Directory UMM :Journals:Journal_of_mathematics:EJQTDE:
Electronic Journal of Qualitative Theory of Differential Equations
2009, No. 44, 1-14; http://www.math.u-szeged.hu/ejqtde/
SOME RESULTS OF NONTRIVIAL SOLUTIONS FOR A
NONLINEAR PDE IN SOBOLEV SPACE
SAMIA BENMEHIDI AND BRAHIM KHODJA
Abstract. In this study, we investigate the question of nonexistence
of nontrivial solutions of the Robin problem
n
P
∂2u
∂
∂u
−
as (y, ∂y
) + f (y, u) = 0 in Ω = R × D,
−
2
s
∂x
∂y
s
s=1
(P )
∂u
u+ε
= 0 on R × ∂D.
∂n
where as : D × R → R are H 1 - functions with constant sign such that
(H1 )
2
Rξs
as (y, ts )dts − ξs as (y, ξs ) ≤ 0, s = 1, ..., n
0
and f : D × R → R is a real continuous locally Liptschitz function such
that
(H2 )
2F (y, u) − uf (y, u) ≤ 0,
We show that the function
E(x) =
Z
|u(x, y)|2 dy
D
on R . Our proof is based on energy (integral)
identities.
is convex
n
Ru
Q
]αk , βk [ , ε > 0 and F (y, u) = f (y, τ )dτ .
D=
k=1
0
1. Introduction
The problem of existence and nonexistence of nontrivial solutions of problems of the form
−∆u + f (u) = 0 in Ω,
u = 0 on ∂Ω,
has been investigated by many authors under various situations. Previous
works have been reported by Berestycky, Gallouet & Kavian [1] , M. J. Esteban
& P. L. Lions [2], Pucci & J. Serrin [9] and Pohozaev [10]. To illustrate some
2000 Mathematics Subject Classification. Primary 35J65; Secondary 35P70.
Key words and phrases. Nonlinear equations, convex functions , Robin condition.
EJQTDE, 2009 No. 44, p. 1
of the typical known results, let us consider Dirichlet problem
−∆u + f (u) = 0, u ∈ C 2 (Ω),
u = 0 on ∂Ω,
Under hypothesis
∇u ∈ L2 (Ω),
f (0) = 0,
Ru
F (u) = f (s)ds ∈ L1 (Ω),
0
where Ω is a connected unbounded domain of RN such as
∃Λ ∈ RN , kΛk = 1, hn(x), Λi ≥ 0 on ∂Ω, hn(x), Λi =
6 0,
(n(x) is the outward normal to ∂Ω at the point x) Esteban & Lions [2]
established that the Dirichlet problem does not have nontrivial solutions.
Berestycky, Gallouet & Kavian [1] established that the problem
−∆u − u3 + u = 0,
u ∈ H 2 (R2 )
admits a radial solution
This same solution satisfies
−∆u − u3 + u = 0,
u ∈ H 2 (]0, +∞[ × R)
∂u
= 0 on {0} × R,
∂n
this shows that analogous Esteban-Lions result for Neumann problems is
not valid.
The Pohozaev identity published in 1965 for solutions of the Dirichlet
problem proved absence of nontrivial solutions for some elliptic equations
when Ω is a star shaped bounded domain in Rn and f a continuous function
on R satisfying:
(n − 2)F (u) − 2nuf (u) > 0,
where, n = dim Rn .
When
Ω = J × ω,
where J ⊂ R is unbounded interval and ω ⊂ Rn domain , Haraux & Khodja
[3] established under the assumption
f (0) = 0,
2F (u) − uf (u) ≤ 0,
EJQTDE, 2009 No. 44, p. 2
if we assume that u ∈ H 2 (J × ω) ∩ L∞ (J × ω) is a solution of the problems
−∆u + f (u) = 0 in Ω,
u or ∂u = 0 on ∂ (J × ω) .
∂n
Then these two problems (Dirichlet and Neumann) do have only trivial
solution.
When
f (u) = u (u + 1) (u + 2) ,
and
Ω = R × ]0, a[ (a < π) ,
Neumann problem
−∆u + u (u + 1) (u + 2) = 0 in Ω,
∂u
= 0 on ∂Ω,
∂n
is still open.
In this work, let ai , i = 1, ..., n be a sequence in H 1 (D × R) verifying
ai (y, 0) = 0 in D =
n
Y
]αk , βk [,
k=1
and f : D×R → R a locally Lipschitz continuous function such that f (y, 0) =
0 in D, so that u = 0 is a solution of the equation
n
∂u
∂2u X ∂
) + f (y, u) = 0 in Ω = R × D.
ai (y,
(1.1)
− 2−
∂x
∂yi
∂yi
i=1
We assume that
u ∈ H 2 (Ω) ∩ L∞ (Ω),
and satisfies
(1.2)
(1.3)
(1.4)
u(x, s) = 0, (x, s) ∈ R × ∂D
or
∂u
(x, s) = 0, (x, s) ∈ R × ∂D
∂n
or
∂u
u+ε
(x, s) = 0, (x, s) ∈ R × ∂D
∂n
Let us denote by:
Γ = R × ∂D = Γα1 ∪ Γβ1 ∪ ... ∪ Γαn ∪ Γβn ,
Γµi = {(x, y1 , ...yi−1 , µi , yi+1 , ..., yn ) , x ∈ R, 1 ≤ i ≤ n}
EJQTDE, 2009 No. 44, p. 3
the boundary of Ω,
n (x, s) = (0, n1 (x, s) , ..., nn (x, s)) , the outward normal to ∂Ω at the point (x, s)
and
2
∂ u (x, y)
the second derivative of u with respect to yi at point (x, y).
∂yi2
i=1,...,n
If z ∈ Ω, k = 1, 2, ...n and τ ∈ {α1 , β1 , α2 , β2 , ..., αn , βn } one writes:
z := (x, y) = (x, y1 , ..., yn )
zkτ := (y1 , ..., yk−1 , τ, yk+1 , ..., yn ) ,
dzk∗ := dy1 ...dyk−1 dyk+1 ...dyn ,
Rβ1
α1
...
βR
i−1 βR
i+1
αi−1 αi+1
...
β
Rn
f (x, y)dy1 ...dyi−1 dyi+1 ...dyn :=
αn
R
f (x, y)dzi∗ .
Di∗
The objective of this paper is to extend the results of [3], [5] to problems
(1.1) − (1.2), (1.1) − (1.3) and (1.1) − (1.4).
2. Integral identities
We begin this section by giving an integral identity useful in the sequel.
Lemma 1. Let
ai ∈ H 1 (D×R) , i = 1, ..., n
satisfy
ai (., ξi ) : D → R, > 0 or < 0, ∀ξi , i ∈ {1, ..., n} ,
and assume f : D × R → R a locally Lipschitz continuous function. Then
any solution u ∈ H 2 (R×D) ∩ L∞ (R×D) of (1.1) satisfying (1.4), verifies for
each x ∈ R and ε 6= 0 the integral identity
!
n
R
1 ∂u 2 P
∂u
− +
) + F (y, u) (x, y)dy
Ai (y, ∂y
i
2 ∂x
i=1
D
(2.1)
n R
P
+ε
(Ai ziαi , ε−1 u(x, ziαi ) + Ai (ziβi , −ε−1 u(x, ziβi )))dzi∗ = 0
i=1 Di∗
Proof. Let
H:R→R
the function defined by
!
