Perhitungan Konstruksi Dinding Tegak

123

5.6.1.3 Perhitungan Konstruksi Dinding Tegak

A. Perataan beban segitiga untuk pembebanan dinding Mmaks = q.L 2 9 √3 untuk x = L √3 Gambar 5.21 Perataan Beban Segitiga Besarnya beban ekivalen : M maks = M x M x = 2 x L x q ek − 3 9 2 L q = 2 x L x q ek − untuk x = L √3 q ek = 0,5246 q Gambar 5.22 Diagram Tegangan Tanah Tiap Segmen Dinding Gerbang A X q L qek L A 4,00 0,47 1,50 0,40 1,50 sa 7 sa 8 sa 9 sa 10 sa w 1,00 1,12 2,00 0,35 sa 1 sa 2 segmen 1 segmen 2 segmen 3 sa 3 sa 4 sa 5 sa 6 124 Segmen 1 a1 = Ka 1 x q = 0,729 x 1 = 0,729 tm 2 a2 = 1 x h x Ka 1 – 2 x C 1 x √Ka 1 = 1,6453 x 1 x 0,729 – 0,853 = 0,346 tm 2 q ek = a1 + 0,5246 x a2 = 0,729 + 0,5246 x 0,346 = 0,911 tm 2 Segmen 2 a3 = a1 + a2 = 0,729 + 0,346 = 1,075 tm 2 a4 = 1 x h x Ka 1 – 2 x C 1 x √Ka 1 = 1,6453 x 1 x 0,729 – 0,853 = 0,346 tm 2 a5 = a3 + a4 = 1,075 + 0,346 = 1,421 tm 2 a6 = 2 x h x Ka 2 - 2 x C 1 x √Ka 1 = 1,7099 x 0,12 x 0,679 – 0,118 = 0,021 tm 2 q ek = a3 + 0,5246 x a4 + a5 + 0,5246 x a6 = 1,075 + 0,5246 x 0,346 + 1,421 + 0,5246 x 0,021 = 2,689 tm 2 Segmen 3 a7 = a5 + a6 = 1,421+ 0,021 = 1,442 tm 2 a8 = 2 x h x Ka 2 = 1,7099 x 1,88 x 0,679 125 = 2,183 tm 2 a9 = a5 + a6 = 1,442 + 2,183 = 3,625 tm 2 a10 = sub x h x Ka 2 = 0,6738 x 0,12 x 0,679 = 0,055 tm 2 aw = w x h x Kw = 1 x 0,12 x 1 = 0,12 tm 2 q ek = a7 + 0,5246 x a8 + a9 + 0,5246 x a10 + 0,5246 x aw = 1,442 + 0,5246 x 2,183 + 3,625+ 0,5246 x 0,055 + 0,5246 x 0,12 = 6,304 tm 2 B. Penulangan Dinding Segmen 1 q = 0,911 tm 2 Ix = h1 = 1,00 m Iy = jarak antar counterfort = 2,675 m IyIx = 2,6751,00 = 2,675 Diasumsikan pelat terjepit di kedua sisinya M Ix = 0,001.q u .Ix 2 .x M Iy = 0,001.q u .Ix 2 .x M ty = -0,001.q u .Ix 2 .x M tiy = ½.M Ix Iy Ix 126 Dimana nilai x berturut-turut berdasarkan perbandingan lylx = 2,675 adalah 107; 20,4; dan 112 Tabel Hal 26 Grafik dan Tabel Perhitungan Beton Bertulang, Seri Beton-4, W.C. Vis, Gideon Kusuma M Ix = 0,001 x 0,911 x 1,0 2 x 107 = 0,097 tm M Iy = 0,001 x 0,911 x 1,0 2 x 20,4 = 0,019 tm M ty = -0,001 x 0,911 x 1,0 2 x 112 = -0,102 tm M tiy = ½ x 0,097 = 0,049 tm Diambil momen yang maksimum ™ Tulangan Arah X Tumpuan dan Lapangan Mu = 0,097 tm = 9,7 x 10 5 Nmm Mn = Mu φ = 9,7 x 10 5 0,8 = 1,213 x 10 6 Nmm b1 = 300 mm f’c = 225 kgcm 2 = 22,5 Nmm 2 fy = 2400 kgcm 2 = 240 Nmm 2 Dicoba tulangan pokok Ø 20 mm d’ = tebal selimut beton = 50 mm Tabel 3. Dasar-Dasar Perencanaan Beton Bertulang, Seri Beton –1,W. C. Vis, Gideon Kusuma d = b1 – d’ – Ø2 = 300 – 50 – 202 = 240 mm k = Mnb.d 2 .R 1 R l = 1 .f’c = 0,85 x 22,5 = 19,125 Nmm 2 k = 1,213 x 10 6 1000 x 240 2 x 19,125 = 1,101 x 10 -3 F = 1 - k 2 1 − = 1 - 10 x 1,101 2 1 -3 − = 1,102 x 