à®áâà ­áâ¢ å ‹¥¡¥£ 

à¥¤«®¦¥­¨¥ 4. ãáâì



q

|

-ª¢ §¨ ¤¤¨â¨¢­ ï äã­ªæ¨ï, ®¯à¥¤¥«¥­­ ï ­  ª®-

DX
X
0 (x) 6 q0 (x)
x2D
C à¥¤áâ ¢¨¬ ¬­®¦¥á⢮ A = fx 2 D : 0 (x) > q0(x)g ¢ ¢¨¤¥ A = S Ars , £¤¥
r;s
®¡ê¥¤¨­¥­¨¥ ¡¥à¥âáï ¯® ¢á¥¬ ¯ à ¬ à æ¨®­ «ì­ëå ç¨á¥« r > s,   Ar;s = fx 2 D :
0 (x) > r > s > q0 (x)g. ”¨ªá¨à㥬 ¯ àã ç¨á¥« r > s ¨ ¤®ª ¦¥¬, çâ® (Ars ) = 0.
ãáâì ¯®á«¥¤®¢ â¥«ì­®á⨠è à®¢ Bk 3 x; Bk  D ¨ Bk 3 x; Bk  D ¢ë¡à ­ë â ª, çâ®
(Bk ) ¨ 0 (x) = lim (Bk ) :
0 (x) = rad(lim
Bk )!0 (Bk )
rad(Bk )!0 (Bk )
’®£¤ 


 ) 
(
B
)
(
B
k
k
Ars = x 2 D : 9k0 (x) 8k > k0 (x) (B ) > r > s > q (B  ) :
k
k
‚®§ì¬¥¬ ¯à®¨§¢®«ì­®¥ " > 0 ¨ â ª®¥S®âªàë⮥
¬­®¦¥á⢮
G
,
ᮤ¥à¦ é¥¥
A
rs , çâ®
S 
Bk ®¡à §ã¥â ¯®ªàë⨥ ‚¨â «¨ ¬­®¦¥á⢠
(G) 6 e(Ars ) + ". ‘¥¬¥©á⢮ B =
x2Ars k
Ars . à¨¬¥­¨¬ ª ᥬ¥©áâ¢ã B ¨ ¬­®¦¥áâ¢ã Ars «¥¬¬ã 3, ¨á¯®«ì§ãï ⮫쪮 ⥠è àë
Bk, ª®â®àë¥ á®¤¥à¦ âáï
¢ G. ®«ã稬 ¯®á«¥¤®¢ â¥«ì­®áâì ­¥¯¥à¥á¥ª îé¨åáï è à®¢
,
Sk , ¤«ï ª®â®à®© e Ars n S Sk = 0. Ÿá­®, çâ®
­¥ç­ëå ®¡ê¥¤¨­¥­¨ïå ®âªàëâëå è à®¢ ¨§ ®¡« áâ¨
¤«ï ¯®ç⨠¢á¥å

à ­á⢮. ’®£¤ 

k

‡ ¬¥â¨¬, çâ®

(U ) >

X

k

, £¤¥

| ®¤­®à®¤­®¥ ¯à®áâ-

.

X
(Sk ) > qs (Sk ):

e(Ars ) 6

k

X

k 2N

e(Ars \ Sk):

®í⮬ã, ¯à¨¬¥­ïï ¯à¥¤«®¦¥­¨¥ 3 ª ¬­®¦¥áâ¢ã Ars [ Sk ¢¬¥áâ® E ¨ Sk ¢¬¥áâ® U ,
¨¬¥¥¬
X
X
e(Ars ) 6 e(Ars \ Sk ) 6 qr (Sk) 6 rs (G) 6 rs (e(Ars ) + "):
ˆâ ª,

