Biogeography And Conservation Of Oxudercine Gobies (Gobiidae Oxudercinae) In Lesser Sunda, Moluccas And Sulawesi

(1)

BIOGEOGRAPHY AND CONSERVATION OF

OXUDERCINE GOBIES (GOBIIDAE: OXUDERCINAE) IN

LESSER SUNDA, MOLUCCAS, AND SULAWESI

YULIADI ZAMRONI

GRADUATE SCHOOL

BOGOR AGRICULTURAL UNIVERSITY

BOGOR


(2)

(3)

STATEMENT LETTER

I hereby declare that dissertation entitled “Biogeography and Conservation of Oxudercine gobies (Gobiidae: Oxudercinae) in Lesser Sunda, Moluccas and Sulawesi” is original result of my own research supervised by supervisory committee and has never been submitted in any form at any institution before. All information from other authors cited here are mentioned in the text and listed in the reference at the end part of the dissertation.

Bogor, August 2016 Yuliadi Zamroni Student ID G362110071


(4)

(5)

SUMMARY

YULIADI ZAMRONI. Biogeography and Conservation of Oxudercine Gobies (Gobiidae: Oxudercinae) in Lesser Sunda, Moluccas and Sulawesi. Supervised by BAMBANG SURYOBROTO, ZEEHAN JAAFAR, and KADARWAN SOEWARDI.

Oxudercine gobies (Gobiiformes: Gobiidae) comprises of 42 species in 10 genera. They are distributed throughout the tropical Indo-Pacific, with one species in the Eastern Atlantic. The highest diversity of oxudercines, i.e. 31 species, occurs in the Indo-Australian Archipelago (IAA). The tectonic change of these areas during Pliocene and the sea level cycles due to glacial phenomenon during Pleistocene limit the gene flow of oxudercines. This constraint triggers the speciation and results in high diversity and endemicity of oxudercines and the other faunas in IAA. The species richness of these fishes dropped in the center of IAA which is covered area of Lesser Sunda, Moluccas, and Sulawesi island groups. In this study, we collected 10 species of oxudercine gobies (Apocryptodon madurensis, Boleophthalmus boddarti, Periophthalmodon freycineti, Periophthalmus argentilineatus, Periophthalmus gracilis, Periophthalmus kalolo, Periophthalmus malaccensis, Periophthalmus minutus, Periophthalmus pusing, and Scartelaos histophorus) where one species, Periophthalmus pusing, is reported as a new species from Lesser Sunda. Hence, there are total of 13 species of oxudercine gobies are found in these three island groups currently.

Based on oxudercines distribution, the center of IAA does not recover a single area monophyly. It other words, these oceanic islands are not separated biogeographical region as mentioned in the Wallacea concept. These areas are contact zone between the eastern Sahulian and the western Sundan species. It results in uniqueness of oxudercines species composition here. The Northern Moluccas shows a closer relationship to Sahulian region, whereas the Sulawesi, Lesser Sunda and Southern Moluccas have a closer relationship to Sundan.

Oxudercines and the other gobies are dominant fishes in mangrove ecosystems and consist of many cryptic species. These fishes dwell in mangrove forest and mudflat habitat. On the other hand, the coastal pollution from urban and industrial waste has been shown to cause the abnormal of morphology and growth ofoxudercine gobies. Moreover, habitat destruction by reclamation of tidal mudflat for coastal development and land-use change has driven the fragmentation of gobies population and their eradication. These problems will become more serious for the small islands as in Lesser Sunda Islands due to the poor natural resources and susceptibility from natural disaster such as erosion, tsunami, and volcanic activity. These human and environmental factors render the mangrove ecosystems in Lesser Sunda at risk. Hence, conservation of mangrove ecosystems is important to reserve the biota in this ecosystem for human benefit. The result of complementarity analysis selected six mangrove ecosystems to conserve the oxudercines and the other gobies throughout Lesser Sunda base on rarity algorithm. Three of six reserved sites (Loh Sebita, Oebelo, and Bipolo) have been established as conservation area. These three reserved sites do not cover the threatened goby species. We need to add Lembar Bay, Selindungan, and Kawangu in order to protect the threatened gobies.


(6)

iv

Key words: Mudskippers, Zoogeography, Wallacea, Mangrove Degradation,


(7)

RINGKASAN

YULIADI ZAMRONI. Biogeografi dan Konservasi Ikan Glodok (Gobiidae: Oxudercinae) di Sunda Kecil, Maluku dan Sulawesi. Dibimbing oleh BAMBANG SURYOBROTO, ZEEHAN JAAFAR, dan KADARWAN SOEWARDI.

Ikan glodok terdiri dari 42 species dalam 10 genus. Ikan ini terdistrubusi luas di daerah tropis Indo-Pasifik, dengan satu species mendiami Atlantik bagian barat. Keanekaragaman jenis teringgi (31 spesies) dari kelompok ikan ini terdapat di wilayah kepulauan Indo-Australian (IAA). Sejarah tektonik selama era Pliosen dan variasi turun-naiknya muka air laut selama periode Pliestosen menghambat terjadinya aliran gen (gen flow) antar populasi antar pulau di wilayah IAA, hal ini memicu terjadinya spesiasi antar populasi dan menghasilkan keanekaragaman jenis dan spesies endemic yang tinggi di wilayah IAA. Keanekaragaman jenis ikan gelodok menurun di kepulauan samudra (seperti Sunda Kecil, Maluku dan Sulawesi) yang terletak diantara dangkalan Sunda dan Sahul diwilayah IAA. Pada penelitian ini kami mengoleksi 10 species ikan glodok (Apocryptodon madurensis, Boleophthalmus boddarti, Periophthalmodon freycineti, Periophthalmus argentilineatus, Periophthalmus gracilis, Periophthalmus kalolo, Periophthalmus malaccensis, Periophthalmus minutus, Periophthalmus pusing, dan Scartelaos histophorus) dimana Periophthalmus pusing merupakan species baru yang dilaporkan distribusinya di wilayah Sunda Kecil. Jika digabungkan dengan laporan dari publikasi sebelumnya, total 13 spesies ikan glodok terdapat di ketiga kelompok kepulauan samudra ini.

Berdasarkan pola distribusi dari ikan glodok, kepulauan samudra di wilayah IAA tidak membentuk satu area monofiletik. Dengan kata lain, wilayah ini tidak menjadi zona beogeografi sendiri sebagaimana yang disebutkan dalam konsep Wallacea. Wilayah ini adalah daerah pertemuan antara dangkalan Sunda dan dangkalan Sahul. Hal ini menyebabkan komposisi spesies di wilayah ini sangat unik. Maluku Utara memiliki komposisi spesies yang mirip dengan wilayah Sahul sedangkan wilayah Sunda Kecil, Maluku Selatan dan Sulawesi memiliki komposisi spesies yang mirip dengan wilayah Sunda.