10 -3 Fmax = 1 .450600 + fy = 0,85 x 450600 + 240 = 0,455 F Fmax tulangan tunggal under reinforced As = F.b.d.R l fy = 1,102 x 10 -3 x 1000 x 240 x 19,125240 = 21,071 mm 2 ρ = Asb.d = 21,0711000 x 240 = 8,779 x 10 -5 ρ min = 1,4 fy = 1,4240 = 5,83 x 10 -3 ρ maks = 0,03635 Tabel-8 Dasar-Dasar Perencanaan Beton Bertulang, Seri Beton-1, W.C. Vis, Gideon Kusuma atau ρ maks = 1 .450600 + fy.R l fy = 0,85x450600+240x 19,125240 = 0,03629 ρ ρ min dipakai ρ min 127 As min = ρ min .b.d = 5,83 x 10 -3 x 1000 x 240 = 1399,2 mm 2 Tulangan pokok terpasang = Ø 20 – 200 As = 1571 mm 2 Cek : ρ = As terpasang b.d = 15711000x240 = 6,546 x 10 -3 ρ min ρ ρ maks ok ™ Tulangan Arah Y Tumpuan dan Lapangan Mu = 0,102 tm = 1,02 x 10 6 Nmm Mn = Mu φ = 1,02 x 10 6 0,8 = 1,275 x 10 6 Nmm b1 = 300 mm f’c = 225 kgcm 2 = 22,5 Nmm 2 fy = 2400 kgcm 2 = 240 Nmm 2 Dicoba tulangan pokok Ø 20 mm d’ = tebal selimut beton = 50 mm Tabel 3. Dasar-Dasar Perencanaan Beton Bertulang, Seri Beton –1,W. C. Vis, Gideon Kusuma d = b1 – d’ – Ø tulangan arah X - Ø2 = 300 – 50 – 20 - 202 = 220 mm k = Mnb.d 2 .R 1 R l = 1 .f’c = 0,85 x 22,5 = 19,125 Nmm 2 k = 1,275 x 10 6 1000 x 220 2 x 19,125 = 1,377 x 10 -3 F = 1 - k 2 1 − = 1 - 10 x 1,377 2 1 -3 − = 1,378 x 10 -3 Fmax = 1 .450600 + fy = 0,85 x 450600 + 240 = 0,455 F Fmax tulangan tunggal under reinforced As = F.b.d.R l fy = 1,378x10 -3 x 1000 x 220 x 19,125240 = 24,158 mm 2 ρ = Asb.d = 24,1581000 x 220 = 1,098 x 10 -4 ρ min = 1,4 fy = 1,4240 = 5,83 x 10 -3 ρ maks = 0,03635 Tabel-8 Dasar-Dasar Perencanaan Beton Bertulang, Seri Beton-1, W.C. Vis, Gideon Kusuma atau ρ maks = 1 .450600 + fy.R l fy = 0,85x450600+240x 19,125240 = 0,03629 ρ ρ min dipakai ρ min As min = ρ min .b.d = 5,83 x 10 -3 x 1000 x 220 = 1282,6 mm 2 Tulangan pokok terpasang = Ø 20 – 225 As = 1396 mm 2 128 Cek : ρ = As terpasang b.d = 13961000x220 = 6,345 x 10 -3 ρ min ρ ρ maks ok Segmen 2 q = 2,689 tm 2 Ix = h2 = 1,12 m Iy = jarak antar counterfort = 2,675 m IyIx = 2,6751,12 = 2,388 Diasumsikan pelat terjepit di kedua sisinya M Ix = 0,001.q u .Ix 2 .x M Iy = 0,001.q u .Ix 2 .x M ty = -0,001.q u .Ix 2 .x M tiy = ½.M Ix Dimana nilai x berturut-turut berdasarkan perbandingan lylx = 2,388 adalah 99,4; 21,6; dan 112 Tabel Hal 26 Grafik dan Tabel Perhitungan Beton Bertulang, Seri Beton-4, W.C. Vis, Gideon Kusuma M Ix = 0,001 x 2,689 x 1,12 2 x 99,4 = 0,335 tm M Iy = 0,001 x 2,689 x 1,12 2 x 21,6 = 0,073 tm M ty = -0,001 x 2,689 x 1,12 2 x 112 = -0,378 tm M tiy = ½ x 0,335 = 0,168 tm Diambil momen yang maksimum ™ Tulangan Arah X Tumpuan dan Lapangan Mu = 0,335 tm = 3,35 x 10 6 Nmm Mn = Mu φ = 3,35 x 10 6 0,8 = 4,188 x 10 6 Nmm b2 = 350 mm Iy Ix 129 f’c = 225 kgcm 2 = 22,5 Nmm 2 fy = 