k

k 2N

e(Ars ) 6 " r ,s s :
®áª®«ìªã " ᪮«ì 㣮¤­® ¬ «®, ¯®«ãç ¥¬ (Ars ) = 0. B

‡ ¬¥ç ­¨¥ 2. ¥§ã«ìâ âë ¯ à £à ä  1 á¯à ¢¥¤«¨¢ë â ª¦¥ ¨ ¢ ⮬ á«ãç ¥, ¥á«¨ ¢¬¥áâ® ¬¥âà¨ç¥áª®£® ¯à®áâà ­á⢠ (X; d) à áᬠâਢ ¥âáï ¬­®¦¥á⢮ X â ª®¥, çâ®
¤«ï ª ¦¤®© â®çª¨ x 2 X ®¯à¥¤¥«¥­  á¨á⥬  fB (x)g ­¥¯ãáâëå ®£à ­¨ç¥­­ëå ¯®¤¬­®¦¥á⢠¬­®¦¥á⢠ X, ¯ à ¬¥âਧ®¢ ­­ëå ; 0 <  < 1, â. ¥. § ¤ ­  á¨á⥬ 
fB = B (x)g ®âªàëâëå è à®¢ á æ¥­â஬ ¢ â®çª¥ x à ¤¨ãá  . à¥¤¯®« £ ¥âáï,
çâ® è àë ¬®­®â®­­ë ®â­®á¨â¥«ì­® : B1 (x)  B2 (x) ¯à¨ 1 < 2 , 㤮¢«¥â¢®àïîâ
᢮©á⢠¬ 4, 5, 6,   â ª¦¥ ¤¢ã¬ ä®à¬ã«¨àã¥¬ë¬ ­¨¦¥ âॡ®¢ ­¨ï¬.
T
B (x) = fxg S B (x) = X
‘¢®©á⢮ 7.



¨



.

‘¢®©á⢮ 8. „«ï ª ¦¤®£® ®âªàë⮣® ¬­®¦¥á⢠

x 7! (B (x) \ U )

­¥¯à¥à뢭 .

U

¨ ª ¦¤®£®

>0

äã­ªæ¨ï

1{22

‘. Š. ‚®¤®¯ìï­®¢, €. „. “å«®¢

1.3. ‚ í⮬ ¯ã­ªâ¥ ¬ë áä®à¬ã«¨à㥬 ¯à®áâë¥ ãá«®¢¨ï, ®¡¥á¯¥ç¨¢ î騥 à ¢¥­á⢮ ¢ ᮮ⭮襭¨¨ (8). ˆ§¢¥áâ­®, á¬. ­ ¯à¨¬¥à [7], çâ® ¥á«¨  ®¯à¥¤¥«¥­  ­  ¡®à¥«¥¢áª¨å ¬­®¦¥á⢠å, áç¥â­®  ¤¤¨â¨¢­  ¨  ¡á®«îâ­® ­¥¯à¥à뢭 , â® ¢ ᮮ⭮襭¨¨ (8)
¨¬¥¥â ¬¥áâ® à ¢¥­á⢮. ‚ í⮬ ¯ã­ªâ¥ ¬ë ¯®«ã稬 à ¢¥­á⢮ ¢ (8) ¯à¨ ¡®«¥¥ á« ¡ëå
¯à¥¤¯®«®¦¥­¨ïå.
‘¢®©á⢮ 9. 1-ª¢ §¨ ¤¤¨â¨¢­ ï äã­ªæ¨ï ¬­®¦¥á⢠ , ®¯à¥¤¥«¥­­ ï ­  ®âªàë-

âëå ¬­®¦¥áâ¢ å ®¡« á⨠D

 X, ­ §ë¢ ¥âáï (ª®­¥ç­®) áã¡ ¤¤¨â¨¢­®©, ¥á«¨ ¤«ï «î¡®£®
 D, i = 1; : : : ; k, ¨¬¥¥â ¬¥áâ® ­¥à ¢¥­á⢮

ª®­¥ç­®£® ­ ¡®à  ®âªàëâëå ¬­®¦¥á⢠Ui



k
[
i

‘¢®©á⢮ 10.

=1

Ui



=1

(Ui ):
,

äã­ªæ¨ï ¬­®¦¥á⢠

®¯à¥¤¥«¥­­ ï ­  ®â-

 X, ­ §ë¢ ¥âáï  ¡á®«îâ­® ­¥¯à¥à뢭®© ®â­®á¨â¥«ì0

­® ¬¥àë , ¥á«¨ ¤«ï «î¡®£® " >
®âªàë⮣® ¬­®¦¥á⢠ U

k
X
i

1-ª¢ §¨ ¤¤¨â¨¢­ ï

ªàëâëå ¬­®¦¥áâ¢ å ®¡« á⨠D

6

­ ©¤¥âáï  >

0

â ª®¥, çâ®

(U )

 D, 㤮¢«¥â¢®àïî饣® ãá«®¢¨î (U ) < .