Ikan glodok dan ikan gobi lainnya adalah spesies yang dominan di ekosistem mangrove. Ikan ini tinggal dan menggali lubang di bagian dasar hutan mangrove atau daerah berlumpur. Di sisi lain, pencemaran wilayah pantai oleh bahan buangan dari kegiatan domestic dan industri menyebabkan bentuk morfologi dan pola pertumbuhan dari ikan glodok abnormal. Lebih dari itu, perusakan habitat pantai karena reklamasi dan alih fungsi lahan menyebabkan populasi dari ikan ini terfragmentasi bahkan punah. Masalah ini akan menjadi lebih serius pada pulau-pulau kecil seperti wilayah Sunda Kecil karena minimnya sumberdaya alam dan rentannya terhadap bencana alam seperti erosi, tsunami dan gunung meletus. Faktor dari alam dan aktifitas manusia ini menyebabkan ekosistem mangrove menjadi rusak. Oleh sebab itu, mengkonservasi wilayah mangrove menjadi penting untuk melindungi biota yang ada di dalamnya dan untuk kepentingan manusia. Berdasarkan hasil analisis complementarity, ada 6 lokasi ekosistem mangrove yang dapat diusulkan untuk mengkonservasi ikan glodok di wilayah Sunda Kecil. Tiga diantara lokasi tersebut (Oebelo, Bipolo dan Loh Sebita ) sudah merupakan wilayah konservasi. Dalam penelitian ini perlu


(8)

vi

untuk menambah tiga wilayah lagi (Teluk Lembar, Selindungan dan Kawangu) untuk mengkonservasi ikan gobi khususnya yang terancam punah.

Kata kunci: Ikan Glodok, Zoogeography, Wallacea, Degradasi Mangrove, Daerah Perlindungan.


(9)

Copyright © 2016. Bogor Agricultural University.

All Rights Reserved

Prohibited to cite all or a part of this dissertation without referring to and mentioning the source. Citation permits to the purpose of education, research, scientific paper, report, or critism writing only; and it does not defame the name and honor of Bogor Agricultural University.

Prohibited to republish and reproduce all or a part of this dissertation without permission of Bogor Agricultural University


(10)

viii


(11)

BIOGEOGRAPHY AND CONSERVATION OF

OXUDERCINE GOBIES (GOBIIDAE: OXUDERCINAE) IN

LESSER SUNDA, MOLUCCAS AND SULAWESI

YULIADI ZAMRONI

Dissertation

submitted in partial fulfillment of the requirements for Doctoral Degree

in

Major of Animal Bioscience

GRADUATE SCHOOL

BOGOR AGRICULTURAL UNIVERSITY

BOGOR


(12)

x

Examiners in the closed examination: Dr Ir Ibnul Qayim

Dr Ir Mohammad Mukhlis Kamal, MSc

Examiners in the dissertation defense: Prof Ir H Surya Hadi, MSc Ph.D

Dr Rudhy Gustiano


(13)

Title : Biogeography and Conservation of Oxudercine Gobies (Gobiidae: Oxudercinae) in Lesser Sunda, Moluccas and Sulawesi

Name : Yuliadi Zamroni Student ID : G362110071 Major : Animal Biosciences

Certified by Supervisory Committee

Dr Drs Bambang Suryobroto Chair

Dr Zeehan Jaafar Prof Dr Ir Kadarwan Soewardi Member Member

Acknowledged by

Chair of Animal Biosciences Dean of Graduate School

Dr Ir RR Dyah Perwitasari, MSc Dr Ir Dahrul Syah, MScAgr

Close Examination date : 1st July 2016 Graduation date: Dissertation Defense date: 9th August 2016


(14)

(15)

FOREWORD

On the blessing of ALLOH S.W.T., the Lord of the universe, I am able to finish my dissertation. This paper is made to fulfill the requirement for doctoral

degree at Bogor Agricultural University. The title of my paper is “Biogeography

and Conservation of Oxudercine Gobies (Gobiidae: Oxudercinae) in Lesser Sunda, Moluccas and Sulawesi”.

I would like to thank my advisor committee Dr Bambang Suryobroto, Dr Zeehan Jaafar and Prof Dr Ir Kadarwan Soewardi. I am indebted to Directorate General of Higher Education (DIKTI), Indonesia for the Graduate Scholarship (BPPS); Balai Taman Nasional Komodo (BTNK) and Balai Besar Konservasi Sumber Daya Alam Nusa Tenggara Timur (BBKSDA-NTT) for permitting me to conduct research in East Nusa Tenggara islands; UPT Balai Konservasi Biota Laut LIPI Ambon for their facility during sampling in the Moluccas islands; Museum Zoologicum Bogoriense (MZB), Indonesian Institute of Science (LIPI) Cibinong for permitting me to examined the museum specimens; and Institut de Rechherche pour le Développement (IRD) for sponsored my training in Phylogenetics and Population Genetics with R at Institut Català de Paleontologia Miquel Crusafont, Barcelona, Spain.

I express my gratitude to my parents, my wife (Novita Tri Artiningrum) and my daughter (Annisa Hishnul Izza) for their greatly support during my study; special thanks to Mr. Fahri (Tadulako University), Mr. Vendy Eko Susilo and Mr. Fendi for their help during field work in Sulawesi and Java; Mrs Tini and Mrs Retno for their help in laboratory; and all of my friends in the Major of Animal Biosciens for the wonderful of friendships.

May this paper is usefull for all who study on gobies and biogeography. Bogor, August 2016


(16)

(17)

TABLE OF CONTENT

FOREWORD xiii

TABLE OF CONTENT xv

LIST OF TABLES xvi

LIST OF FIGURES xvi

LIST OF APPENDICES xvii

1 GENERAL INTRODUCTION 1

2 AMBLYOPINE AND OXUDERCINE GOBIES (TELEOSTEI: GOBIIDAE) FROM THE LESSER SUNDA, MOLUCCAS, AND SULAWESI GROUP OF

ISLANDS, INDONESIA 3

Abstract 3

Introduction 3

Material and methods 5

Results 7

Discussion Error! Bookmark not defined.