2400 kgcm 2 = 240 Nmm 2 Dicoba tulangan pokok Ø 20 mm d’ = tebal selimut beton = 50 mm Tabel 3. Dasar-Dasar Perencanaan Beton Bertulang, Seri Beton –1,W. C. Vis, Gideon Kusuma d = b2 – d’ – Ø2 = 350 – 50 – 202 = 290 mm k = Mnb.d 2 .R 1 R l = 1 .f’c = 0,85 x 22,5 = 19,125 Nmm 2 k = 4,188 x 10 6 1000 x 290 2 x 19,125 = 2,604 x 10 -3 F = 1 - k 2 1 − = 1 - 10 x 604 , 2 2 1 -3 − = 2,607 x 10 -3 Fmax = 1 .450600 + fy = 0,85 x 450600 + 240 = 0,455 F Fmax tulangan tunggal under reinforced As = F.b.d.R l fy = 2,607 x 10 -3 x 1000 x 290 x 19,125240 = 60,251 mm 2 ρ = Asb.d = 60,2511000 x 290 = 2,078 x 10 -4 ρ min = 1,4 fy = 1,4240 = 5,83 x 10 -3 ρ maks = 0,03635 Tabel-8 Dasar-Dasar Perencanaan Beton Bertulang, Seri Beton-1, W.C. Vis, Gideon Kusuma atau ρ maks = 1 .450600 + fy.R l fy = 0,85x450600+240x 19,125240 = 0,03629 ρ ρ min dipakai ρ min As min = ρ min .b.d = 5,83 x 10 -3 x 1000 x 290 = 1690,7 mm 2 Tulangan pokok terpasang = Ø 20 – 175 As = 1795 mm 2 Cek : ρ = As terpasang b.d = 17951000x290 = 6,190 x 10 -3 ρ min ρ ρ maks ok ™ Tulangan Arah Y Tumpuan dan Lapangan Mu = 0,378 tm = 3,78 x 10 6 Nmm Mn = Mu φ = 3,78 x 10 6 0,8 = 4,725 x 10 6 Nmm b2 = 350 mm f’c = 225 kgcm 2 = 22,5 Nmm 2 fy = 2400 kgcm 2 = 240 Nmm 2 Dicoba tulangan pokok Ø 20 mm 130 d’ = tebal selimut beton = 50 mm Tabel 3. Dasar-Dasar Perencanaan Beton Bertulang, Seri Beton –1,W. C. Vis, Gideon Kusuma d = b2 – d’ – Ø tulangan arah X - Ø2 = 350 – 50 – 20 - 202 = 270 mm k = Mnb.d 2 .R 1 R l = 1 .f’c = 0,85 x 22,5 = 19,125 Nmm 2 k = 4,725 x 10 6 1000 x 270 2 x 19,125 = 3,389 x 10 -3 F = 1 - k 2 1 − = 1 - 10 x 389 , 3 2 1 -3 − = 3,394 x 10 -3 Fmax = 1 .450600 + fy = 0,85 x 450600 + 240 = 0,455 F Fmax tulangan tunggal under reinforced As = F.b.d.R l fy = 3,394 x 10 -3 x 1000 x 270 x 19,125240 = 73,041 mm 2 ρ = Asb.d = 73,0411000 x 270 = 2,705 x 10 -4 ρ min = 1,4 fy = 1,4240 = 5,83 x 10 -3 ρ maks = 0,03635 Tabel-8 Dasar-Dasar Perencanaan Beton Bertulang, Seri Beton-1, W.C. Vis, Gideon Kusuma atau ρ maks = 1 .450600 + fy.R l fy = 0,85x450600+240x 19,125240 = 0,03629 ρ ρ min dipakai ρ min As min = ρ min .b.d = 5,83 x 10 -3 x 1000 x 270 = 1574,1 mm 2 Tulangan pokok terpasang = Ø 20 – 175 As = 1795 mm 2 Cek : ρ = As terpasang b.d = 17951000x270 = 6,648 x 10 -3 ρ min ρ ρ maks ok Segmen 3 q = 6,304 tm 2 Ix = h3 = 2,00 m Iy = jarak antar counterfort = 2,675 m IyIx = 2,6752 = 1,338 Diasumsikan pelat terjepit di ketiga sisinya : 131 M Ix = 0,001.q u .Ix 2 .x M Iy = 0,001.q u .Ix 2 .x M tx = -0,001.q u .Ix 2 .x M ty = -0,001.q u .Ix 2 .x M tiy = ½.M Ix Dimana nilai x berturut-turut berdasarkan perbandingan lylx = 1,338 adalah 41, 20, 73, dan 55 Tabel Hal 26 Grafik dan Tabel Perhitungan Beton