< " ¤«ï «î¡®£®

1-ª¢ §¨ ¤¤¨â¨¢­ ï äã­ªæ¨ï ¬­®¦¥á⢠  ®¯à¥¤¥«¥­  ­  ®âªàë X ¨ 㤮¢«¥â¢®àï¥â ᢮©á⢠¬ 9 ¨ 10. ’®£¤  ¤«ï ­¥¥
á¯à ¢¥¤«¨¢ë á«¥¤ãî騥 ã⢥ত¥­¨ï:
S
 P
k
k
1)  Ui = (Ui ) ¤«ï «î¡®£® ª®­¥ç­®£® ­ ¡®à  ¯®¯ à­® ­¥¯¥à¥á¥ª îé¨åáï
i=1
i=1
®âªàëâëå ¬­®¦¥á⢠Ui  D , i = 1; : : : ; k .
S

1
2)  Ui = ilim
(Ui ) ¤«ï «î¡®© ¬®­®â®­­®© ¯®á«¥¤®¢ â¥«ì­®á⨠Ui , i 2 N ,
!1
i=1
®âªàëâëå ¬­®¦¥á⢠¢ D : Ui  Ui+1  U  D , i 2 N , (U ) < 1.
3) „«ï ª®¬¯ ªâ­®£® ¬­®¦¥á⢠ K  D ¢¢¥¤¥¬ ¢¥«¨ç¨­ã
‹¥¬¬  4.

ãáâì

âëå ¬­®¦¥áâ¢ å ®¡« á⨠D

 (K ) = inf f(U ) :

U | ®âªàë⮥ ¬­®¦¥á⢮ ¢ D ¨ (K

n U ) = 0g:

(V ) = supf (K ) : K  V; K | ª®¬¯ ªâ­®¥ ¬­®¦¥á⢮g ¯à¨ ãá«®¢¨¨, çâ®
¬¥à  (V ) ®âªàë⮣® ¬­®¦¥á⢠ V  X ª®­¥ç­ .
C „®ª § â¥«ìá⢮ ã⢥ত¥­¨ï
1 ®ç¥¢¨¤­®.
—â®¡ë ¤®ª § âì ¢â®à®¥, 䨪á¨à㥬
 S

1
" > 0 ¨ â ª®¥ j , ¤«ï ª®â®à®£® 
Ui < =2, £¤¥  ¢ë¡à ­® ¢ ᮮ⢥âá⢨¨ á®
’®£¤ 

i

=j +1

᢮©á⢮¬ 10. ‚®§ì¬¥¬ ¯à®¨§¢®«ì­®¥ ®âªàë⮥ ¬­®¦¥á⢮
(V ) <  . ’®£¤  ¯® ᢮©áâ¢ã 6


1
[
i

=1

Ui



j
[

6

=1

Ui



j
[

+ (V ) < 

=1

Ui

V





1
S
Ui â ª®¥, çâ®
i=j +1

+ ":

i

i

S
1



S
j



’ ª ª ª ç¨á«® " > 0 ¯à®¨§¢®«ì­®, â®  Ui 6 jlim
 Ui . à®â¨¢®¯®«®¦­®¥
!1
i=1
i=1
­¥à ¢¥­á⢮ ¢ ᨫ㠬®­®â®­­®á⨠ä㭪樨 ¬­®¦¥á⢠ ®ç¥¢¨¤­®.

1{23

ޝ¥à â®àë á㯥௮§¨æ¨¨ ¢ ¯à®áâà ­áâ¢ å ‹¥¡¥£ 

„®ª ¦¥¬ ¯®á«¥¤­¥¥ ã⢥ত¥­¨¥. ’ ª ª ª (V ) < 1, ­ ©¤¥âáï ª®¬¯ ªâ­®¥ ¬­®¦¥á⢮ K  V â ª®¥, çâ® (V n K ) <  (§¤¥áì  ¢ë¡à ­® ¯® " ¢ ᮮ⢥âá⢨¨ ᮠ᢮©á⢮¬ 10). ãáâì U  V | ¯à®¨§¢®«ì­®¥ ®âªàë⮥ ¬­®¦¥á⢮ â ª®¥, çâ® (K n U ) = 0.
‘ãé¥áâ¢ã¥â ®âªàë⮥ ¬­®¦¥á⢮ W  K n U , W  U , â ª®¥, çâ® (W ) < . ®
᢮©áâ¢ã 9 ¨¬¥¥¬
(V ) 6 (U ) + (V n K ) + (W ) 6 (U ) + 2":
Žâá ¢ë⥪ ¥â (V ) 6  (K ) + 2". ®áª®«ìªã ¯®«®¦¨â¥«ì­®¥ ç¨á«® " ¯à®¨§¢®«ì­®,
â® (V ) 6 sup  (K ). ‹¥¬¬  ¤®ª § ­ . B
K V