Plates 10

3 BIOGEOGRAPHY OF OXUDERCINE GOBIES (TELEOSTEI: GOBIIDAE) IN THE LESSER SUNDA, MOLUCCAS, AND SULAWESI GROUP OF

ISLANDS 27

Abstract 27

Introduction 27

Material and Methods 30

Result 31

Discussion 35

Appendix 38

4 A CASE FOR THE CONSERVATION MANGROVE FORESTS IN THE

LESSER SUNDA ISLANDS, INDONESIA 41

Abstract 41

Introduction 41

Material and Methods 42

Result 43

Discussion 47

5 GENERAL DISCUSSION 49

6 CONCLUSION 51

REFERENCES 53


(18)

xvi

LIST OF TABLES

Table 2.1 Records of amblyopines and oxudercines in the oceanic

islands of IAA base on published literature. 6

Table 2.2 Records of amblyopines and oxudercines based on present

sampling and museum materials. 8

Table 3.1 Nine areagrams of six taxa used in analysis of biogeographical

pattern. 33

Table 4.1 List of gobioid fishes recovered in this study with locality data. Species already assessed by the IUCN Red List of Threatened

Species are in bold. 46

Table 4.2 The minimum number of mangrove areas to conserve all gobioid fish species recovered in this study, determined by

complementarity analysis. 48

LIST OF FIGURES

Figure 2.1 Map of the Indo-Australian Archipelago. Area marked indicates the oceanic islands between Sunda and Sahul shelves. Dash-lines are the limit of three oceanic island groups. 5 Figure 2.2 Sampling locations (close circles) and localities of museum

materials (open circles). (A) Sulawesi subregions: Sulawesi (Makasar, Pangkajene, Mamuju, Sinjai, Wajo, Luwu, Palu, Poso, Banggai and Kendari); (B) Moluccas subregions: Ambon (Ambon Bay, Suli, Liang and Lateri), Halmahera (Weda) and Kei islands (Tual); (C) Lesser Sunda subregions: Lombok (Sekotong, Lembar and Keruak), Sumbawa (Labuan Alas and Mbawi), Timor (Kupang and Atapupu), Sumba (Waingapu), Flores (West Manggarai) and

Komodo island (Loh Sebita). 7

Figure 3.1 Map of Indo-Australasian Archipelago. Sampling locations (open circles) and localities from museum materials and previous publications (close circles). 1, Andaman islands; 2, Bangkok; 3, Ranong; 4, Phang-nga; 5, Pattani; 6, Penang; 7, Selangor; 8, Singapore; 9, Belawan; 10, Tebing Tinggi; 11, Padang; 12, Lampung; 13, Jakarta/Subang; 14, Surabaya/Probolinggo; 15, Madura; 16, Bali; 17, Banjarmasin; 18, Serawak/Sambas; 19, Samarinda; 20, Sabah; 21, Lombok; 22, Sumbawa; 23, Sumba; 24, Flores; 25, Timor; 26, Makassar; 27, Kendari; 28, Donggala; 29, Poso; 30, Banggai; 31, Manado; 32, Halmahera; 33, Ternate; 34, Obi; 35, Ceram; 36, Buru; 37, Ambon; 38, Kei Islands; 39, Negros; 40, Panay; 41, Tablas; 42, Luzon; 43, Waigeo; 44, Aru Islands; 45, Timika; 46, Merauke; 47, Gulf of Papua; 48, Northern Territory; 49, Queensland; 50, Western Australia. Solid-lines are the hypothetical of zoological boundaries and the dash-lines are the limit of three oceanic island groups. 28 Figure 3.2 Thirty species of oxudercines recorded throughout Sunda to


(19)

indicated by asterisk (*). The dark grey boxes indicate the Sundan species those have not been found in Sahul. The light grey boxes are the Sahulian species those were not found in Sunda. The white boxes are the species those have been found through Sunda to Sahul

shelves. 32

Figure 3.3 Map of oxudercines composition distance of 50 locations represent in the best two-dimensional summary of CA. 33 Figure 3.4 Area relationships of 50 locations throughout Sunda to Sahul

shelves based on oxudercine gobies distributions. The areagram showed the locations within Sulawesi, Lesser Sunda and Moluccan

island groups not recovered as a single area. 34

Figure 3.5 General areagram, or biogeographical pattern of the area throughout Sunda to Sahul shelves, representing the combined area relationships of eleven clades (Map modified from Google Earth

2016). 35

Figure 3.6 The various sea-level stands and palaeo-river changes of the Sunda and Sahul shelves during Last Glacial Maximum (LGM) into present day (Voris 2000). 1) Malacca Straits River System; 2) Siam River System; 3) North Sunda River System; 4) East Sunda River System; 5) North Australia River System; 6) The Gulf of Carpenteria River System; 7) West New Guinea River System; 8) East New Guinea River System. The mangrove forest distribution (in green) changes during LGM and present day (Heatwole et al. 2005). 37 Figure 4.1 Map of sampling areas were conducted throughout LSI (open

circles). 43

Figure 4.2 Divergence of mangrove habitats within the Lesser Sunda

Islands based on gobioid fishes 45

LIST OF APPENDICES

Appendix 3.1 Geographical distribution of Oxudercines based on present


(20)

(21)

1

GENERAL INTRODUCTION

Some common problems in biogeography study are delimiting a zoogeographical realm and providing certain evidence based on distribution of closely related species. These difficulties also arise in aquatic organism researches. The present distribution of aquatic organisms are influenced by some factors such as their dispersal capabilities, paleogeography of the region, rise and fall cycle of sea level during glacial and interglacial periods, and long-distance transport of pelagic larvae by ocean currents (Hall 2009). These factors contribute significantly to the determination of zoogeographical boundaries. While general and large-scale patterns of organismal distribution are typically accepted, the boundaries demarcating those concepts are often disputed. This problem is ensued in oceanic islands between Sunda and Sahul shelves. The uniqueness of faunal distribution reflects the complexities of geological history of these regions. The faunal composition is also marked differently in the Sunda and Sahul shelves, with Oriental type on the former, and Australasian on the later. The faunas from both realms are met and intermingled in the islands between Sunda and Sahul shelves (Parenti and Ebach 2009). Seven hypothetical lines have been proposed as zoological boundaries in this area, four of the most often discussed are Wallace’s,

Huxley’s, Weber’s, and Lydekker’s lines (Simpson 1977).

Oxudercine gobies are intertidal fishes whose migration is unconstrained by marine ecosystem. However, the availability of mudflat and mangrove ecosystem, which function as their habitat delimits their distributions (Murdy 1989). This limitation results in uniqueness of their distribution pattern in oceanic islands, which reflect the evolution of this area and provides unique evidence for the hypotheses on the zoogeographical boundaries. Unfortunately, the distribution of oxudercine gobies in the islands between the Sunda and Sahul shelves are poorly known, partially because of insufficient ichtyofauna studies conducted in coastal areas. In areas where scientific collections has been established, the foci were on either strictly freshwater or reef ichthyofauna. Consequently, coastal intertidal areas of these islands (Lesser Sunda, Moluccas, and Sulawesi group of islands) suffer from large gaps in their baseline biodiversity data (Peristiwady 2012).

In the mean time, mangrove forests are rapidly degradating by human activities, especially deforestation and land conversion. This condition will threaten the oxudercines inhabiting mangrove ecosystem (Polgar 2008). It is important to get the picture of their species richness, distributional patterns, and the consequent impacts of deforestation to aquatic system to inform the government in managing gobies conservation. Considering their high abundance and diversity, the oxudercines are thus excellent model organisms to aid in learning the ecological processes and biogeographical distribution in the oceanic islands. We review the diversity and distribution of oxudercines based on published literatures, museum materials, and new materials collected in three island groups – Lesser Sunda, Moluccas, and the Sulawesi. We also analyze their endemism areas based on their current distribution, construct the biogeographical patterns, and propose the conservation areas for mangrove gobies.