Bertulang, Seri Beton-4, W.C. Vis, Gideon Kusuma M Ix = 0,001 x 6,304 x 2 2 x 41 = 1,034 tm M Iy = 0,001 x 6,304 x 2 2 x 20 = 0,504 tm M tx = -0,001 x 6,304 x 2 2 x 73 = -1,841 tm M ty = -0,001 x 6,304 x 2 2 x 55 = -1,387 tm M tiy = ½ x 1,034 = 0,517 tm Diambil momen yang maksimum ™ Tulangan Arah X Tumpuan dan Lapangan Mu = 1,841 tm = 1,841 x 10 7 Nmm Mn = Mu φ = 1,841 x 10 7 0,8 = 2,301 x 10 7 Nmm b3 = 400 mm f’c = 225 kgcm 2 = 22,5 Nmm 2 fy = 2400 kgcm 2 = 240 Nmm 2 Dicoba tulangan pokok Ø 20 mm d’ = tebal selimut beton = 50 mm Tabel 3. Dasar-Dasar Perencanaan Beton Bertulang, Seri Beton –1,W. C. Vis, Gideon Kusuma d = b3 – d’ – Ø2 = 400 – 50 – 202 = 340 mm k = Mnb.d 2 .R 1 R l = 1 .f’c = 0,85 x 22,5 = 19,125 Nmm 2 k = 2,301 x 10 7 1000 x 340 2 x 19,125 = 0,011 Iy Ix 132 F = 1 - k 2 1 − = 1 - 0,011 2 1 − = 0,011 Fmax = 1 .450600 + fy = 0,85 x 450600 + 240 = 0,455 F Fmax tulangan tunggal under reinforced As = F.b.d.R l fy = 0,011 x 1000 x 340 x 19,125240 = 298,031 mm 2 ρ = Asb.d = 298,0311000 x 340 = 8,765 x 10 -4 ρ min = 1,4 fy = 1,4240 = 5,83 x 10 -3 ρ maks = 0,03635 Tabel-8 Dasar-Dasar Perencanaan Beton Bertulang, Seri Beton-1, W.C. Vis, Gideon Kusuma atau ρ maks = 1 .450600 + fy.R l fy = 0,85x450600+240x 19,125240 = 0,03629 ρ ρ min dipakai ρ min As min = ρ min .b.d = 5,83 x 10 -3 x 1000 x 340 = 1982,2 mm 2 Tulangan pokok terpasang = Ø 20 – 150 As = 2094 mm 2 Cek : ρ = As terpasang b.d = 20941000x340 = 6,159 x 10 -3 ρ min ρ ρ maks ok ™ Tulangan Arah Y Tumpuan dan Lapangan Mu = 1,387 tm = 1,387 x 10 7 Nmm Mn = Mu φ = 1,387 x 10 7 0,8 = 1,734 x 10 7 Nmm b3 = 400 mm f’c = 225 kgcm 2 = 22,5 Nmm 2 fy = 2400 kgcm 2 = 240 Nmm 2 Dicoba tulangan pokok Ø 20 mm d’ = tebal selimut beton = 50 mm Tabel 3. Dasar-Dasar Perencanaan Beton Bertulang, Seri Beton –1,W. C. Vis, Gideon Kusuma d = b3 – d’ – Ø tulangan arah X - Ø2 = 400 – 50 – 20 - 202 = 320 mm k = Mnb.d 2 .R 1 R l = 1 .f’c = 0,85 x 22,5 = 19,125 Nmm 2 k = 1,734 x 10 7 1000 x 320 2 x 19,125 = 8,854 x 10 -3 F = 1 - k 2 1 − = 1 - 10 x 854 , 8 2 1 -3 − = 8,894 x 10 -3 Fmax = 1 .450600 + fy = 0,85 x 450600 + 240 = 0,455 F Fmax tulangan tunggal under reinforced 133 As = F.b.d.R l fy = 8,894x10 -3 x 1000 x 320 x 19,125240 = 226,789 mm 2 ρ = Asb.d = 226,7891000 x 320 = 7,087 x 10 -4 ρ min = 1,4 fy = 1,4240 = 5,83 x 10 -3 ρ maks = 0,03635 Tabel-8 Dasar-Dasar Perencanaan Beton Bertulang, Seri Beton- 1, W.C. Vis, Gideon Kusuma atau ρ maks = 1 .450600 + fy.R l fy = 0,85x450600+240x 19,125240 = 0,03629 ρ ρ min dipakai ρ min As min = ρ min .b.d = 5,83 x 10 -3 x 1000 x 320 = 1865,6 mm 2 Tulangan pokok terpasang = Ø 20 – 150 As = 2094 mm 2 Cek : ρ = As terpasang b.d = 20941000x320 = 6,544 x 10 -3 ρ min ρ ρ maks ok

