Index of /intel-research/silicon Paolo M2S2 0902

Attacking the Red Brick Walls of the
International Technology Roadmap
for Semiconductors
(ITRS)
Dr. Paolo Gargini
Chairman ITRS

2001 Edition

M2 S2

P.Gargini
Sept-23--2002

What is the ITRS?
• A consensus reference document with a 15
year outlook on the requirements of the
semiconductor industry
– Provides a reference document for Equipment,
Materials and Software Suppliers on the Needs of the
Semiconductor Industry and on Possible Solutions

– Provides a reference document for the researchers on
the challenges of the semiconductor industry in the out
years

M2 S2

P.Gargini

Technology Hierarchy
Example:

p
• aReduce
Signal Propagation Delay of
m
d
a
Interconnections
o


• Technology Needs

R
y
g
o
l
o
n
h Solutions
c
• ePossible
T
in
a
m
o
D

• Metal Potential Solution: Cu Metal

Dielectric Potential Solution: Low K
Dielectric
ion

t
a
t
en

m
e
l
p
m
I
y
• Detailed g
Solutions

o

l
o
n
h
c
e
T• Implementation
in
a

m
o
D

Use: Cu CVD Seed Layer + Cu
Plating+ CMP+Low K CVD
Establish Supplier Infrastructure

M2 S2


P.Gargini

Roadmap Editions
2002ITRS
Update

http://public.itrs.net
2001 Edition

1997NTRS

2001ITRS

Europe
Japan

1994NTRS

2000ITRS
Update


Korea
1992NTRS

Taiwan
1999ITRS

USA
1991
Micro Tech 2000
Workshop Report

1998ITRS
Update

M2 S2

P.Gargini

International and Domestic Timing

Time

Region A

Region B

1Q

Domestic

Domestic

Europe
2Q
Domestic

Domestic

USA


3Q

4Q

2001

Korea
USA

Japan 1999, 2002
Taiwan 2000

M2 S2

P. Gargini
P.Gargini

2002 ITRS Update:
December 4th, 2002


M2 S2

P.Gargini

Mission of ITRS
IRC
•Coordination
among
Associations

Technology Needs
Potential Solutions

ESIA

TWG
JEITA
(STRJ)
KSIA


•Policy
•Goals
•Schedule
•Coordination
among ITWGs

in

TWG

near & long term

etc

TWG
TWG

SIA

TSIA


ITWG
ITWG

FEP
Test
Design

TWG

M2 S2

P.Gargini

International Technology Working
Groups
ITWG









Cross ITWG

Assembly & Packaging
Design
Factory Integration
Front End Process
Interconnect
Lithography
PIDS, Emerging Devices
Test

• Environment, Safety,
Health
• Metrology
• Modeling and Simulation
• Yield Enhancement

* PIDS=Process Integration and Device Structures

M2 S2

P.Gargini

ITRS Framework
Interconnect

Design

Factory Integration

ESH

Yield Enhancement

Metrology Modeling
PIDS
Lithography
FEP Isolation
Source / Drain
- Extension

Channel

Assembly
QFP

Test

BGA

PGA

2001 Edition
Contacts
Printed Wiring Board

Wells
Starting Material

M2 S2

P.Gargini

Chapters of ITRS 2001
Glossary
ORTC

http://public.itrs.net
12 ITWGs : Design to Modeling & Simulation
- Scope
- Difficult Challenges
- Technology Requirement
- Potential Solutions
System Drivers
Difficult Challenges
Grand Challenges
Introduction

M2 S2

P.Gargini

Contact Information for the ITRS
¾For general questions or information regarding ITRS publications and
public forums visit the ITRS web site http://public.itrs.net [note that
there is no “www” in our web site address.].
To order a Roadmap through email, use the ITRS email address
[email protected] or access the ITRS web site.
¾Other questions or comments?
call
Linda Wilson
ITRS Information Manager
512.356.3605
Sarah Mangum
ITRS Webmaster
512.356.3558

2001 ITRS Book and CD sales
•$25 for CDs, $35 for CDs shipped outside the U.S.A
•$50 for Books, $65 for ITRS books shipped outside the U.S.A.
¾Back issues of the ITRS are available while quantities last (1999, 1997, 1994) !!

M2 S2

P.Gargini

Composition of the Technology
Working Group (ITWG) in 2001
TWG Members by Regions TWG Members by Affiliations
Korea
64
8%
Japan
222
26%

USA
324

Research Inst. /
Other
Consortia /
1% 10
University
193 23%

39%

54%
22%

19%
Taiwan
161

8%
Europe
68

Equipment /
Materials
Suppliers 185

M2 S2

Chip Makers
445

P.Gargini

Applied Materials
KLA-Tencor
Tokyo Electron America
SEMI
Novellus Systems
Wacker Siltronic Corp.
Agilent Technologies
Winbond Electronics Corp.
Axcelis Technologies, Inc.
Komatsu Silicon
MEMC
Canon Inc.