(22)

(23)

2

AMBLYOPINE AND OXUDERCINE GOBIES

(TELEOSTEI: GOBIIDAE) FROM THE LESSER SUNDA,

MOLUCCAS, AND SULAWESI GROUP OF ISLANDS,

INDONESIA

Abstract

We report 11 species of amblyopines and 13 species of oxudercines occuring in the center of the Indo-Australian Archipelago, an area where coastal ichthyological collections are poorly represented. Targeted collections of amblyopines and oxudercines gobies were carried out in the Lesser Sunda Islands, Moluccas islands and the island of Sulawesi. Seventeen species comprises by six species of amblyopines (Caragobius urolepis, Odontamblyopus rubicundus, Paratrypauchen microcephalus, Taenioides cirratus, Trypauchenichthys larsonae and Trypauchenopsis intermedia) and 10 species of oxudercines (Apocryptodon madurensis, Boleophthalmus boddarti, Periophthalmodon freycineti, Periophthalmus argentilineatus, Periophthalmus gracilis, Periophthalmus kalolo, Periophthalmus malaccensis, Periophthalmus minutus, Periophthalmus pusing and Scartelaos histophorus) were collected. Whereas, five species of amblyopine (Brachyamblyopus brachysoma, Karsten totoyensis, Taenioides anguillaris, Taenioides eruptionis and Trypauchen vagina) and three species of oxudercines (Periophthalmodon schlosseri, Periophthalmus variabilis and Pseudapocryptes borneensis) were reported in literature but not collected in this present sampling.

Key words: Sunda shelf, Sahul shelf, Indo-Australian Archipelago, Oriental

fauna, Australasian fauna.

Introduction

The family Gobiidae, one of the largest fish families, comprises some 2000 species of typically small, freshwater, estuarine, and marine fishes (Nelson 2006). Five subfamilies—Amblyopinae, Gobiinae, Gobionellinae, Oxudercinae, and Sicydiinae—are traditionally recognized (Pezold 1993) although present classification is still volalite due to incongruences between morphology and molecular datasets. Amblyopine gobies, also known as eel gobies (Teleostei: Gobiidae: Amblyopinae), are considered the putative sister taxa to the monophyletic oxudercine gobies, also known as mudskippers (Teleostei: Gobiidae: Oxudercinae), based on osteology of the jaw suspensorium (Harrison 1989; Murdy 2011a,b). Molecular analyses of gobioid relationships, however, recovered these two groups as paraphyletic, yet form a monophyletic clade

(Thacker 2009); this clade is identified as the ‘Periophthalmus lineage’ (Agorreta et al. 2013). These molecular analyses did not propose synapomorphies to unite these two taxa. We continue using the classification sensu Murdy (2011a, 2011b) until molecular data can be resolved. We are cognizant of the close relationships


(24)

4

between these taxa and thus simultaneously report their distribution in the Lesser Sunda, Sulawesi, and Moluccas group of islands.

Amblyopine and oxudercine gobies both occur in tropical and subtropical mangrove forests and mudflat habitats. Except for one species found along the western coast of Africa, Periophthalmus barbarus, these fishes are absent in the Atlantic Ocean (Murdy 1989). Amblyopine gobies are presumed to spend most of their time within the mud substrate, and are difficult to collect. Consequently, museum collections of these fishes are relatively rare. For example, three recent descriptions of new amblyopine taxa, Biendongella iljini, Gymnoamblyopus novaeguinea and Taenioides kentalleni, were all described from a single specimen (Murdy and Randall 2002; Murdy and Ferraris 2003; Prokofiev 2015). Little is known of the ecology and biology of amblyopine fishes. Oxudercines gobies are relatively well studied when compared to amblyopine gobies. Their general distribution and some aspects of their ecology and biology are known (Murdy 1989).

The highest diversity of these fishes is in the Indo-Australian Archipelago (IAA), an area within the larger Indo-Pacific region (Briggs 2005). The high diversity of many marine taxa within the IAA has been attributed to the complex geological history of the area during the Paleocene to Pliocene (60-5 mya), and the sea level fluctuations during the Pleistocene (Voris 2000; Hall 2002). In contrast to the high diversity throughout the IAA, the oceanic islands in the center of IAA, especially three major island groups, Lesser Sunda, Moluccas, and the Sulawesi subregions are poorly known (Monk et al. 2000; Figure 2.1). For example, prior to this study, nineteen species of amblyopines and 31 species of oxudercines have been reported from IAA but only eight species of amblyopines and nine species of oxudercines gobies have been reported from these three island groups (Table 2.1). While this may be a true indication of the biodiversity in the area, a more likely explanation for the pattern is the absence of a rigorous and systematic sampling effort for ichthyofauna for the islands in central IAA (Peristiwady 2012). Our study reviews the diversity and distribution of amblyopine and oxudercine gobies based on published literature, museum material, and new material from our systematic collection trips to the three island groups – Lesser Sunda, Moluccas, and the Sulawesi. In addition, we examined specimens of amblyopine and oxudercine taxa in the Museum Zoologicum Bogoriense, Indonesian Institute of Science (LIPI), in Bogor, Indonesia (MZB) as comparative material. We include that data in the checklist (see subheading

‘Comparative Material’) if these specimens were collected from areas other than our focal island groups (Lesser Sunda, Moluccas, and the Sulawesi).


(25)

Figure 2.1 Map of the Indo-Australian Archipelago. Area marked indicates the oceanic islands between Sunda and Sahul shelves. Dash-lines are the limit of three oceanic island groups.

Material and methods

Fishes were collected from creeks and pools in mangrove forests and on mudflats at nine oceanic islands in the center of IAA: Sulawesi, Lombok, Sumbawa, Sumba, Komodo, Flores, Timor, Ambon and Kei (Figure 2.2) from April 2010 to March 2014. Fishes were sampled during the receding, low, and incoming tides. Fishes were captured by hand, or using various hand nets, and were anasthesized using MS-222 or clove oil and photographed. They were then fixed in 10% buffered formalin solution before being transferred to 70% alcohol for longterm storage. Specimens were identified using Murdy (2006, 2008a, 2008b), Murdy and Shibukawa (2001, 2003), Jaafar and Larson (2008), Jaafar et al. (2009), Polgar et al. (2013), Jaafar et al. (2016). All measurements and counts follow Murdy (1989) and Murdy and Shibukawa (2001). Lengths of the specimen are presented as Standard Length (SL). Voucher specimens were deposited in Mataram University Museum, Lombok, Indonesia (MUM), Lee Kong Chian Museum of Natural History, National University of Singapore, Singapore (ZRC), and National Museum of Natural History, Smithsonian Institution, Washington D.C., United States of America (USNM). We also examined comparative amblyopine and oxudercine taxa in the Museum Zoologicum Bogoriense, Indonesian Institute of Science (LIPI), Bogor, Indonesia (MZB), and report their global distribution as well as specific distribution within Indonesia.