à¥¤«®¦¥­¨¥ 5. ãáâì
äã­ªæ¨ï

(D) < 1
U D

¬­®¦¥á⢠



X

| ®¤­®à®¤­®¥ ¯à®áâà ­á⢮,

®¯à¥¤¥«¥­ 

­ 

, ¨ 㤮¢«¥â¢®àï¥â ᢮©á⢠¬

Z

U

 

1

®âªàëâëå ¯®¤¬­®¦¥á⢠å

9 10
¨

-ª¢ §¨ ¤¤¨â¨¢­ ï
®¡« áâ¨

D  X

,

. ’®£¤  ¤«ï «î¡®£® ®âªàë⮣® ¬­®¦¥á⢠

0 (x) d(x) = (U ):

C à¨ 1 < t < 1 ¬­®¦¥á⢮ A = fx 2 U : 0 < 0(x) < 1g0 ¯à¥¤áâ ¢¨¬® ¢ ¢¨¤¥
®¡ê¥¤¨­¥­¨ï ­¥¯¥à¥á¥ª îé¨åáï ¬­®¦¥á⢠Pn = fx 2 A : tn <  (x) 6 tn+1 g ª®­¥ç­®©
¬¥àë, n 2 Z.  áᬮâਬ ¯à®¨§¢®«ì­®¥ ª®¬¯ ªâ­®¥ ¬­®¦¥á⢮ Fn  Pn ¨ ¤«ï 䨪á¨à®¢ ­­®£® ª®­¥ç­®£® ­ ¡®à  K  Z à áᬮâਬ ¯à®¨§¢®«ì­ë¥ ®âªàëâë¥ ¯®¯ à­®
­¥¯¥à¥á¥ª î騥áï ¬­®¦¥á⢠ Un  Fn , Un  D, n 2 K . B®§ì¬¥¬ ¯à®¨§¢®«ì­ãî â®çªã
x 2 Fn . ’®£¤  ­ ©¤¥âáï ¯®á«¥¤®¢ â¥«ì­®áâì è à®¢ Bkx  Un , x 2 Bkx, à ¤¨ãáë ª®â®àëå
áâ६ïâáï ª ­ã«î, â ª ï, çâ® ­¥à ¢¥­á⢮

(Bkx ) < tn+2 (Bkx )
S

¢ë¯®«­¥­®
¯à¨ ¢á¥å k 2 N . ãáâì F = n Fn ; n 2 K . Žç¥¢¨¤­®, ᥬ¥©á⢮ è à®¢
,S
S
x
x2F k2N Bk ®¡à §ã¥â ¯®ªàë⨥ ¬­®¦¥á⢠ F ¢ á¬ëá«¥ ‚¨â «¨. ‘«¥¤®¢ â¥«ì­®,
­ ©¤¥âáï ¯®á«¥¤®¢ â¥«ì­®áâì
¯®¯ à­® ­¥¯¥à¥á¥ª îé¨åáï è à®¢ Bm ¨§ í⮣® ᥬ¥©á⢠
S
B
)
=
0.
‡ ¬¥â¨¬,
çâ® ¢ á¨«ã ¢ë¡®à  è à®¢ á¯à ¢¥¤«¨¢® ᢮©á⢮
â ª ï, çâ®

(
F
n
m
m
S
(Fn n fBm : Bm \ Fn 6= ?g) = 0 ¤«ï «î¡®£® n 2 K . „ «¥¥ ¨¬¥¥¬
 (F ) 6

X

m2N

(Bm ) =

X

X

n2K Bm \Fn 6=?

(Bm )

6

X

n2K

tn+2



X

Bm \Fn 6=?



