Ekstraksi Spektrometri ultra violet

dengan jarak perambatan pelarut yang dihitung dari titik penotolan pelarut zat. Jarak yang ditempuh oleh tiap bercak dari titik penotolan diukur dari pusat bercak. Untuk mengidentifikasi suatu senyawa, maka harga Rf senyawa tersebut dapat dibandingkan dengan harga Rf senyawa pembanding Sastrohamidjojo, 1991. penotolan titik dari pelarut peramba Jarak penotolan titik dari bercak n perambat Jarak Rf tan a =

2.3.2. Ekstraksi

Ekstraksi dapat dilakukan dengan metode maserasi, sokletasi, dan perkolasi. Sebelum ekstraksi dilakukan, biasanya serbuk tumbuhan dikeringkan lalu, dihaluskan dengan derajat kehalusan tertentu, kemudian diekstraksi dengan salah satu cara diatas. Ekstraksi dengan metode sokletasi dapat dilakukan secara bertingkat dengan berbagai pelarut berdasarkan kepolarannya, misalnya n- heksana, eter, benzena, kloroform, etil asetat, metanol, etanol, dan air. Ekstraksi dianggap selesai bila tetesan terakhir memberikan reaksi negatif terhadap senyawa yang diekstraksi. Untuk mendapatkan larutan ekstrak pekat biasanya pelarut ekstrak diuapkan dengan menggunakan alat rotari evaporator Harbone, 1996. 2.4.Teknik Spektroskopi Teknik spektroskopi adalah salah satu teknik analisis kimia – fisika yang mengamati tentang interaksi atom atau molekul dengan radiasi elektronagnetik. Ada dua macam instrument pada teknik spekstroskopi yaitu spectrometer dan spektrofotometer. Instrumen yang memakai monokromator celah tetap pada bidang focus disebut sebagai spectrometer. Apabila spectrometer tersebut Universitas Sumatera Utara dilengkapi dengan detektor yang bersifat fotoelektrik maka disebut spektrofotometer Muldja, 1995. Informasi Spektroskoi Inframerah menunjukkan tipe-tipe dari adanya gugus fungsi dalam satu molekul . Resonansi magnetik inti memberikan informasi tentang bilangan dari setiap tipe dari atom hidrogen. Kombinasinya dan data kadang-kadang menentukan struktur yang lengkap dari molekul yang tidak diketahui Pavia, 1986. Walaupun spektrum infra – merah merupakan kekhasan sebuah molekul secara menyeluruh, gugus atom tertentu memberikan penambahan pita-pita pada kerapatan tertentu, ataupun didekatnya, apapun bangun molekul selebihnya. Keberlakuan seperti itulah yang memungkinkan kimiawan memperoleh informasi tentang struktur yang berguna serta mendapatkan acuan bagi peta umum frekuensi gugus yang khas Silverstain , 1986.

2.4.1. Spektrometri ultra violet

Serapan molekul di dalam derah ultra ungu dan terlihat dari spektrum bergantung pada struktur ultra elektronik dari molekul. Penyerapan sejumlah energi, menghasilkan percepatan dari elektron dalam orbital tingkat dasar ke orbital yang berenergi lebih tinggi di dalam keadaan tereksitasi Silverstein, 1986. Spektrum Flavonoida biasanya ditentukan dalam larutan dengan pelarut Metanol MeOH atau Etanol EtOH. Spektrum khas terdiri atas dua maksima pada rentang 240-285 nm pita II dan 300-550 nm pita I. Kedudukan yang tepat dan kekuatan nisbi maksima tersebut memberikan informasi yang berharga mengenai sifat flavonoida dan pola oksigenasinya. Ciri khas spektrum tersebut ialah kekuatan nisbi yang rendah pada pita I dalam dihidroflavon, dihidroflavonol, dan isoflavon serta kedudukan pita I pada spektrum khalkon, auron dan antosianin yang terdapat pada panjang gelombang yang tinggi. Universitas Sumatera Utara Ciri spektrum golongan flavonoida utama dapat ditunjukkan sebagai berikut : Markam, 1988 λ maksimum utama nm λ maksimum tambahan nm dengan intensitas nisbi Jenis flavonoida 475-560 390-430 365-390 350-390 250-270 330-350 300-350 ± 275 55 240-270 32 240-260 30 ± 300 40 ± 300 40 tidak ada tidak ada Antosianin Auron Kalkol Flavonol Flavonol Flavon dan biflavonil Flavon dan biflavonil λ maksimum utama nm λ maksimum tambahan nm dengan intensitas nisbi Jenis flavonoida 275-295 ± 225 310-330 310-330 30 310-330 30 310-330 25 Flavanon dan flavononol Flavonon dan flavononon Isoflavon

2.4.2. Spektrofotometri Infra Merah FT - IR