Z
n
∂u
1 ∂u 2 X
Ai (y,
) + F (y, u) (x, y)dy.
H (x) =
− +
2 ∂x
∂yi
D
i=1
EJQTDE, 2009 No. 44, p. 4
The hypotheses on u, ai , i = 1, ..., n and f imply that H is absolutely
continuous and thus differentiable almost everywhere on R, we have
(2.2)
n
R
∂2u
∂u
∂u ∂ 2 u P
d
∂u
H(x) =
+
+ f (y, u)
ai (y, ∂yi )
−
(x, y)dy
2
dx
∂yi ∂x ∂x
D 2 ∂xn∂x i=1
R
∂ u P ∂
∂u
∂u
)
+ f (y, u)
ai (y, ∂y
(x, y)dy
=
− 2−
i
∂x
∂y
∂x
i
i=1
D
n R
P
αi ∂u
ai ∂u
αi
βi ∂u
βi
∂u
(x,
z
))
(x,
z
))
(x,
z
)
−
a
(z
(x,
z
,
)
dzi∗ .
+
ai (ziβi , ∂y
i i
i
i
i
i
∂yi
i
∂x
∂x
∗
i=1 D
i
Indeed a simple use of Fubini’s theorem and an integration by parts yields
2
2
Z Z β i
Z
∂ u
∂ u
∂u
∂u
ai (y,
)
)
(x, y)dy =
dyi dzi∗
ai (y,
∂yi
∂yi ∂x
∂y
∂y
∂x
i
i
αi
D
Di∗
=
Z Z
Di∗
+
Z
ai (ziβi ,
βi
∂
−
∂yi
αi
∂u
)
∂yi
Z
−
Di∗
=
∂u
∂x
∂
∂yi
D
+
Z
ai (ziβi ,
∂u(x, ziβi )
)
∂yi
Di∗
∂u
∂u
)
(x, y) dyi dzi∗
ai (y,
∂yi
∂x
(x, ziβi ) −
∂u
∂x
ai (y,
α
ai (zi i ,
∂u
)
∂yi
∂u
∂x
α
(x, zi i )
dzi∗
∂u
∂u
)
(x, y) dy
∂yi
∂x
α
(x, ziβi )
−
a
ai (zi i ,
∂u(x, zi i )
)
∂yi
∂u
∂x
!
α
(x, zi i )
dzi∗ .
By summing up these formulas with respect to i and substituting them in
(2.2), one obtains
!
Z
n
∂u
d
∂u
∂2u X ∂
H(x) =
− 2−
) + f (y, u)
ai (y,
(x, y) dy
dx
∂x
∂yi
∂yi
∂x
i=1
D
+
n Z
X
ai (ziβi ,
i=1 D ∗
!
αi
∂u(x, ziβi ) ∂u
ai ∂u(x, zi ) ∂u
αi
βi
) (x, zi ) − ai (zi ,
) (x, zi ) dzi∗ .
∂yi
∂x
∂yi
∂x
i
As u satisfies equation (1.1), the above expression reduces to
(2.3)
!
αi
n Z
βi
X
∂u(x,
z
)
∂u(x,
z
)
∂u
∂u
d
a
α
i
i
ai (ziβi ,
H(x) =
) (x, ziβi ) − ai (zi i ,
) (x, zi i ) dzi∗ .
dx
∂yi
∂x
∂yi
∂x
i=1 D ∗
i
EJQTDE, 2009 No. 44, p. 5
Now observe that
(2.4)
∂u
u+ε
∂n
(x, s) = 0 on ∂Ω, is equivalent to
∂u
) (x, y1 , .., yi−1 , αi , yi+1 , .., yn ) = 0
(u − ε
∂yi
∂u
(u + ε
) (x, y1 , .., yi−1 , βi , yi+1 , .., yn ) = 0
∂yi
x ∈ R, αi < yi < βi .
This allows to write formula (2.3) in the following form
n Z
X
d
ai −1
αi
αi ∂u
βi
βi ∂u
βi
−1
ai (zi , −ε
u(x, zi )) (x, zi ) − ai (zi , ε u(x, zi )) (x, zi ) dzi∗ .
H(x) =
dx
∂x
∂x
i=1 D ∗
i
= −ε
n Z
X
i=1 D ∗
i
∂
Ai (ziβi , −ε−1 u(x, ziβi )) + Ai ziαi , ε−1 u(x, ziαi ) dzi∗ ,
∂x
i.e
n Z
X
d
H(x) + ε
Ai ziαi , ε−1 u(x, ziαi ) + Ai (ziβi , −ε−1 u(x, ziβi )) dzi∗ = 0.
dx
i=1 D
i
Integrating this expression,with respect to x one obtains
n Z
X
Ai ziαi , ε−1 u(x, ziαi ) + Ai (ziβi , −ε−1 u(x, ziβi )) dzi∗ = const.
H(x)+ε
i=1 D ∗
i
Since
u (x, y) ∈ H 2 (R × D),
one must get
+∞
Z
Z
n
X
Ai ziαi , ε−1 u(x, ziαi ) + Ai (ziβi , −ε−1 u(x, ziβi ) )dzi∗ dx < ∞.
H(x) + ε
i=1 D ∗
−∞
i
We conclude that the constant is null which is the desired result.
Lemma 2. Let u be chosen as in Lemma1.1. If one assumes u to be solution
of problems (1.1) − (1.3) or (1.1) − (1.4), then for each x ∈ R, the solution
u verifies
!
Z
n
∂u
1 ∂u 2 X
Ai (y,
) + F (y, u) (x, y)dy = 0.
− +
(2.5)
2 ∂x
∂yi
D
i=1
EJQTDE, 2009 No. 44, p. 6
Proof. To prove (2.5) it suffices to show that the second term of (2.1)
vanishes if u verifies (1.2) or (1.3), i.e
Z
Ai ziαi , ε−1 u(x, ziαi ) + Ai (ziβi , −ε−1 u(x, ziβi )) dzi∗ = 0.
Di∗
If one supposes that u(x, s) = 0 for (x, s) ∈ R × ∂D, it is immediate, that
Ai (ziαi , 0) = Ai (ziβi , 0), ∀i = 1, ..., n.
Now if the boundary condition is
∂u
(x, s) = 0 for (x, s) ∈ R × ∂D, then
∂n
∂u
(x, s) = h∇u.ni (x, s) = 0 (x, s) ∈ R × ∂D,
∂n
i.e
∂u
(x, ziαi ) =
∂x
∂u
(x, z1α1 ) =
∂y1
∂u
(x, ziβi ) = 0
∂x
∂u
(x, z1β1 ) = 0
∂y1
.
.
.
∂u
∂u
(x, ziαi ) =
(x, ziβi ) = 0
∂yi
∂yi
.
.
.
∂u
∂u
(x, znαn ) =
(x, znβn ) = 0
∂yn
∂yn
consequently
a
ai (zi i ,
, x ∈ R, αi ≤ yi ≤ βi ,
∂u
∂u
α
(x, zi i )) = ai (ziβi ,
(x, ziβi )) = 0, ∀i = 1, ..., n.
∂yi
∂yi
because
ai (x, 0) = 0, ∀x ∈ D, ∀i = 1, ..., n..
Finally one gets
Ai (ziαi , 0) = Ai (ziβi , 0) = 0, ∀i = 1, ..., n.
3. Main results
The goal of this section is to establish the nonexistence of nontrivial solutions to Robin problem.