Dow Chemical
Micronix
ASM Lithography
Nikon Corporation
Photronics, Inc.
Shipley Company, Inc.
Episil Technologies
Metrology Edge
Therma-Wave
Oki Electric Ind. Co., Ltd.

DuPont Company
Silicon Valley Group, Inc
ION Systems
M+W Zandar
Nanya Technology Co.
Compaq Computer Corp
Asyst Technologies, Inc.
Sumitomo Sitix Corp.
Varian
Air Products & Chemicals
Etec Systems, Inc.
n-Line Corporation
K&S

THANK YOU!!!
Advantest
LogicVision
Teradyne
Air Liquide
Metara, Inc.
Millipore

M2 S2

CamLine
Ebara
Rohm
Sanyo
FSI International
Genus
Ibis Technology
Okmetic Ltd.
SiGen
Soitec
Tokin Corp
BOC Edwards

Nortel Networks
Cadence
Intransa
UBC
ATMI
Cabot Corporation
E4 Technologies
Praxair, Inc.
SONY
URS Corporation

P.Gargini

DETAILED SOLUTIONS
And
IMPLEMENTATION

M2 S2

P.Gargini

From Strategy to Implementation
ITRS

Technology Needs
Possible Solutions
Consortia
Researchers

Detailed Solutions

Suppliers
Suppliers
IC Makers

Implementation
M2 S2

OEM

P.Gargini

Use of ITRS as a Global Planning Tool
Internal
R&D

Consortia
External
R&D

Suppliers
M2 S2

SRC
Natl Lab
ISMT
IMEC
LETI
MEDEA
MIRAI
ASET
Selete

P.Gargini

Consortia Locations
JR

MARCO

i

IRAI

PR

M2 S2

P.Gargini

M2 S2

P.Gargini

ITRS GUIDING
PRINCIPLE
M2 S2

P.Gargini

RR

Transistors Shipped per
Year

1018

1017
1016
Units

1015
1014
1013
1012
1011
1010
109
'68 '70
®

'72 '74 '76 '78 '80 '82

'84 '86

'88 '90 '92 '94 '96 '98 '00 '02

Source: WSTS/Dataquest/Intel, 8/02

M2 S2

P.Gargini

R
R

Worldwide Semiconductor
Revenues
1000

$B

100

10

1
'68
'68 ’70
’70 '72 '74 '76
'76 '78 '80
'80 '82 '84 '86 '88
'88 ’90
’90 '92 '94 '96 '98 '00 '02
®

Source: Intel/WSTS, 8/02

M2 S2

P.Gargini

RR

Average Transistor Price
by Year
10

$

1
0.1
0.01
0.001
0.0001
0.00001
0.000001
0.0000001
'68 '70 '72 '74 '76 '78 '80 '82 '84 '86 '88 '90 '92 '94 '96 '98 '00 '02
®

Source: WSTS/Dataquest/Intel, 8/02

M2 S2

P.Gargini

ITRS GUIDING PRINCIPLE
50% TRANSISTOR AREA READUCION
GENERATION TO GENERATION

=> 30% LINEAR FEATURE REDUCTION

50%
M2 S2

P.Gargini

Intel’s Process Technology
Basic Feature Size in microns

0.8µ

0.6µ

0.35µ

Pentium®
Processor

0.25µ

0.18µ

0.13µ

In 26 years, the number of
transistors on a chip has
increased more than 18,000
times, from 2,300 on the
4004 in 1971 to 42 million on
the Pentium® 4 processor.

Pentium® Pro
Processor
Pentium® II
Processor
Pentium® III
Processor
Pentium® 4
Processor

M2 S2

P.Gargini

DEFINITIONS
And
TIMING
M2 S2

P.Gargini

Technology Node Definition

One half of the smallest pitch in the technology,
Typically represented by the first metal layer
of DRAM

M2 S2

P.Gargini

Half Pitch (=Pitch/2) Definition

Poly
Pitch

Metal
Pitch

(Typical
MPU/ASIC)

(Typical
DRAM)
M2 S2

P.Gargini

MOS Transistor Scaling
(1974 to present)

S=0.7
[0.5x per 2 nodes]
Pitch

M2 S2

Gate

P.Gargini

1994 NTRS Roadmap
Year:

95 96 97 98 99 00 01 02 03 04 05 06 07

NTRS’94
1/2 pitch* 350

250

180

130

100

* Dimensions for minimum half pitch and isolated line in nm
Source: National Technology Roadmap for Semiconductors