(26)

6

Table 2.1 Records of amblyopines and oxudercines in the oceanic islands of IAA base published literature.

Species Locality Publication

Apocryptodon madurensis Halmahera Murdy (1989)

Boleophthalmus boddarti Sulawesi (Makassar) Bleeker (1853a); Weber (1913); Koumans (1953)

Brachyamblyopus brachysoma Sulawesi (Manado) Koumans (1953) Sulawesi Kottelat et al. (1993)

Caragobius urolepis Timor (near Kupang), Ceram, Sulawesi Koumans (1953) Lesser Sunda Kottelat et al. (1993) Sulawesi (Bitung) Kimura and Matsuura (2003)

Karsten totoyensis Sumbawa (Bima Bay) Weber (1913)

Sumbawa (Bima Bay), Sulawesi Murdy (2002)

Odontamblyopus rubicundus Ambon Koumans (1953)

Paratrypauchen microcephalus Sulawesi (Raha) Popta (1922); Kottelat et al. (1993); Murdy (2008b)

Sulawesi (Raha, Kwandang, Selayar) Koumans (1953)

Periophthalmodon freycineti Timor Cuvier and Valenciennes (1837); Bleeker (1858a)

Periophthalmus argentilineatus Ceram Bleeker (1853c)

Buru Bleeker (1857)

Flores Günther (1861)

Ambon, Flores, Sulawesi Eggert (1935) Lombok (Labuan Tereng, Ekas, Labuhan

Haji), Sumbawa (Bima), Flores (Larantuka, Mbawa), Adonara, Timor (Atapupu), Sulawesi (Donggala, Makassar, Gorontalo, Palima), Halmahera (Ternate, Tidore), Obi, Ambon, Ceram (Saparua), Banda, Buru

Koumans (1953)

Lesser Sunda, Ambon Murdy (1989) Sulawesi Kottelat et al. (1993) Sulawesi (Bitung) Kimura and Matsuura (2003)

Periophthalmus kalolo Ambon Bleeker (1853b); Eggert (1935)

Lombok (Labuan Tereng), Sumbawa (Bima), Flores (Labuan Bajo), Sulawesi (Donggala/Palu)

Weber (1913)

Flores (Labuan Bajo), Timor, Sulawesi (Pare-pare), Tongian islands, Talaud islands, Ambon, Halmahera (Ternate), Obi island

Koumans (1953)

Sulawesi Kottelat et al. (1993)

Periophthalmus malaccensis Ambon Murdy (1989)

Periophthalmus variabilis Halmahera (Pulau Babu) Eggert (1935); Koumans (1953)

Pseudapocryptes borneensis Timor Koumans (1953)

Scartelaos histophorus Sulawesi (Makassar) Weber (1913)

Halmahera Murdy (1989)

Taenioides anguillaris Sulawesi (Strait Makassar) Koumans (1953) Lombok (Kuta beach) Matsuura et al. (2000) Sulawesi (Bitung) Kimura and Matsuura (2003)

Taenioides eruptionis Ambon Koumans (1953)

Trypauchen vagina Sulawesi (Makassar) Bleeker (1853a)

Ceram Günther (1861)

Lombok (Labuan Tereng), Sulawesi (Makassar, Selayar, Kwandang)

Weber (1913) Lombok (Labuan Tereng), Flores,

Sulawesi (Makassar, Malawa, Bajo), Ceram, Ambon


(27)

Figure 2.2 Sampling locations (close circles) and localities of museum materials (open circles). (A) Sulawesi subregions: Sulawesi (Makasar, Pangkajene, Mamuju, Sinjai, Wajo, Luwu, Palu, Poso, Banggai and Kendari); (B) Moluccas subregions: Ambon (Ambon Bay, Suli, Liang and Lateri), Halmahera (Weda) and Kei islands (Tual); (C) Lesser Sunda subregions: Lombok (Sekotong, Lembar and Keruak), Sumbawa (Labuan Alas and Mbawi), Timor (Kupang and Atapupu), Sumba (Waingapu), Flores (West Manggarai) and Komodo island (Loh Sebita).

Results

Six species of amblyopines and 10 species of oxudercines were collected (Table 2.2), of which, three species amblyopines (Taenioides cirratus, Trypauchenichthys larsonae and Trypauchenopsis intermedia) and two species of oxudercines (Periophthalmus gracilis, and Periophthalmus minutus) are reported for the first time from the areas. Together with those reported from other published studies, a total of 11 species of ambyopines and 13 species of oxudercines are found in these three island groups. A key to the species occurring in the area, and a checklist is provided.


(28)

8

Table 2.2 Records of amblyopines and oxudercine based on present sampling and museum materials.

SPECIES

SULAWESI REGION MOLUCCAS

ISLANDS LESSER SUNDA ISLANDS

Sulawesi island Ambon

H alm ahe ra K ei Lombok S um ba w a T im or S um ba F lo re s K om odo M aka ss ar P angka je ne M am uj u S in ja i W ajo L uw u P alu P os o B angga i K enda ri A m bon B ay S ul i L ate ri L ia ng W eda T ua l S ekot ong L em ba r K er ua k L abua n A la s M ba w i K upa ng A ta pupu W ain ga pu W M angga ra i S abi ta B ay AMBLYOPINAE

C urolepis + +

O rubicundus + +

P microcephalus +

T cirratus +

Tr larsonae +

Ts intermedia + + +

OXUDERCINAE

A madurensis + + +

B boddarti + + + +

Pn freycineti + + +

Ps argentilineatus + + + + + + + + + + + + + + + + + + + + +

Ps gracilis + + + + +

Ps kalolo + + + + + +

Ps malaccensis + + + + + + + + + + + + +

Ps minutus + + + +

Ps pusing + + +

Ps variabilis +

S histophorus + + +

Note: A= Apocryptodon; B= Boleophthalmus; C= Caragobius; O= Odontamblyopus; P= Paratrypauchen; Pn= Periophthalmodon; Ps= Periophthalmus; S= Scartelaos; T= Taenioides; Tr= Trypauchenichthys; Ts= Trypauchenopsis

Key to species of amblyopines and oxudercines occurring in the area

The key is modified from Murdy (2002), Larson and Murdy (2001), Murdy and Ferraris (2003), Jaafar and Larson (2008), and Koumans (1953).