EJQTDE, 2009 No. 44, p. 7
Theorem 1. Let ai , i = 1, ..., n and f satisfying respectively
ai (., ξi ) : D → R, > 0 or < 0,
(3.1)
∀ξi , ∀i ∈ {1, ..., n}
2Ai (y, ξi ) − ai (y, ξi ) ξi ≤ 0,
(3.2)
2F (y, u) − uf (y, u) ≤ 0 ,
and assume
u ∈ H 2 (Ω) ∩ L∞ (Ω)
to be a solution of (1.1) − (1.4). Then the function
Z
x 7→ E(x) = |u(x, y)|2 dy is convex on R.
D
Proof. To begin the proof, we see that almost everywhere in Ω = R × D,
we have
∂u 2
∂2u
1 ∂2
2
(u 2 ) (x, y) = (
u − )(x, y).
∂x
2 ∂x2
∂x
u
In fact by multiplying equation (1.1) by and integrating the new equation
2
over D, we obtain
!
Z
n
X
∂2u
∂
u
∂u
− 2 −
0=
(x, y)dy
) + f (y, u)
ai (y,
∂x
∂yi
∂yi
2
D
i=1
(3.3)
!
Z
n
1 ∂u 2 1 X
1 ∂2
u
∂u
∂
2
ai (y,
=
−
u + −
) u + f (y, u)(x, y) dy.
4 ∂x2
2 ∂x
2
∂yi
∂yi
2
i=1
D
A simple use of Fubini’s theorem and an integration by parts yields,
Z
∂
∂yi
D
=−
Z
D
Z Zβi
∂u
∂u
∂
) (u) (x, y) dy = (
) udyi )dzi∗ =
ai (y,
ai (y,
∂yi
∂yi
∂yi
Di∗ αi
∂u ∂u
)
(x, y) dy+
ai (y,
∂yi ∂yi
Z
(ai (ziβi ,
αi
∂u(x, ziβi )
βi
αi ∂u(x, zi )
)u(x, zi )−ai (zi ,
)u(x, ziαi ))dzi∗
∂yi
∂yi
Di∗
Instead of (3.3), we obtain
!
Z
n
1 ∂u 2 1 X
∂u
∂u
1
1 ∂2
2
ai (y,
u + +
)
+ uf (y, u) (x, y)dy
−
4 ∂x2
2 ∂x
2
∂yi ∂yi 2
D
i=1
EJQTDE, 2009 No. 44, p. 8
n
1X
=
2
Z
(ai (ziβi ,
i=1 D ∗
∂u(x, ziβi )
∂u(x, ziαi )
)u(x, ziβi ) − ai (ziαi ,
)u(x, ziαi ))dzi∗
∂yi
∂yi
i
From (2.4) it follows that
n Z
X
∂u(x, ziβi )
∂u(x, ziαi )
)u(x, ziβi ) − ai (ziαi ,
)u(x, ziαi ))dzi∗
(ai (ziβi ,
∂yi
∂yi
i=1 D ∗
i
n Z
X
=
i=1 D ∗
i
n Z
X
=
(ai (ziβi , −ε−1 u(x, ziβi ))u(x, ziβi )−ai (ziαi , ε−1 u(x, ziαi ))u(x, ziαi ))dzi∗
(
i=1 D ∗
i
i.e
Z
1
1
ai (ziβi , −ε−1 u(x, ziβi )) −ε−1 u(x, ziβi )− −1 ai (ziαi , ε−1 u(x, ziαi ))ε−1 u(x, ziαi ))dzi∗
−1
−ε
ε
!
2
n
X
∂u
∂u
1
1
∂u
1
1 ∂2
ai (y,
u2 + +
)
+ uf (y, u) (x, y)dy
−
4 ∂x2
2 ∂x
2
∂yi ∂yi 2
i=1
D
n
εX
+
2
Z
i=1 D ∗
i
(ai (ziβi , −ε−1 u(x, ziβi )) −ε−1 u(x, ziβi )+ai (ziαi , ε−1 u(x, ziαi ))ε−1 u(x, ziαi ))dzi∗ = 0,
Combining this formula and (2.1) we obtain
!
2
Z
n
X
1
∂u
1
∂u
∂u
1
1 ∂2
u2 + +
ai (y,
)
+ uf (y, u) (x, y)dy
−
4 ∂x2
2 ∂x
2
∂yi ∂yi 2
i=1
D
n
+
εX
2
Z
i=1 D ∗
i
(ai (ziβi , −ε−1 u(x, ziβi )) −ε−1 u(x, ziβi )+ai (ziαi , ε−1 u(x, ziαi ))ε−1 u(x, ziαi ))dzi∗
=
Z
D
+ε
n Z
X
i=1 D ∗
i
i.e
!
n
∂u
1 ∂u 2 X
Ai (y,
) + F (y, u) (x, y)dy
− +
2 ∂x
∂yi
i=1
(Ai ziαi , ε−1 u(x, ziαi ) + Ai (ziβi , −ε−1 u(x, ziβi )))dzi∗
Z
D
=
Z
D
n
X
i=1
!
∂u 2
1 ∂2
2
−
u + (x, y)dy
4 ∂x2
∂x
!
1
∂u ∂u
1
∂u
) − ai (y,
)
) + F (y, u) − uf (y, u) (x, y)dy
(Ai (y,
∂yi
2
∂yi ∂yi
2
EJQTDE, 2009 No. 44, p. 9
+ε
n Z
X
i=1 D ∗
i
+ε
n Z
X
i=1 D ∗
i
Ai ziαi , ε−1 u(x, ziαi )
1
αi −1
αi
αi
−1
− ai (zi , ε u(x, zi ))ε u(x, zi ) dzi∗
2
1
Ai (ziβi , −ε−1 u(x, ziβi )) − ai (ziβi , −ε−1 u(x, ziβi )) −ε−1 u(x, ziβi ) dzi∗ .
2
Hypotheses (3.1) and (3.2) imply that
Z
Z
d2
2
|u (x, y)| dy ≥ 4
dx2
D
D
This completes the proof.
2
∂u
∂x (x, y) dy ≥ 0, ∀x ∈ R.
Remark 1. The convexity of the function E(x) on R implies the triviality
of the solution u(x, y) of the problem (1.1) − (1.4).
Theorem 2. Let the function ai , i = 1, ..., n and f be as described as in
Theorem 3.1. We assume u ∈ H 2 (Ω) ∩ L∞ (Ω) is a solution of (1.1) − (1.2)
or (1.1) − (1.3), then the function E(x) defined above is convex on R.
Proof. By similar arguments as in the proof of Theorem 3.1, we obtain
!
Z
n
∂u ∂u
1
1 ∂ 2 2 1 ∂u 2 1 X
u + +
ai (y,
)
+ uf (y, u) (x, y)dy
−
4 ∂x2
2 ∂x
2
∂yi ∂yi 2
i=1
D
=
1
2
n Z
X
i=1 D
(ai (ziβi ,
∂u(x, ziβi )
∂u(x, ziαi )
)u(x, ziβi ) − ai (ziαi ,
)u(x, ziαi ))dzi∗
∂yi
∂yi
i
∂u
(x, s) = 0, for (x, s) ∈ R × ∂D this formula reduces
Now if u (x, s) = 0 or ∂n
to
!