5.6.1.4 Perhitungan Bagian Perkuatan Dinding Counterfort

Dokumen yang terkait

PERENCANAAN LALU LINTAS AIR PADA BENDUNG KLAMBU The Design of Inland Waterway at Klambu Barrage - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 4

PERENCANAAN LALU LINTAS AIR PADA BENDUNG KLAMBU The Design of Inland Waterway at Klambu Barrage - Diponegoro University | Institutional Repository (UNDIP-IR)

0 1 25

PERENCANAAN SALURAN PINTU AIR DI SAMPING BENDUNG KLAMBU (Design of Lock Construction Beside of Klambu Barrage) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 1

PERENCANAAN SALURAN PINTU AIR DI SAMPING BENDUNG KLAMBU (Design of Lock Construction Beside of Klambu Barrage) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 20

PERENCANAAN SALURAN PINTU AIR DI SAMPING BENDUNG KLAMBU (Design of Lock Construction Beside of Klambu Barrage) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 5

PERENCANAAN SALURAN PINTU AIR DI SAMPING BENDUNG KLAMBU (Design of Lock Construction Beside of Klambu Barrage) - Diponegoro University | Institutional Repository (UNDIP-IR)

2 5 53

PERENCANAAN SALURAN PINTU AIR DI SAMPING BENDUNG KLAMBU (Design of Lock Construction Beside of Klambu Barrage) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 2

PERENCANAAN SALURAN PINTU AIR DI SAMPING BENDUNG KLAMBU (Design of Lock Construction Beside of Klambu Barrage) - Diponegoro University | Institutional Repository (UNDIP-IR)

1 1 15

PERENCANAAN SALURAN PINTU AIR DI SAMPING BENDUNG KLAMBU (Design of Lock Construction Beside of Klambu Barrage) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 2

PERENCANAAN SALURAN PINTU AIR DI SAMPING BENDUNG KLAMBU (Design of Lock Construction Beside of Klambu Barrage) - Diponegoro University | Institutional Repository (UNDIP-IR)

0 0 2