1a. Dorsal and anal fins connected to caudal fin by membrane; eyes highly reduced, at times imperceptible; pink, purple or red when alive ... ... 2 (Amblyopinae) 1b. Dorsal and anal fins separated from caudal fin, first and second dorsal fins separate; eyes not reducted and located mostly dorsally ... 12 (Oxudercinae) 2a. Ratio of pelvic-fin length to head length greater than 70%; pelvic fins fully united and foarming a disc ... 3 2b. Ratio of pelvic-fin length to head length less than 40%; pelvic fins united or completely separated ... 8 3a. Head and body without scales ... 4 3b. Cycloid scales present on head and body ... 7 4a. Head and body with raised dermal folds or ridges; barbels on head long and located on ventral surface of chin ... 5 4b. Head and body without raised dermal folds or ridges; head covered with short barbel-like processes ... Trypauchenopsis intermedia 5a. Canine teeth in outer row of upper jaw 7–8 on each side ... 6 5b. Canine teeth in outer row of upper jaw 5 on each side ... Taenioides cirratus


(29)

6a. Canine teeth in outer row of lower jaw 4–5 on each side; length of head longer than distance from base of pelvic fin to anal fin ... ... Taenioides anguillaris 6b. Canine teeth in outer row of lower jaw 3–4 on each side; length of head shorter than distance from base of pelvic fin to anal fin ... ... Taenioides eruptionis 7a. Pectoral-fin rays simple, free from fin membrane and silklike; head and body subcylindrical, and long; pectoral-fin rays 20-65, usually more than 23 ... Odontamblyopus rubicundus 7b. Pectoral-fin rays branched, not forming free rays; head and body compressed; pectoral-fin rays 23 or fewer ... Brachyamblyopus brachysoma 8a. A pouch-like cavity at dorsal margin of operculum present ... 9 8b. No pouch-like cavity at dorsal margin of operculum ... 11 9a. Frontal crest prominently exposed; pelvic fin separated to base... ... Trypauchenichthys larsonae 9b. Frontal crest subdermal or only slightly exposed; pelvic fins united ... 10 10a. Pelvic fins fully united forming a disc; abdomen fully scaled ... ... Trypauchen vagina 10b. Pelvic fins emarginated posteriorly; abdomen without scales ... ... Paratrypauchen microcephalus 11a. Pectoral fin rounded, symmetrical dorsoventrally; eyes present but rudimentary; segmented caudal-fin rays usually 7+6, including 6+5 branched rays ... Caragobius urolepis 11b. Pectoral fin pointed posteriorly, not symmetrical; eyes lacking; segmented caudal-fin rays 8+7, including 7+6 branched rays ... Karsten totoyensis 12a. Dermal cup absent ... 13 12b. Dermal cup present ... 14 13a. The cephalic sensory system showing the presence of posterior interorbital pore; First dorsal fin with 5 spines; second dorsal with 29-33 total elements; anal fin with 27-29 total elements .... Pseudapocryptes borneensis 13b. The cephalic sensory system showing the presence of supraorbital pore; First dorsal fin with 6 spines; second dorsal with 24 or fewer total elements; anal fin with 23 or fewer total elements ... ... Apocryptodon madurensis 14a. Two canine teeth internal to lower jaw symphysis present; anal and second dorsal-fin bases 34% of standard length or greater ... 15 14b. No canine teeth internal to lower jaw symphysis; anal and second

dorsal-fin bases 27% of standard length or less ... 16 15a. Barbels present on underside of head ... Scartelaos histophorus 15b. No barbels on underside of head ... Boleophthalmus boddarti 16a. Two rows of teeth in upper jaw; outermost teeth large and curved ... 17 16b. A single row of teeth in upper jaw; teeth blunt, not curved ... 18 17a. Spinous dorsal fin IV, rarely V; length of first dorsal-fin base less than 10% of standard length; pectoral-fin rays 15-17 ... ... Periophthalmodon freycineti 17b. Spinous dorsal fin modally VIII-IX, rarely VI or VII; length of first

dorsal-fin base greater than 10% of standard length; pectoral-dorsal-fin rays 16-19 ... ... Periophthalmodon schlosseri


(30)

10

18a. Frenum present visible without magnification; pelvic fins are united and emarginated posteriorly ... 19 18b. Frenum absent, or visible only with magnification; pelvic fins totally separate ... 21 19a. First dorsal fin with numerous white spots ... 20 19b. First dorsal fin with orange spots that turn brown in preservative ... ... Periophthalmus variabilis 20a. First dorsal fin with XI – XV spines, black stripe inframarginally with numerous white spots basally; pelvic frenum vestigial; branchiostegal membrane not pigmented; lateral scales typically more than 70 ... ... Periophthalmus kalolo 20b. First dorsal fin with X spines, brown stripe inframarginally with numerous white spots broad distributed; pelvic frenum prominent; branchiostegal membrane pigmented; lateral scales typically fewer than 70 ... ... Periophthalmus malaccensis 21a. First dorsal fin rounded, prominent black spot posteriorly ... 22 21b. First dorsal fin pointed, black spot absent ... 23 22a First dorsal fin with X spines or fewer, D1 shorter than depth of body at anus; interdorsal distance more than half the length of the first dorsal-fin spine ... Periophthalmus gracilis 22b First dorsal fin with XI-XV spines, D1 taller than depth of body at anus; interdorsal distance less than half the length of the first dorsal-fin spine... ... Periophthalmus pusing 23a. First dorsal fin with black stripe inframarginally; peritoneum densely black ventrally; lateral scales 75 or more ... Periophthalmus argentilineatus 23b. First dorsal fin with light brown stripe inframarginally; peritoneum lightly pigmented ventrally; lateral scales 75 or fewer ... Periophthalmus minutus

Taxonomy Family Gobiidae Subfamily Amblyopinae

Brachyamblyopus brachysoma Bleeker, 1854

Amblyopus brachysoma Bleeker, 1854a: 510 (Indonesia: Sumatra: Priaman)

Material Examined. None.

Comparative Material Examined: SUMATRA: MZB 2270; 1 (89.8 mm), Way Belukang, Kuala Sekampung, Lampung, coll. Soetikno, 1 November 1975.

Distribution. Sumatra, Indonesia (Bleeker 1854a); Singapore (Larson et al. 2008); Sulawesi (Manado), New Guinea (Lorentz River), Thailand (Bangkok), Hong Kong, Persian Gulf and India (Koumans 1953).

Caragobius urolepis (Bleeker, 1852)

Amblyopus urolepis Bleeker, 1852: 581 (Indonesia: Sumatra: Palembang).

Caragobius typhlops Smith & Seale, 1906: 81 (Philippines: Mindanao: Rio Grande).


(31)

Taenioides chilkensis Hora, 1923: 757, fig. 34 (India: Orissa: Chilka Lake).

Brachyamblyopus olivaceus Herre, 1927: 329, pl. 25, fig. 3 (Philippines: Oriental Negros: La

Libertad).