2
Z
n
X
1
1 ∂2
∂u
∂u
∂u
1
1
−
ai (y,
u2 − +
)
+ uf (y, u) (x, y)dy = 0
4 ∂x2
2 ∂x
2
∂yi ∂yi 2
i=1
D
We can now employ (2.5) to transform this identity into the following form
!
2
Z
n
X
1 ∂2
∂u
∂u
1
∂u
1
1
−
ai (y,
u2 + +
)
+ uf (y, u) (x, y)dy
4 ∂x2
2 ∂x
2
∂yi ∂yi 2
i=1
D
!
Z
n
∂u(x, y)
1 ∂u(x, y) 2 X
Ai (y,
+
) + F (y, u(x, y)) dy
−
=
2
∂x
∂yi
i=1
D
i.e
Z
D
!
∂u 2
1 ∂2
2
u + (x, y)dy
−
4 ∂x2
∂x
EJQTDE, 2009 No. 44, p. 10
=
Z
D
n
X
i=1
1
∂u ∂u
∂u(x, y)
) − ai (y,
)
Ai (y,
∂yi
2
∂yi ∂yi
!
1
+ F (y, u) − uf (y, u) (x, y)dy.
2
Our assumptions on ai , and f imply the desired result.
4. Applications
A practical tool for characterizing the assumption (3.1) or (3.2) of Theorem 3.1 is the following Proposition.
Proposition 1. Let
f :R→R
a Lipschitzian real function such that
f (0) = 0.
We suppose that f is concave on ] − ∞, 0[ and convex on ]0, +∞[. Then the
function f satisfies the assumption (3.1) or (3.2) of Theorem 3.1.
Application 4.1 : Taking
ai (y,
∂u(x, y)
∂u(x, y)
)=
∂yi
∂yi
then the equation (1.1) becomes
(4.1)
−∆u + f (y, u) = 0 in Ω
Application 4.2 : We can put
ai (y,
∂u(x, y)
∂u
(x, y)) = ci
∂yi
∂yi
with ci are reals constants. In this case (1.1) can be rewritten as
n
(4.2)
∂2u X ∂2u
− 2−
ci 2 + f (y, u) = 0 in Ω
∂x
∂yi
i=1
Application 4.3 : We can also put
ai (y,
(4.3)
∂u(x, y)
∂u(x, y)
) = pi (y)
∂yi
∂yi
with pi (y) < 0 or > 0 in D, it follows that the equation(1.1) is
equivalent to
n
∂2u X ∂
∂u
− 2−
pi (y)
+ f (y, u) = 0 in Ω
∂x
∂yi
∂yi
i=1
We observe that in this three applications, we have
2Ai (y, ξi ) − ai (y, ξi ) ξi ≡ 0, ∀ξi , i = 1, ..., n.
EJQTDE, 2009 No. 44, p. 11
5. Examples
To conclude this work, let us give a few simple examples illustrating the
use of Theorem 3.1.
Example 1. The problem
n ∂
∂2u P
∂u
−
)
+ θ (y) |u|p−1 u = 0 in Ω = R × D
−
a
(y,
i
∂yi
∂x2 i=1 ∂yi
(5.1)
∂u
(u + ε )(x, s) = 0, (x, s) ∈ R × ∂D
∂n
where
θ : D → R,
is a nonnegative continuous real function, p ≥ 1 does not have nontrivial
solutions.
Indeed,
2F (y, u) − uf (y, u) = θ (y) (
2
− 1) |u|p+1 ≤ 0.
p+1
Theorem 3.1 give the desired result.
Example 2. Let ρ : D → R, be a continuous function . The problem
n ∂
∂2u P
∂u
−
)
+ ρ (y) u = 0 in R × D
−
a
(y,
i
∂yi
∂x2
∂yi
i=1
(5.2)
u + ε ∂u = 0 on R × ∂D
∂n
considered in H 2 (R × D) ∩ L∞ (R × D) does not have nontrivial solutions.
A simple calculation gives
2F (y, u) − uf (y, u) ≡ 0.
and
d2
1
4 dx2
Z
D
(|u(x, y)|2 dx =
Z
D
!
2
∂u
1
+ F (y, u) − uf (y, u) dx
∂x
2
Z 2
∂u
= (x, y)dx ≥ 0
∂x
D
Example 3. Let
θ1 , θ2 : D → R,
be two continuous nonnegative functions, p, q ≥ 1 and
f (y, u) = mu + θ1 (y) |u|p−1 u + θ2 (y) |u|q−1 u), m ∈ R.
EJQTDE, 2009 No. 44, p. 12
The problem
n ∂
P
∂2u
∂u
−
)
+ f (y, u) = 0 in R × D
−
a
(y,
i
∂yi
∂x2
i=1 ∂yi
(5.3)
∂u
u+ε
= 0 on R × ∂D
∂n
does not have nontrivial solutions.
It suffices to remark that,
2F (y, u) − uf (y, u) =
θ1 (y) (
2
2
− 1) |u|p+1 + θ2 (y) (
− 1) |u|q+1 ≤ 0
p+1
q+1
and then apply theorem 3.1.
References
[1] H. BERESTYCKY, T. GALLOUET AND O. KAVIAN, Equations de
champs scalaires non-lin´eaires dans R2 . C. R. Acad. Sc. Paris, S´erie 1, 297, (1983),
307-310.
[2] M. J. ESTEBAN AND P. L. LIONS, Existence and nonexistence results for
semi linear elliptic problems in unbounded domains. Proc. Roy. Soc. Edimburgh 93A(1982), 1-14.
[3] A. HARAUX AND B. KHODJA, Caract`ere trivial de la solution de certaines
´equations aux d´eriv´ees partielles non lin´eaires dans des ouverts cylindriques de
RN . Portugaliae Mathematica. Vol. 42, Fasc. 2, (1982), 209-219.
[4] B. KHODJA, Nonexistence of solutions for semilinear equations and systems in
cylindrical domains. Comm. Appl. Nonlinear Anal. (2000), 19-30.
[5] B. KHODJA, A nonexistence result for a nonlinear PDE with Robin condition, International Journal of Mathemlatics and Mathematical Sciences, volume 2006, Article
ID 62601, 1-12
[6] B.KHODJA AND A. MOUSSAOUI, Nonexistence results for semilinear systems in unbounded domains,Electron. J. Diff. Eqns., Vol. 2009 (2009), No. 02, 1-11.
[7] E. MITIDIERI, Nonexistence of positive solutions of semilinear elliptic systems in
RN . Diff. and Int. Equations, 9 (1996), 465-479.
[8] M. H. PROTTER AND H. F. WEINBERGER, Maximum principle in differential equations, Prentice-Hall, Englewood Cliffs, New Jersey, (1967).
[9] PUCCI & J. SERRIN, A general variational identity, Ind. Univers. Mat.
Journal. Vol. 35, N3 (1986), 681-703.
[10] S. I. POHOZAEV, Eigenfunctions of the equation ∆u + 1f (u) = 0. Soviet.
Math. Dokl. 6 (1965), 1408-1411.
[11] D. DE FIGUEIREDO, Semilinear elliptic systems . Nonlinear Functional Analysis
and Application to differential Equations (1998), 122-152, ICTP Trieste ITALY, 21
April-9 May 1997. World Scientific.