M2 S2
ITRS

10
P.Gargini
P.Gargini

M2 S2

P.Gargini

WAS

Technology Nodes (nm)
X

IS

Actual

100

130

0.7

91

90

70

90

0.7

64

65

50

65

0.7

45

45

35

45

0.7

31

32

25

32

0.7

22

22
IRC

M2 S2

P.Gargini

1999 ITRS Timing
Year of Production
DRAM ½ Pitch (nm)

1999 2000

2001

180

2002

2003 2004

2005

130

100

180 165 150 130

120 110 100
100

85-90

80 70

65
65

180

160

145 130

115

150

130

120 110

100

MPU Gate Length (nm)

140

120 100

MPU / ASIC ½ Pitch (nm)

230

210

ASIC Gate Length (nm)

180

165

-1

2001 ITRS Timing

-2

Year of Production
DRAM ½ Pitch

2001

2002

2003

130

115

100

MPU/ASIC ½ Pitch

150

130

107

MPU Pr Gate Length

90

75

MPU Ph Gate Length

-4 65

53

65
45

M2 S2

-2
2004

2005

2006

2007

90
90

80

70

80

70

65
65

53

45

40

35

37

32

28

25

P.Gargini

Production Ramp-up Model and Technology Node
Development

200K

Production

10M

20K

1M

100K

2K
Alpha
Tool

Beta Production
Tool
Tool

10K
1K

First Two
Companies
Reaching
Production

First
Conf.
Papers

-24

200

-12

Source: 2001 ITRS - Exec. Summary

0

Months
M2 S2

12

20
2

Volume (Wafers/Month)

Volume (Parts/Month)

100M

24
P.Gargini

3-year cycle
(1977~1995)
Innovation
1.4X
3-year cycle

4X/3 Years

Technology
2X

Manufacturing
1.4X
M2 S2

P.Gargini

DRAM Chip Size Trend
10,000
1T
Chip Size (mm2)

1.4X/3-years
1000
1G

100

10
1980

800mm2 Max Litho Field
(4X)
300mm2

150mm2
75mm2
38mm2
~2X die growth in 6 years

1M

1990

2000

M2 S2

2010

2020
P.Gargini

3-year -> 2-year cycle
(~1995-2010)
Innovation
1.4X
3-year cycle

4X/3 Years

Technology
2X ->2.8X
1.4X
M2 S2

Manufacturing
1.4X ->1.0X
P.Gargini

DRAM Chip Size Trend
10,000
1T
Chip Size (mm2)

1.4X/3-years
1000

800mm2

1G

300mm2
100

10
1980

150mm2
75mm2
38mm2
~2X die growth in 6 years

1M

1990

2000

M2 S2

2010

2020
P.Gargini

TABLES
And
WALLS
M2 S2

P.Gargini

Table’s Structure
• All tables are divided in two parts:
– Near Term
• Six year outlook (e.g., 2001-2007)
• All values are reported on a yearly basis

– Long Term
• Nine year outlook (e.g., 2008-2016)
• Values are reported at 3 year interval

M2 S2

P.Gargini

Tables’ Color Scheme
Solutions Exist
White
Solutions Being Pursued
Yellow
No Known Solutions
Red

• A new category will be introduced starting with
2002ITRS Update

M2 S2

P.Gargini

A Rainbow of Tables
Table46b MPUInterconnect TechnologyRequirements—LongTerm

DRAM Short Term Requirements
Y EA R OF INTRODUCTION
“T ECHNOLOGY NODE”

1999
180 nm

2000

2001

2002
130 nm

2003

2004

2005
100 nm
100

180

165

150

130

120

110

Number of metal levels

3

3

3

3-4

4

4

Contact A/R – s tacked
capacitor

6.3

6.7

7.1

7.5

8.0

Local wiring pitch (nm) noncontacted

360

330

300

260

240

Specific contact resistance

6E-7

DRAM pitch

7E-9

Specific via resistance

180

Interlevel metal insulator -

165

2 MPU Gate Lengtheffective
(nm) dielectric cons140
tant

120

(κ)
3 MPU / ASIC ½ (nm)

230
180

4 ASIC Gate Length (nm)
5 Minimumlogic V (V) (desktop)
Solutions Exist
dd

150
4.1

130

100

85

210

180

165

150

120
4.1

110
4.1

70

65

160

145

130

115

130

120

110

100

32

80

55

3E-7

[4]

2E-7Length (nm)
ASIC Gate

70

50

2E-9

[5]

Minimum logic Vdd (V) (desktop)

0.6–0.9

0.5–0.6

[6]

Tox equivalent (nm)

210

3. 0 - 4.1

3. 0 - 4.1

1E-9

0.6–0.8

40

80

YEAR

5

9

11

Gate delay metric CV/I (ps) high-performance

10 Percent static power reduction necessary due to
innovative circuit/systemdesign

7

8

10

13

16

20 ground
planes/capacitors
MGATE

(For minimum
L device)
6-7
6–7 low power
7

Jmax (A/cm2)—wire (at 105°C)