Caragobius geomys Fowler, 1935: 161, figs. 129-130 (Thailand: Bangkok).

Nudagobioides monserrati Roxas & Ablan, 1940: 309, pl. 8 (Philippines: Luzon: Pangasinan

Province).

Material Examined: LOMBOK: MUM 121-00025, 10 (40.5–52.7 mm), mangrove forest at Kelapa beach, Labuan Tereng, Lembar, West Lombok, coll. Y. Zamroni, 21 July 2012; TIMOR: MUM 121-00013, 5 (26.6–46.8 mm), Oebelo mangrove forest, Neilbaki, Kupang, coll. Y. Zamroni, 13 September 2012; USNM 427003, 2 (44.8–45.6 mm), Bipolo village, East Kupang, coll. Z. Jaafar & Y. Zamroni, 13 November 2012; ZRC 53909, 2 (not measured), data as USNM 427003.

Distribution. India (Hora 1923); Mindanao and Negros, Philippines (Herre 1927; Murdy and Shibukawa 2003); Thailand and Fiji (Murdy and Shibukawa 2003); Japan (Koumans 1953); New Guinea (Allen 1991); Northern Australia (Larson et al. 2013); Nha Trang Bay, Vietnam (Prokofiev 2015); Sumatra, North Sulawesi, Lombok and Timor, Indonesia (Murdy and Shibukawa 2003; Kimura and Matsuura 2003; this study).

Karsten totoyensis (Garman, 1903)

Gobioides totoyensis Garman, 1903: 235, Pl. 3, figs. 1–2 (Fiji: Totoya Island)

Taenioides coecus Weber, 1913: 486 (Indonesia: Sumbawa: Bima Bay)

Material Examined. None.

Distribution. Totoya Island, Fiji (Garman 1903); Philippines (Murdy 2002); Sulawesi, and Sumbawa, Indonesia (Weber 1913; Murdy 2002).

Odontamblyopus rubicundus (Hamilton, 1822)

Gobioides rubicundus Hamilton, 1822: 365, pl. 5, fig. 9 (India: estuaries of the Ganges River)

Amblyopus mayenna Valenciennes in Cuvier & Valenciennes, 1837: 163 (Myanmar: Rangoon:

Ganges River)

Amblyopus taenia Günther, 1861: 135 (East Indies)

Material Examined: LOMBOK: MUM 121-00026, 1 (71.6 mm), mangrove forest at Kelapa beach, Labuan Tereng, Lembar, West Lombok, coll. Y. Zamroni, 21 July 2012; TIMOR: MUM 121-00016, 2 (40.0–48.4 mm), Oebelo mangrove forest, Neilbaki, Kupang, coll. Y. Zamroni, 13 September 2012.

Distribution. India (Day 1876); Myanmar and Bangladesh (Murdy and Shibukawa 2001); Singapore (Larson et al. 2008); Malay Peninsula (Koumans 1953); Sumatra, Java, Borneo, Lombok, Timor, and Ambon, Indonesia (Koumans 1953; this study).


(32)

12

Paratrypauchen microcephalus (Bleeker, 1860)

Trypauchen microcephalus Bleeker, 1860: 62 (Indonesia: Kalimantan: Sungi-Duri)

Trypauchen wakae Jordan & Snyder, 1901: 127, fig. 32 (Japan: Wakayama Prefecture: Wakanoura)

Trypauchen raha Popta, 1922: 37 (Indonesia: Sulawesi: Muna Island: Raha)

Ctenotrypauchen barnardi Hora, 1926: 221, figs. 1-2 (South Africa: KwaZulu-Natal: Tugela River)

Trypauchen wakae chantungensis Fang, 1942: 85 (China: Shantung Province: Chefoo)

Material Examined. TIMOR: MUM 121-00014, 5 (30.0–49.4 mm), Oebelo mangrove forest, Neilbaki, Kupang, coll. Y. Zamroni, 13 September 2012.

Distribution. Japan, Taiwan, Philippines, Australia, Singapore, Malaysia, India, Mozambique and South Africa (Murdy 2008b); Nha Trang Bay, Vietnam (Prokofiev 2015); Sumatra, Java, Borneo, Sulawesi, and Timor, Indonesia (Popta 1922; Koumans 1953; this study).

Taenioides anguillaris (Linnaeus, 1758)

Gobius anguillaris Linnaeus, 1758: 264 (China)

Gobioïdes anguilliformis La Cepède, 1800: 577 (China)

Taenioides hermannii La Cepède, 1800: 532 Pl. 14 (no locality data)

Cepola coecula Bloch & Schneider, 1801: 241, pl. 54 (India: Tharangambadi)

Amblyopus Hermannianus Valenciennes, in Cuvier & Valenciennes, 1837: 159, pl. 350 (India:

Calcutta; Burma: Rangoon)

Amblyopus rugosus Richardson, 1846: 207 (China: Macao)

Material Examined. None.

Comparative Material Examined: BORNEO: MZB 951, 1 (220.0 mm), Sembiangan, North Borneo, coll. Mohari, 1912.

Distribution. China (Günther 1861); India (Günther 1861; Day 1876); Philippines (Herre 1927); Penang, Peninsular Malaysia (Koumans 1953); Borneo, East Malaysia (this study); New Guinea (Allen 1991); Sumatra, Java, Sulawesi, and Lombok, Indonesia (Koumans 1953; Matsuura et al. 2000; Kimura and Matsuura 2003).

Taenioides cirratus (Blyth, 1860)

Amblyopus cirratus Blyth, 1860: 147 (India: Calcutta)

Amblyopus brachygaster Günther, 1861: 134 (East Indies)

Gobioides cirratus Day, 1876: 318, pl. 69, fig. 4 (India: Calcuta)

? Amblyopus sumatranus Volz, 1903: 554 (Indonesia: Sumatra: Palembang: Banju Asin)

Taenioides snyderi Jordan & Hubbs, 1925: 310 (Japan: Wakayama Prefecture: Wakanoura)

Material Examined. SULAWESI: MUM 121-00113, 1 (95.8 mm), Wanggu River, Andonuhu, Kendari Bay- South East Sulawesi, coll. Y. Zamroni, 18 January 2014.

Comparative Material Examined:SUMATRA: MZB 2274, 2 (119.4–120.2 mm), Way Belukang, Kuala Sekampung, Lampung, coll. Soetikno, 1 November 1975;


(33)

MZB 2089 (in part), 1 of 3 specimens (220.0 mm), Way Belukang, Kuala Sekampung, Palas, Lampung, coll. Soetikno, 14 June 1975; MZB 2133 (in part), 1 of 2 specimens (225.0 mm), Way Belukang, Kuala Sekampung, Lampung, coll. Soetikno, A. Budiman and F. Sabar, 15 June 1975.