EJQTDE, 2009 No. 44, p. 13
(Received June 1, 2009)
Badji Mokhtar University, department of mathematics P.O.12 Annaba, ALGERIA
E-mail address: [email protected]
Badji Mokhtar University, department of mathematics P.O.12 Annaba, ALGERIA
E-mail address: [email protected]
EJQTDE, 2009 No. 44, p. 14
2009, No. 44, 1-14; http://www.math.u-szeged.hu/ejqtde/
SOME RESULTS OF NONTRIVIAL SOLUTIONS FOR A
NONLINEAR PDE IN SOBOLEV SPACE
SAMIA BENMEHIDI AND BRAHIM KHODJA
Abstract. In this study, we investigate the question of nonexistence
of nontrivial solutions of the Robin problem
n
P
∂2u
∂
∂u
−
as (y, ∂y
) + f (y, u) = 0 in Ω = R × D,
−
2
s
∂x
∂y
s
s=1
(P )
∂u
u+ε
= 0 on R × ∂D.
∂n
where as : D × R → R are H 1 - functions with constant sign such that
(H1 )
2
Rξs
as (y, ts )dts − ξs as (y, ξs ) ≤ 0, s = 1, ..., n
0
and f : D × R → R is a real continuous locally Liptschitz function such
that
(H2 )
2F (y, u) − uf (y, u) ≤ 0,
We show that the function
E(x) =
Z
|u(x, y)|2 dy
D
on R . Our proof is based on energy (integral)
identities.
is convex
n
Ru
Q
]αk , βk [ , ε > 0 and F (y, u) = f (y, τ )dτ .
D=
k=1
0
1. Introduction
The problem of existence and nonexistence of nontrivial solutions of problems of the form
−∆u + f (u) = 0 in Ω,
u = 0 on ∂Ω,
has been investigated by many authors under various situations. Previous
works have been reported by Berestycky, Gallouet & Kavian [1] , M. J. Esteban
& P. L. Lions [2], Pucci & J. Serrin [9] and Pohozaev [10]. To illustrate some
2000 Mathematics Subject Classification. Primary 35J65; Secondary 35P70.
Key words and phrases. Nonlinear equations, convex functions , Robin condition.
EJQTDE, 2009 No. 44, p. 1
of the typical known results, let us consider Dirichlet problem
−∆u + f (u) = 0, u ∈ C 2 (Ω),
u = 0 on ∂Ω,
Under hypothesis
∇u ∈ L2 (Ω),
f (0) = 0,
Ru
F (u) = f (s)ds ∈ L1 (Ω),
0
where Ω is a connected unbounded domain of RN such as
∃Λ ∈ RN , kΛk = 1, hn(x), Λi ≥ 0 on ∂Ω, hn(x), Λi =
6 0,
(n(x) is the outward normal to ∂Ω at the point x) Esteban & Lions [2]
established that the Dirichlet problem does not have nontrivial solutions.
Berestycky, Gallouet & Kavian [1] established that the problem
−∆u − u3 + u = 0,
u ∈ H 2 (R2 )
admits a radial solution
This same solution satisfies
−∆u − u3 + u = 0,
u ∈ H 2 (]0, +∞[ × R)
∂u
= 0 on {0} × R,
∂n
this shows that analogous Esteban-Lions result for Neumann problems is
not valid.
The Pohozaev identity published in 1965 for solutions of the Dirichlet
problem proved absence of nontrivial solutions for some elliptic equations
when Ω is a star shaped bounded domain in Rn and f a continuous function
on R satisfying:
(n − 2)F (u) − 2nuf (u) > 0,
where, n = dim Rn .
When
Ω = J × ω,
where J ⊂ R is unbounded interval and ω ⊂ Rn domain , Haraux & Khodja
[3] established under the assumption
f (0) = 0,
2F (u) − uf (u) ≤ 0,
EJQTDE, 2009 No. 44, p. 2
if we assume that u ∈ H 2 (J × ω) ∩ L∞ (J × ω) is a solution of the problems
−∆u + f (u) = 0 in Ω,
u or ∂u = 0 on ∂ (J × ω) .
∂n
Then these two problems (Dirichlet and Neumann) do have only trivial
solution.
When
f (u) = u (u + 1) (u + 2) ,
and
Ω = R × ]0, a[ (a < π) ,
Neumann problem
−∆u + u (u + 1) (u + 2) = 0 in Ω,
∂u
= 0 on ∂Ω,
∂n
is still open.
In this work, let ai , i = 1, ..., n be a sequence in H 1 (D × R) verifying
ai (y, 0) = 0 in D =
n
Y
]αk , βk [,
k=1
and f : D×R → R a locally Lipschitz continuous function such that f (y, 0) =
0 in D, so that u = 0 is a solution of the equation
n
∂u
∂2u X ∂
) + f (y, u) = 0 in Ω = R × D.
ai (y,
(1.1)
− 2−
∂x
∂yi
∂yi
i=1
We assume that
u ∈ H 2 (Ω) ∩ L∞ (Ω),
and satisfies
(1.2)
(1.3)
(1.4)
u(x, s) = 0, (x, s) ∈ R × ∂D
or
∂u
(x, s) = 0, (x, s) ∈ R × ∂D
∂n
or
∂u
u+ε
(x, s) = 0, (x, s) ∈ R × ∂D
∂n
Let us denote by:
Γ = R × ∂D = Γα1 ∪ Γβ1 ∪ ... ∪ Γαn ∪ Γβn ,
Γµi = {(x, y1 , ...yi−1 , µi , yi+1 , ..., yn ) , x ∈ R, 1 ≤ i ≤ n}
EJQTDE, 2009 No. 44, p. 3
the boundary of Ω,
n (x, s) = (0, n1 (x, s) , ..., nn (x, s)) , the outward normal to ∂Ω at the point (x, s)
and
2
∂ u (x, y)
the second derivative of u with respect to yi at point (x, y).
∂yi2
i=1,...,n
If z ∈ Ω, k = 1, 2, ...n and τ ∈ {α1 , β1 , α2 , β2 , ..., αn , βn } one writes:
z := (x, y) = (x, y1 , ..., yn )
zkτ := (y1 , ..., yk−1 , τ, yk+1 , ..., yn ) ,
dzk∗ := dy1 ...dyk−1 dyk+1 ...dyn ,
Rβ1
α1
...
βR
i−1 βR
i+1
αi−1 αi+1
...
β
Rn
f (x, y)dy1 ...dyi−1 dyi+1 ...dyn :=
αn
R
f (x, y)dzi∗ .
Di∗
The objective of this paper is to extend the results of [3], [5] to problems
(1.1) − (1.2), (1.1) − (1.3) and (1.1) − (1.4).
2. Integral identities
We begin this section by giving an integral identity useful in the sequel.
Lemma 1. Let
ai ∈ H 1 (D×R) , i = 1, ..., n
satisfy
ai (., ξi ) : D → R, > 0 or < 0, ∀ξi , i ∈ {1, ..., n} ,
and assume f : D × R → R a locally Lipschitz continuous function. Then
any solution u ∈ H 2 (R×D) ∩ L∞ (R×D) of (1.1) satisfying (1.4), verifies for
each x ∈ R and ε 6= 0 the integral identity
!
n
R
1 ∂u 2 P
∂u
− +
) + F (y, u) (x, y)dy
Ai (y, ∂y
i
2 ∂x
i=1
D
(2.1)
n R
P
+ε
(Ai ziαi , ε−1 u(x, ziαi ) + Ai (ziβi , −ε−1 u(x, ziβi )))dzi∗ = 0
i=1 Di∗
Proof. Let
H:R→R
the function defined by
!
Z
n
∂u
1 ∂u 2 X
Ai (y,
) + F (y, u) (x, y)dy.