(Bm ) 6

X

n2K

tn+2(Un ):

’ ª ®âªàëâë¥ ¬­®¦¥á⢠ Un  Fn ¯à®¨§¢®«ì­ë, ®âá ¢ë⥪ ¥â
 (F ) 6

X

n2K

tn+2 (Fn ) 6

X

t2

Z

n2K Fn

 (x) d(x) 6 t2
0

Z

U

0 (x) d(x):

’ ª ª ª ¬­®¦¥á⢠ Fn  Pn , n 2 Z, ­ ¡®à K  Z ¨ ç¨á«® t > 1 ¯à®¨§¢®«ì­ë, â® á
ãç¥â®¬ «¥¬¬ë 4 ¨ ⥮६ë 3 ¯à¥¤«®¦¥­¨¥ 5 ¤®ª § ­®. B

1{24

‘. Š. ‚®¤®¯ìï­®¢, €. „. “å«®¢

2. ޝ¥à â®à á㯥௮§¨æ¨¨ ¢ ¯à®áâà ­áâ¢ å ‹¥¡¥£ 

ãáâì (X; d; ) | ®¤­®à®¤­®¥ ¯à®áâà ­á⢮. „ «¥¥ ¬ë ¡ã¤¥¬ ¯à¥¤¯®« £ âì, çâ®
ª¢ §¨¬¥âਪ  d ¨ ¡®à¥«¥¢áª ï ¬¥à   㤮¢«¥â¢®àïîâ ᢮©á⢠¬ 1{5 (᢮©á⢮ 6 ­ ¬
¡ë«® ­ã¦­® ⮫쪮 ¯à¨ à áᬮâ७¨¨ ä㭪権 ¬­®¦¥á⢠, § ¤ ­­ëå ­  ®âªàëâëå
¯®¤¬­®¦¥áâ¢ å ¯à®áâà ­á⢠ X).
 ¯®¬­¨¬, çâ® ®â®¡à ¦¥­¨¥ , ®¯à¥¤¥«¥­­®¥ ­  ¡®à¥«¥¢áª¨å ¯®¤¬­®¦¥áâ¢ å ¨§
D, D | ®¡« áâì ¢ X, ­ §ë¢ ¥âáï q-ª¢ §¨ ¤¤¨â¨¢­®© ä㭪樥© ¬­®¦¥á⢠, £¤¥ q > 1 |
䨪á¨à®¢ ­­®¥ ç¨á«®, ¥á«¨
1) 0 6 (K ) < 1, ¥á«¨ K  D | ª®¬¯ ªâ­®¥ ¬­®¦¥á⢮;
2) (U1 ) 6 (U2 ), ¥á«¨ U1  U2  D | ¡®à¥«¥¢áª¨¥ ¬­®¦¥á⢠;
3) ¤«ï ¢á类£® ª®­¥ç­®£® ­ ¡®à  Ui  U , i = 1; : : : ; k, ¯®¯ à­® à §«¨ç­ëå ¡®à¥«¥¢áª¨å ¬­®¦¥áâ¢, U  D | ¡®à¥«¥¢áª®¥ ¬­®¦¥á⢮,
k
X
i=1

(Ui ) 6 q(U ):

‡ ¬¥ç ­¨¥ 3. “⢥ত¥­¨ï ¯¥à¢®£® ¯ à £à ä  ® ¤¨ää¥à¥­æ¨à㥬®á⨠¨ ¢®ááâ ­®¢«¥­¨¨  ¡á®«îâ­® ­¥¯à¥à뢭®© ç á⨠ä㭪樨 ¬­®¦¥á⢠ á¯à ¢¥¤«¨¢ë ¤«ï
q-ª¢ §¨ ¤¤¨â¨¢­ëå ä㭪権 ¬­®¦¥á⢠, ®¯à¥¤¥«¥­­ëå ­  ¡®à¥«¥¢áª¨å ¯®¤¬­®¦¥áâ¢ å ®¡« á⨠D.
ãáâì E | ¨§¬¥à¨¬®¥ ¬­®¦¥á⢮ ­  ®¤­®à®¤­®¬ ¯à®áâà ­á⢥ X. ˆ§¬¥à¨¬ ï
äã­ªæ¨ï f : E ! R ¯à¨­ ¤«¥¦¨â ¯à®áâà ­áâ¢ã ‹¥¡¥£  Lp (E ); 1 6 p 6 1, ¥á«¨

kf j Lp (E )k =

¨

Z

E

 p1

jf jp d(x)