9.4

8.6

7.3

6.9

6.1

5.7 Imax (mA)—via (at 105°C)
Local wiring pitch (nm)

0

MGATE

7–8

8

8

8–

2

5.6 2
95
1.3E6

2

33

48

55

71

77

81

M&A ½

Local wiring A/R (for Cu)

DRIVER

YEAR 490/230 490/23 490/230 490/230
2008
2011
2014
11 Nominal I at 25 °C(µA/µm)
490/23 490/230 490/230
GATEdishing (nm), 5% × height
CuAlocal
on
70 nm
50 nm
35 nm
T ECHNOLOGY N ODE 0
0
[NMOS/PMOS] lowpower
Intermediate wiring pitch (nm)
70 13

[1] DRAM ½ Pitch (nm)
12 Maximum
5
Ioff at 25 °C(pA/µm)
[2] MPU
Length (nm)
(For minimum
Ldevice)Gate
lowpower

7

8

10

13 Gate delay
CV/I /(ps)
lowpower
18
[3]metric
MPU
ASIC
½ Pitch (nm)

16

13

11.2 8010.7

16

50
35
20 Intermediate wiring A/R (Al)

8.8

8.2
55 Cu intermediate40
dishing (nm),

A GATE

32 Intermediate wiring
22 dual damascene A/R

45

36

55

Minimum logic Vdd (V) (desktop)

off

Solutions
Being Pursued
(For minimum L device)
high-performance

[9] Gate delay metric CV/I (ps) high-performance
[10] Percent static power reduction necessary due to
innovative circuit/system design
[11] Nominal Ion at 25 °C (µA/µm) [NMOS/PMOS] low
power

65 70 80

2.1

0.29

250.27
330 0.02–0.028
295
2.2
**

1.4

1.4

1.5

1.5

1.6

1.6

18
640

16
575

15
520

14
465

13
420

12
375

2.2

2.3

2.4

2.5

2.6

**

2.0/2.1

2.1/2.1

2.2/2.1

2.2/2.1

2.2/2.2

2.3/2.2

64

60

57

51

46

43

41

64

60

57

51

46

43

41

11
34
**

2.4/

85

NoKnown Solutions
3.7
91
490/230
40

[13] Gate delay metric CV/I (ps) low power
[14] Percent static power reduction necessary due to
innovative circuit/system design

5.6
95

[16] S/D extension junction depth, nominal (µm)

2.1

0.6–0.9

[12] Maximum I at 25 °C (pA/µm)
off
(For minimum L device) low power

[15] VT 3s variation (±mV) (For minimum L device)

1.1E6

2

25
0.02–0.028

1050

945

850

765

690

620

56

2

2.1

2.2

2.3

2.4

**

2.2/2.4

2.3/2.6

2.4/2.7

2.5/2.7

2.6/2.8

2.7/2.8

**

116

109

102

95

90

84

76

3.3

3.3

3.3

3.3

3.3

**

**

2.7/

15 micron wide wire, 10% × height
2.6 Conductor effective
2.4 resistivity
(µΩ-cm) Al wiring
M Gate
97
98
Conductor effective resistivity M & A ½
(µΩ-cm) Cu wiring*
A Gate
490/230
490/230
Barrier/cladding thickness
(for Cu wiring) (nm)***
A Gate
80 Interlevel metal160
insulator

17
Solutions
Exist

17
0.01–0.014

4

2.1E6

3.7E6

4.6E6

0.18

0.16

0.11

1999
180 nm

0.5–0.6

230

M Gate

20001.9 20012.1 20022.3 2003
130 nm
9
7
5
210 240 180165 160115 145

MPU gate
length
(nm)
Interm
ediatewiring
dual damasceneA/R(Cu140
wire/via)
M Gate
750/350
Number of metal levels

1202.5/2.3 1002.7/2.4 852.9/2.5

6-7

6–7

0

0

7

30

22

2.6
97

DRAM

18
r effectiv
resistiv
A eGate
160Conducto
Intermediate
wiring
pitch
(nm) ity(µΩ-cm)Cuwiring
640

16
575

1.8

Intermediate
wiring A/Rthickness
(Al) (nm)
Barrier/cladding

2.3

0

Contact A/R – stacked capacitor

2.2

wiring
pitch
(nm)
Intermediate
wiring
dualnon-contacted
damascene A/R
2.0/2.1
3.7
Interlev
el metal
insulato
r—effectivedielectric
constant (κ)2.1/2.11.5

2.4

130

11

70

65

8

8

8–

2

2

13 4
420
10.5

14
465