H (x) =
− +
2 ∂x
∂yi
D
i=1
EJQTDE, 2009 No. 44, p. 4
The hypotheses on u, ai , i = 1, ..., n and f imply that H is absolutely
continuous and thus differentiable almost everywhere on R, we have
(2.2)
n
R
∂2u
∂u
∂u ∂ 2 u P
d
∂u
H(x) =
+
+ f (y, u)
ai (y, ∂yi )
−
(x, y)dy
2
dx
∂yi ∂x ∂x
D 2 ∂xn∂x i=1
R
∂ u P ∂
∂u
∂u
)
+ f (y, u)
ai (y, ∂y
(x, y)dy
=
− 2−
i
∂x
∂y
∂x
i
i=1
D
n R
P
αi ∂u
ai ∂u
αi
βi ∂u
βi
∂u
(x,
z
))
(x,
z
))
(x,
z
)
−
a
(z
(x,
z
,
)
dzi∗ .
+
ai (ziβi , ∂y
i i
i
i
i
i
∂yi
i
∂x
∂x
∗
i=1 D
i
Indeed a simple use of Fubini’s theorem and an integration by parts yields
2
2
Z Z β i
Z
∂ u
∂ u
∂u
∂u
ai (y,
)
)
(x, y)dy =
dyi dzi∗
ai (y,
∂yi
∂yi ∂x
∂y
∂y
∂x
i
i
αi
D
Di∗
=
Z Z
Di∗
+
Z
ai (ziβi ,
βi
∂
−
∂yi
αi
∂u
)
∂yi
Z
−
Di∗
=
∂u
∂x
∂
∂yi
D
+
Z
ai (ziβi ,
∂u(x, ziβi )
)
∂yi
Di∗
∂u
∂u
)
(x, y) dyi dzi∗
ai (y,
∂yi
∂x
(x, ziβi ) −
∂u
∂x
ai (y,
α
ai (zi i ,
∂u
)
∂yi
∂u
∂x
α
(x, zi i )
dzi∗
∂u
∂u
)
(x, y) dy
∂yi
∂x
α
(x, ziβi )
−
a
ai (zi i ,
∂u(x, zi i )
)
∂yi
∂u
∂x
!
α
(x, zi i )
dzi∗ .
By summing up these formulas with respect to i and substituting them in
(2.2), one obtains
!
Z
n
∂u
d
∂u
∂2u X ∂
H(x) =
− 2−
) + f (y, u)
ai (y,
(x, y) dy
dx
∂x
∂yi
∂yi
∂x
i=1
D
+
n Z
X
ai (ziβi ,
i=1 D ∗
!
αi
∂u(x, ziβi ) ∂u
ai ∂u(x, zi ) ∂u
αi
βi
) (x, zi ) − ai (zi ,
) (x, zi ) dzi∗ .
∂yi
∂x
∂yi
∂x
i
As u satisfies equation (1.1), the above expression reduces to
(2.3)
!
αi
n Z
βi
X
∂u(x,
z
)
∂u(x,
z
)
∂u
∂u
d
a
α
i
i
ai (ziβi ,
H(x) =
) (x, ziβi ) − ai (zi i ,
) (x, zi i ) dzi∗ .
dx
∂yi
∂x
∂yi
∂x
i=1 D ∗
i
EJQTDE, 2009 No. 44, p. 5
Now observe that
(2.4)
∂u
u+ε
∂n
(x, s) = 0 on ∂Ω, is equivalent to
∂u
) (x, y1 , .., yi−1 , αi , yi+1 , .., yn ) = 0
(u − ε
∂yi
∂u
(u + ε
) (x, y1 , .., yi−1 , βi , yi+1 , .., yn ) = 0
∂yi
x ∈ R, αi < yi < βi .
This allows to write formula (2.3) in the following form
n Z
X
d
ai −1
αi
αi ∂u
βi
βi ∂u
βi
−1
ai (zi , −ε
u(x, zi )) (x, zi ) − ai (zi , ε u(x, zi )) (x, zi ) dzi∗ .
H(x) =
dx
∂x
∂x
i=1 D ∗
i
= −ε
n Z
X
i=1 D ∗
i
∂
Ai (ziβi , −ε−1 u(x, ziβi )) + Ai ziαi , ε−1 u(x, ziαi ) dzi∗ ,
∂x
i.e
n Z
X
d
H(x) + ε
Ai ziαi , ε−1 u(x, ziαi ) + Ai (ziβi , −ε−1 u(x, ziβi )) dzi∗ = 0.
dx
i=1 D
i
Integrating this expression,with respect to x one obtains
n Z
X
Ai ziαi , ε−1 u(x, ziαi ) + Ai (ziβi , −ε−1 u(x, ziβi )) dzi∗ = const.
H(x)+ε
i=1 D ∗
i
Since
u (x, y) ∈ H 2 (R × D),
one must get
+∞
Z
Z
n
X
Ai ziαi , ε−1 u(x, ziαi ) + Ai (ziβi , −ε−1 u(x, ziβi ) )dzi∗ dx < ∞.
H(x) + ε
i=1 D ∗
−∞
i
We conclude that the constant is null which is the desired result.
Lemma 2. Let u be chosen as in Lemma1.1. If one assumes u to be solution
of problems (1.1) − (1.3) or (1.1) − (1.4), then for each x ∈ R, the solution
u verifies
!
Z
n
∂u
1 ∂u 2 X
Ai (y,
) + F (y, u) (x, y)dy = 0.
− +
(2.5)
2 ∂x
∂yi
D
i=1
EJQTDE, 2009 No. 44, p. 6
Proof. To prove (2.5) it suffices to show that the second term of (2.1)
vanishes if u verifies (1.2) or (1.3), i.e
Z
Ai ziαi , ε−1 u(x, ziαi ) + Ai (ziβi , −ε−1 u(x, ziβi )) dzi∗ = 0.
Di∗
If one supposes that u(x, s) = 0 for (x, s) ∈ R × ∂D, it is immediate, that
Ai (ziαi , 0) = Ai (ziβi , 0), ∀i = 1, ..., n.
Now if the boundary condition is
∂u
(x, s) = 0 for (x, s) ∈ R × ∂D, then
∂n
∂u
(x, s) = h∇u.ni (x, s) = 0 (x, s) ∈ R × ∂D,
∂n
i.e
∂u
(x, ziαi ) =
∂x
∂u
(x, z1α1 ) =
∂y1
∂u
(x, ziβi ) = 0
∂x
∂u
(x, z1β1 ) = 0
∂y1
.
.
.
∂u
∂u
(x, ziαi ) =
(x, ziβi ) = 0
∂yi
∂yi
.
.
.
∂u
∂u
(x, znαn ) =
(x, znβn ) = 0
∂yn
∂yn
consequently
a
ai (zi i ,
, x ∈ R, αi ≤ yi ≤ βi ,
∂u
∂u
α
(x, zi i )) = ai (ziβi ,
(x, ziβi )) = 0, ∀i = 1, ..., n.
∂yi
∂yi
because
ai (x, 0) = 0, ∀x ∈ D, ∀i = 1, ..., n..
Finally one gets
Ai (ziαi , 0) = Ai (ziβi , 0) = 0, ∀i = 1, ..., n.
3. Main results
The goal of this section is to establish the nonexistence of nontrivial solutions to Robin problem.