< +1; 1 6 p < 1;

kf j L1 (E )k = ess sup jf (x)j < +1:

x2E

ãáâì D ¨ De | ¨§¬¥à¨¬ë¥ ¬­®¦¥á⢠ ­  ¬¥âà¨ç¥áª¨å ¯à®áâà ­á⢠å X ¨ Xe
ᮮ⢥âá⢥­­®. ã¤¥¬ £®¢®à¨âì, çâ® ®â®¡à ¦¥­¨¥ ' : D ! De ¯®à®¦¤ ¥â ®£à ­¨ç¥­
e ) ! Lq (D), 1 6 q 6 p 6 1, ¯® ¯à ¢¨«ã ' f = f  ',
­ë© ®¯¥à â®à ¢«®¦¥­¨ï ' : Lp (D




¥á«¨ áãé¥áâ¢ã¥â ¯®áâ®ï­­ ï K < 1 â ª ï, çâ®
' f j Lq (D)
6 K
f j Lp (De )
¤«ï
«î¡®© ä㭪樨 f 2 Lp (De ). ‚ í⮬ á«ãç ¥ ®ç¥¢¨¤­®, çâ® ' ¯®à®¦¤ ¥â ®£à ­¨ç¥­­ë©
®¯¥à â®à ' : Lp (Ae) ! Lq (',1 (Ae)) ¤«ï «î¡®£® ¡®à¥«¥¢áª®£® ¬­®¦¥á⢠ Ae  De . „¥©á⢨⥫쭮, ¥á«¨ f 2 Lp (Ae), â® à áᬮâਬ ¯à®¤®«¦¥­¨¥ f~ ä㭪樨 f ­  De ¯®«®¦¨¢
f~(y) = 0 ¢­¥ Ae. ’®£¤  ' f (x) = (f  ')(x) = ' f~j',1 (Ae) (x), x 2 ',1 (Ae), ¨ ¯®í⮬ã ' |
®£à ­¨ç¥­­ë© ®¯¥à â®à.
‹¥¬¬  5.
' : D ! De

' : Lp (De ) ! Lq (D) 1 6 q < p 6 1
2.1.

ãáâì ®â®¡à ¦¥­¨¥

¢«®¦¥­¨ï

(Ae) =

,

sup

f 2Lp (Ae)

¯®à®¦¤ ¥â ®£à ­¨ç¥­­ë© ®¯¥à â®à

. ’®£¤ 


!
' f j Lq (',1 (Ae))

;


f j Lp (Ae)

 pq

£¤¥

 = p,q
q

¯à¨
¯à¨

p < 1;
p = 1;

1{25

ޝ¥à â®àë á㯥௮§¨æ¨¨ ¢ ¯à®áâà ­áâ¢ å ‹¥¡¥£ 

ï¥âáï ®£à ­¨ç¥­­®© ¬®­®â®­­®© áç¥â­®- ¤¤¨â¨¢­®© ä㭪樥©, ®¯à¥¤¥«¥­­®© ­ 

Ae  De e(Ae) > 0
C Žç¥¢¨¤­®, çâ® (Ae1 ) 6 (Ae2 ), ¥á«¨ Ae1  Ae2 .
ãáâì Aei , i 2 N , | ¯®¯ à­® ­¥¯¥à¥á¥ª î騥áï ¡®à¥«¥¢áª¨¥ ¬­®¦¥á⢠ ¢ De , Ae0 =
1
S
Aei, Ai = ',1 (Aei), i = 0; 1; : : : .  áᬮâਬ â ªãî äã­ªæ¨î fi 2 Lp (Aei ), ç⮡ë

¡®à¥«¥¢áª¨å ¬­®¦¥á⢠å

,

i=1

.