EJQTDE, 2009 No. 44, p. 7
Theorem 1. Let ai , i = 1, ..., n and f satisfying respectively
ai (., ξi ) : D → R, > 0 or < 0,
(3.1)
∀ξi , ∀i ∈ {1, ..., n}
2Ai (y, ξi ) − ai (y, ξi ) ξi ≤ 0,
(3.2)
2F (y, u) − uf (y, u) ≤ 0 ,
and assume
u ∈ H 2 (Ω) ∩ L∞ (Ω)
to be a solution of (1.1) − (1.4). Then the function
Z
x 7→ E(x) = |u(x, y)|2 dy is convex on R.
D
Proof. To begin the proof, we see that almost everywhere in Ω = R × D,
we have
∂u 2
∂2u
1 ∂2
2
(u 2 ) (x, y) = (
u − )(x, y).
∂x
2 ∂x2
∂x
u
In fact by multiplying equation (1.1) by and integrating the new equation
2
over D, we obtain
!
Z
n
X
∂2u
∂
u
∂u
− 2 −
0=
(x, y)dy
) + f (y, u)
ai (y,
∂x
∂yi
∂yi
2
D
i=1
(3.3)
!
Z
n
1 ∂u 2 1 X
1 ∂2
u
∂u
∂
2
ai (y,
=
−
u + −
) u + f (y, u)(x, y) dy.
4 ∂x2
2 ∂x
2
∂yi
∂yi
2
i=1
D
A simple use of Fubini’s theorem and an integration by parts yields,
Z
∂
∂yi
D
=−
Z
D
Z Zβi
∂u
∂u
∂
) (u) (x, y) dy = (
) udyi )dzi∗ =
ai (y,
ai (y,
∂yi
∂yi
∂yi
Di∗ αi
∂u ∂u
)
(x, y) dy+
ai (y,
∂yi ∂yi
Z
(ai (ziβi ,
αi
∂u(x, ziβi )
βi
αi ∂u(x, zi )
)u(x, zi )−ai (zi ,
)u(x, ziαi ))dzi∗
∂yi
∂yi
Di∗
Instead of (3.3), we obtain
!
Z
n
1 ∂u 2 1 X
∂u
∂u
1
1 ∂2
2
ai (y,
u + +
)
+ uf (y, u) (x, y)dy
−
4 ∂x2
2 ∂x
2
∂yi ∂yi 2
D
i=1
EJQTDE, 2009 No. 44, p. 8
n
1X
=
2
Z
(ai (ziβi ,
i=1 D ∗
∂u(x, ziβi )
∂u(x, ziαi )
)u(x, ziβi ) − ai (ziαi ,
)u(x, ziαi ))dzi∗
∂yi
∂yi
i
From (2.4) it follows that
n Z
X
∂u(x, ziβi )
∂u(x, ziαi )
)u(x, ziβi ) − ai (ziαi ,
)u(x, ziαi ))dzi∗
(ai (ziβi ,
∂yi
∂yi
i=1 D ∗
i
n Z
X
=
i=1 D ∗
i
n Z
X
=
(ai (ziβi , −ε−1 u(x, ziβi ))u(x, ziβi )−ai (ziαi , ε−1 u(x, ziαi ))u(x, ziαi ))dzi∗
(
i=1 D ∗
i
i.e
Z
1
1
ai (ziβi , −ε−1 u(x, ziβi )) −ε−1 u(x, ziβi )− −1 ai (ziαi , ε−1 u(x, ziαi ))ε−1 u(x, ziαi ))dzi∗
−1
−ε
ε
!
2
n
X
∂u
∂u
1
1
∂u
1
1 ∂2
ai (y,
u2 + +
)
+ uf (y, u) (x, y)dy
−
4 ∂x2
2 ∂x
2
∂yi ∂yi 2
i=1
D
n
εX
+
2
Z
i=1 D ∗
i
(ai (ziβi , −ε−1 u(x, ziβi )) −ε−1 u(x, ziβi )+ai (ziαi , ε−1 u(x, ziαi ))ε−1 u(x, ziαi ))dzi∗ = 0,
Combining this formula and (2.1) we obtain
!
2
Z
n
X
1
∂u
1
∂u
∂u
1
1 ∂2
u2 + +
ai (y,
)
+ uf (y, u) (x, y)dy
−
4 ∂x2
2 ∂x
2
∂yi ∂yi 2
i=1
D
n
+
εX
2
Z
i=1 D ∗
i
(ai (ziβi , −ε−1 u(x, ziβi )) −ε−1 u(x, ziβi )+ai (ziαi , ε−1 u(x, ziαi ))ε−1 u(x, ziαi ))dzi∗
=
Z
D
+ε
n Z
X
i=1 D ∗
i
i.e
!
n
∂u
1 ∂u 2 X
Ai (y,
) + F (y, u) (x, y)dy
− +
2 ∂x
∂yi
i=1
(Ai ziαi , ε−1 u(x, ziαi ) + Ai (ziβi , −ε−1 u(x, ziβi )))dzi∗
Z
D
=
Z
D
n
X
i=1
!
∂u 2
1 ∂2
2
−
u + (x, y)dy
4 ∂x2
∂x
!
1
∂u ∂u
1
∂u
) − ai (y,
)
) + F (y, u) − uf (y, u) (x, y)dy
(Ai (y,
∂yi
2
∂yi ∂yi
2
EJQTDE, 2009 No. 44, p. 9
+ε
n Z
X
i=1 D ∗
i
+ε
n Z
X
i=1 D ∗
i
Ai ziαi , ε−1 u(x, ziαi )
1
αi −1
αi
αi
−1
− ai (zi , ε u(x, zi ))ε u(x, zi ) dzi∗
2
1
Ai (ziβi , −ε−1 u(x, ziβi )) − ai (ziβi , −ε−1 u(x, ziβi )) −ε−1 u(x, ziβi ) dzi∗ .
2
Hypotheses (3.1) and (3.2) imply that
Z
Z
d2
2
|u (x, y)| dy ≥ 4
dx2
D
D
This completes the proof.
2
∂u
∂x (x, y) dy ≥ 0, ∀x ∈ R.
Remark 1. The convexity of the function E(x) on R implies the triviality
of the solution u(x, y) of the problem (1.1) − (1.4).
Theorem 2. Let the function ai , i = 1, ..., n and f be as described as in
Theorem 3.1. We assume u ∈ H 2 (Ω) ∩ L∞ (Ω) is a solution of (1.1) − (1.2)
or (1.1) − (1.3), then the function E(x) defined above is convex on R.
Proof. By similar arguments as in the proof of Theorem 3.1, we obtain
!
Z
n
∂u ∂u
1
1 ∂ 2 2 1 ∂u 2 1 X
u + +
ai (y,
)
+ uf (y, u) (x, y)dy
−
4 ∂x2
2 ∂x
2
∂yi ∂yi 2
i=1
D
=
1
2
n Z
X
i=1 D
(ai (ziβi ,
∂u(x, ziβi )
∂u(x, ziαi )
)u(x, ziβi ) − ai (ziαi ,
)u(x, ziαi ))dzi∗
∂yi
∂yi
i
∂u
(x, s) = 0, for (x, s) ∈ R × ∂D this formula reduces
Now if u (x, s) = 0 or ∂n
to
!
2
Z
n
X
1
1 ∂2
∂u
∂u
∂u
1
1
−
ai (y,
u2 − +
)
+ uf (y, u) (x, y)dy = 0
4 ∂x2
2 ∂x
2
∂yi ∂yi 2
i=1
D
We can now employ (2.5) to transform this identity into the following form
!
2
Z
n
X
1 ∂2
∂u
∂u
1
∂u
1
1
−
ai (y,
u2 + +
)
+ uf (y, u) (x, y)dy
4 ∂x2
2 ∂x
2
∂yi ∂yi 2
i=1
D
!
Z
n
∂u(x, y)
1 ∂u(x, y) 2 X
Ai (y,
+
) + F (y, u(x, y)) dy
−
=
2
∂x
∂yi
i=1
D
i.e
Z
D
!
∂u 2
1 ∂2
2
u + (x, y)dy
−
4 ∂x2
∂x
EJQTDE, 2009 No. 44, p. 10
=
Z
D
n
X
i=1
1
∂u ∂u
∂u(x, y)
) − ai (y,
)
Ai (y,
∂yi
2
∂yi ∂yi
!
1
+ F (y, u) − uf (y, u) (x, y)dy.
2
Our assumptions on ai , and f imply the desired result.
4. Applications
A practical tool for characterizing the assumption (3.1) or (3.2) of Theorem 3.1 is the following Proposition.
Proposition 1. Let
f :R→R
a Lipschitzian real function such that
f (0) = 0.
We suppose that f is concave on ] − ∞, 0[ and convex on ]0, +∞[. Then the
function f satisfies the assumption (3.1) or (3.2) of Theorem 3.1.
Application 4.1 : Taking
ai (y,
∂u(x, y)
∂u(x, y)
)=
∂yi
∂yi
then the equation (1.1) becomes
(4.1)
−∆u + f (y, u) = 0 in Ω
Application 4.2 : We can put
ai (y,
∂u(x, y)
∂u
(x, y)) = ci
∂yi
∂yi
with ci are reals constants. In this case (1.1) can be rewritten as
n
(4.2)
∂2u X ∂2u
− 2−
ci 2 + f (y, u) = 0 in Ω
∂x
∂yi
i=1
Application 4.3 : We can also put
ai (y,
(4.3)
∂u(x, y)
∂u(x, y)
) = pi (y)
∂yi
∂yi
with pi (y) < 0 or > 0 in D, it follows that the equation(1.1) is
equivalent to
n
∂2u X ∂
∂u
− 2−
pi (y)
+ f (y, u) = 0 in Ω
∂x
∂yi
∂yi
i=1
We observe that in this three applications, we have
2Ai (y, ξi ) − ai (y, ξi ) ξi ≡ 0, ∀ξi , i = 1, ..., n.
EJQTDE, 2009 No. 44, p. 11
5. Examples
To conclude this work, let us give a few simple examples illustrating the
use of Theorem 3.1.
Example 1. The problem
n ∂
∂2u P
∂u
−
)
+ θ (y) |u|p−1 u = 0 in Ω = R × D
−
a
(y,
i
∂yi
∂x2 i=1 ∂yi
(5.1)
∂u
(u + ε )(x, s) = 0, (x, s) ∈ R × ∂D
∂n
where
θ : D → R,
is a nonnegative continuous real function, p ≥ 1 does not have nontrivial
solutions.
Indeed,
2F (y, u) − uf (y, u) = θ (y) (
2
− 1) |u|p+1 ≤ 0.
p+1
Theorem 3.1 give the desired result.
Example 2. Let ρ : D → R, be a continuous function . The problem
n ∂
∂2u P
∂u
−
)
+ ρ (y) u = 0 in R × D
−
a
(y,
i
∂yi
∂x2
∂yi
i=1
(5.2)
u + ε ∂u = 0 on R × ∂D
∂n
considered in H 2 (R × D) ∩ L∞ (R × D) does not have nontrivial solutions.
A simple calculation gives
2F (y, u) − uf (y, u) ≡ 0.
and
d2
1
4 dx2
Z
D
(|u(x, y)|2 dx =
Z
D
!
2
∂u
1
+ F (y, u) − uf (y, u) dx
∂x
2
Z 2
∂u
= (x, y)dx ≥ 0
∂x
D
Example 3. Let
θ1 , θ2 : D → R,
be two continuous nonnegative functions, p, q ≥ 1 and
f (y, u) = mu + θ1 (y) |u|p−1 u + θ2 (y) |u|q−1 u), m ∈ R.
EJQTDE, 2009 No. 44, p. 12
The problem
n ∂
P
∂2u
∂u
−
)
+ f (y, u) = 0 in R × D
−
a
(y,
i
∂yi
∂x2
i=1 ∂yi
(5.3)
∂u
u+ε
= 0 on R × ∂D
∂n
does not have nontrivial solutions.
It suffices to remark that,
2F (y, u) − uf (y, u) =
θ1 (y) (
2
2
− 1) |u|p+1 + θ2 (y) (
− 1) |u|q+1 ≤ 0
p+1
q+1
and then apply theorem 3.1.
References
[1] H. BERESTYCKY, T. GALLOUET AND O. KAVIAN, Equations de
champs scalaires non-lin´eaires dans R2 . C. R. Acad. Sc. Paris, S´erie 1, 297, (1983),
307-310.
[2] M. J. ESTEBAN AND P. L. LIONS, Existence and nonexistence results for
semi linear elliptic problems in unbounded domains. Proc. Roy. Soc. Edimburgh 93A(1982), 1-14.
[3] A. HARAUX AND B. KHODJA, Caract`ere trivial de la solution de certaines
´equations aux d´eriv´ees partielles non lin´eaires dans des ouverts cylindriques de
RN . Portugaliae Mathematica. Vol. 42, Fasc. 2, (1982), 209-219.
[4] B. KHODJA, Nonexistence of solutions for semilinear equations and systems in
cylindrical domains. Comm. Appl. Nonlinear Anal. (2000), 19-30.
[5] B. KHODJA, A nonexistence result for a nonlinear PDE with Robin condition, International Journal of Mathemlatics and Mathematical Sciences, volume 2006, Article
ID 62601, 1-12
[6] B.KHODJA AND A. MOUSSAOUI, Nonexistence results for semilinear systems in unbounded domains,Electron. J. Diff. Eqns., Vol. 2009 (2009), No. 02, 1-11.
[7] E. MITIDIERI, Nonexistence of positive solutions of semilinear elliptic systems in
RN . Diff. and Int. Equations, 9 (1996), 465-479.
[8] M. H. PROTTER AND H. F. WEINBERGER, Maximum principle in differential equations, Prentice-Hall, Englewood Cliffs, New Jersey, (1967).
[9] PUCCI & J. SERRIN, A general variational identity, Ind. Univers. Mat.
Journal. Vol. 35, N3 (1986), 681-703.
[10] S. I. POHOZAEV, Eigenfunctions of the equation ∆u + 1f (u) = 0. Soviet.
Math. Dokl. 6 (1965), 1408-1411.
[11] D. DE FIGUEIREDO, Semilinear elliptic systems . Nonlinear Functional Analysis
and Application to differential Equations (1998), 122-152, ICTP Trieste ITALY, 21
April-9 May 1997. World Scientific.
EJQTDE, 2009 No. 44, p. 13
(Received June 1, 2009)
Badji Mokhtar University, department of mathematics P.O.12 Annaba, ALGERIA
E-mail address: [email protected]
Badji Mokhtar University, department of mathematics P.O.12 Annaba, ALGERIA
E-mail address: [email protected]
EJQTDE, 2009 No. 44, p. 14