,

 1

,



ei ) 1 , "i 
fi j Lp (A
ei )
¨
' fi j Lq (Ai )
> (A
®¤­®¢à¥¬¥­­®
¢ë¯®«­ï«¨áì
ãá«®¢¨ï
2

p


,

,
"
ei )
= 1 ¯à¨ p = 1 , " 2 (0; 1).
fi j Lp (A
ei )
= (A
ei ) 1 , i ¯à¨ p < 1
fi j Lp (A
2
N
P
®« £ ï fN = fi ¨ ¯à¨¬¥­ïï ­¥à ¢¥­á⢮ ƒ¥«ì¤¥à  ¯à¨ p < 1 (á«ãç © à ¢¥­á⢠),
i=1
¯®«ãç ¥¬





' fN j Lq

q


 

q 1=q
"

e

fN j Lp (Ai )
A >
A 1 , 2i
i=1
i=1
N

 1
N

X
[


"
fN j Lp
ei
=
(Aei ) 1 , 2i
A


i=1
i=1

[
N




i

N 
X



( ei )

>

X
N
i=1

A ," A

( ei )

 1


N


( e0 )

f j Lp

[
N
i=1



ei


A

: (9)

Žâá á«¥¤ã¥â, çâ®

A

( e0 ) 1

> sup





' fN j Lq



N

f j Lp

S
N



i=1
N
S

i=1

Ai






ei


A

>

 N
X
i=1

 1
e
( 0 )

A ," A

( ei )

S
N

;



£¤¥ â®ç­ ï ¢¥àå­ïï £à ­ì ¡¥à¥âáï ¯® ¢á¥¬ äã­ªæ¨ï¬ fN 2 Lp Aei 㪠§ ­­®£® ¢ëè¥
i=1
¢¨¤ . ’ ª ª ª N ¨ " ¯à®¨§¢®«ì­ë, ª¢ §¨ ¤¤¨â¨¢­®áâì ä㭪樨  ¤®ª § ­ . ‘¯à ¢¥¤«¨¢®áâì ®¡à â­®£® ­¥à ¢¥­á⢠ ¯à®¢¥àï¥âáï ­¥¯®á।á⢥­­®. B
‘«¥¤ãî饥 ã⢥ত¥­¨¥ ¤ ¥â ®æ¥­ªã ¨áª ¦¥­¨ï ¬¥àë ¯à¨ ®â®¡à ¦¥­¨ïå à áᬠâਢ ¥¬®£® ª« áá .
à¥¤«®¦¥­¨¥ 6.
' : D ! De

e
' : Lp (D) ! Lq (D) 1 6 q 6 p < 1
Ae  De
',1 (Ae)
ãáâì ®â®¡à ¦¥­¨¥

à â®à ¢«®¦¥­¨ï

¬­®¦¥á⢠

,

¯à®®¡à §

¯®à®¦¤ ¥â ®£à ­¨ç¥­­ë© ®¯¥-

. ’®£¤  ¤«ï ¢á类£® ¡®à¥«¥¢áª®£®

¨§¬¥à¨¬ ¨ ¢ë¯®«­¥­ë ­¥à ¢¥­á⢠:

(',1 (Ae)) 1q 6 (Ae) 1 ~(Ae) p1 ; 1 6 q < p < 1;
¨

(',1 (Ae)) 6 K p ~(Ae); 1 6 q = p < 1:
C ’ ª ª ª ®¯¥à â®à ¢«®¦¥­¨ï ' : Lp (De ) ! Lq (D) ®£à ­¨ç¥­, â® ¤«ï ¢á类£®
¡®à¥«¥¢áª®£® ¬­®¦¥á⢠ Ae  De ¢ë¯®«­ïîâáï ­¥à ¢¥­á⢠
k' f j Lq (',1 (Ae))k 6 (Ae) 1 kf j Lp (Ae)k 6 (De ) 1 kf j Lp (Ae)k

1{26

‘. Š. ‚®¤®¯ìï­®¢, €. „. “å«®¢

¯à¨ 1 6 q < p < , ¨
1

k

' f Lq (',1 (Ae)) 6 K f Lp (Ae)
j

k

k

j

k

¯à¨ 1 6 q = p < . ®¤áâ ¢«ïï ¢ í⨠­¥à ¢¥­á⢠ å à ªâ¥à¨áâ¨ç¥áªãî äã­ªæ¨î
f (y) = Ae(y) ¬­®¦¥á⢠ Ae, ¯®«ãç ¥¬ âॡ㥬®¥ ã⢥ত¥­¨¥. B
Žâ®¡à ¦¥­¨¥ ' : D De ®¡« ¤ ¥â -᢮©á⢮¬ ‹ã§¨­ , ¥á«¨ ®¡à §