Distribution. East Indies (Günther 1861); India (Day 1876); Philippines (Herre 1927); Australia (Larson et al. 2013); New Guinea (Allen 1991); Borneo, Sumatra, Java, and Sulawesi, Indonesia (Koumans 1953; this study).

Taenioides eruptionis (Bleeker, 1849)

Amblyopus eruptionis Bleeker, 1849: 38 (Indonesia: Java: Kalimas River or Kali Kediri [Brantas],

near Surabaya)

Material Examined. None.

Comparative Material Examined: BORNEO: MZB 2056, 1 (197.0 mm), Pangembangan river (Taluk river), South Kalimantan, coll Umar, 14 March 1975;

SUMATRA: MZB 2089 (in part), 2 of 3 specimens (257.0–312.0 mm), Way

Belukang, Kuala Sekampung, Palas, Lampung, coll. Soetikno, 14 June 1975; MZB 2133 (in part), 1 of 2 specimens (227.0 mm), Way Belukang, Kuala Sekampung, Lampung, coll. Soetikno, A. Budiman and F. Sabar, 15 June 1975. Distribution. Borneo, Java, Sumatra, and Ambon, Indonesia (Koumans 1953; this study).

Trypauchen vagina (Bloch & Schneider, 1801)

Gobius vagina Bloch & Schneider, 1801: 73 (India: Tranquebar)

Gobioides ruber Hamilton, 1822: 38, 365 (India: Ganges River)

Trypauchen vagina Valenciennes in Cuvier & Valenciennes, 1837: 152 (new combination)

Material Examined. None.

Distribution. China (Günther 1861); India (Day 1876); Philippines (Herre 1927); Persian Gulf, Formosa, Nicobar, Penang (Koumnas 1953); Singapore (Larson et al. 2008); Kuwait, Myanmar, Thailand (Murdy 2006); Mediterranean Sea (Akamca et al. 2011); Vietnam (Prokofiev 2015); Borneo, Java, Sulawesi, Bali, Ceram, Madura, Lombok, Flores, Ambon, Indonesia (Bleeker 1853a, Bleeker 1858b; Günther 1861; Weber 1913; Koumans 1953).

Trypauchenichthys larsonae Murdy, 2008

Trypauchenichthys larsonae Murdy, 2008a: 62, fig.1 (Northern Territory, Australia)

Material Examined. TIMOR: MUM 121-00076, 1 (40.0 mm), Oebelo mangrove forest, Neilbaki, Kupang, coll. Y. Zamroni, 13 September 2012.

Distribution. Northern Territory, Australia (Murdy 2008a); Samar Island, Philippines (Prokofiev 2015); and Timor, Indonesia (this study).


(34)

14

Remarks. This record represents a range extension for this species, and a new record for the Lesser Sunda Islands and Indonesia. Specimens were obtained from approximately 60 cm deep mud substrate.

Trypauchenopsis intermedia Volz, 1903

Trypauchenopsis intermedius Volz, 1903: 555 (Indonesia: Sumatra: Palembang: Banju Asin).

Brachyamblyopus burmanicus Hora, 1926: 455, fig. 2 (Myanmar: Rangoon river).

Tanioides jacksoni Smith, 1943: 70, fig. 2 (South Africa: KwaZulu-Natal: St. Lucia Estuary).

Taenioides limicola Smith, 1964: 145, fig. 1 (Guam: Acfayan Bay).

Material Examined. TIMOR: MUM 121-00017, 3 (33.4–50.0 mm), Oebelo mangrove forest, Neilbaki, Kupang, coll. Y. Zamroni, 13 September 2012; USNM 410689, 1 (26.2 mm), locality as MUM 121-00017, coll. Z. Jaafar & Y. Zamroni, 14 November 2012; USNM 410704, 3 (45.1–60.2 mm), Bipolo village, East Kupang, coll. Z. Jaafar & Y. Zamroni, 13 November 2012; SULAWESI: MUM 121-00080, 3 (63.0–85.9 mm), Wanggu river, Andonuhu, Kendari Bay- South East Sulawesi, coll. Y. Zamroni, 18 January 2014; MUM 121-00257, 1 (62.3 mm), Banggai, Central Sulawesi, coll. W.S. Enot, 17 January 2014.

Comparative Material Examined:JAVA: MZB 4938, 1 (52.3 mm), Cisiin river, Sumur, Pandeglang-West Java, 21 August 1982.

Distribution. –South Africa, Philippines, Caroline Islands, Marianas Islands, and Ryukyu Islands, Japan (Shibukawa and Murdy 2012); Sumatra, Java, Sulawesi, Bali, and Timor, Indonesia (Shibukawa and Murdy 2012; this study).

Subfamily Oxudercinae

Apocryptodon madurensis (Bleeker, 1849)

Apocryptes madurensis Bleeker, 1849: 35 (Indonesia: Java: Madura Strait).

Apocrytpes glyphisodon Bleeker, 1849: 36 (Indonesia: Java: Jakarta).

Apocryptes bleekeri Day, 1876: 300, pl. 64, fig. 3 (India: Madras).

Apocryptodon montalbani Herre, 1927: 277, pl. 22, fig. 2 (Philippines: Panay).

Apocryptodon sealei Herre, 1927: 278 (Philippines: Luzon).

Apocryptodon taylori Herre, 1927: 279, pl. 22, fig. 3 (Philippines: Tablas).

Apocryptodon malcolmi Smith, 1932: 47, fig. 22 (Thailand: Chantaburi River).

Apocryptodon lomboyi Ablan, 1940: 373, pl.1 (Philippines: Luzon).

Material Examined. LOMBOK: MUM 121-00023, 11 (28.7–57.0 mm), mangrove forest at Kelapa beach, Labuan Tereng, Lembar-West Lombok, coll. Y. Zamroni, 23 May 2013; TIMOR: MUM 121-00048, 10 (21.1–43.7 mm), Oebelo mangrove forest, Neilbaki, Kupang Bay, coll. Y. Zamroni, 13 September 2012; MUM 121-00021, 2 (44.5–48.1 mm), Maubesi mangrove forest, Atapupu, coll. Y. Zamroni, 16 September 2012; USNM 427011, 1 (40.0 mm), Bipolo village, East Kupang, coll. Z. Jaafar & Y. Zamroni, 13 November 2012.

Comparative Material Examined: JAVA: MUM 121-00011, 1 (38.9 mm), Gending beach, Probolinggo-East Java, coll. Y. Zamroni, 15 October 2013.


(35)

Distribution. India (Day 1876); Thailand (Murdy 1989); Singapore (Larson et al. 2008); Panay, Luzon, and Tablas, Philippines (Herre 1927); Northern Territory, Australia (Murdy 1989; Larson et al. 2013); Madura, Java, Lombok and Timor, Indonesia (Günther 1861; Koumans 1953; this study).

Boleophthalmus boddarti (Pallas 1770)

Gobius boddarti Pallas, 1770: 11, pl. 2, figs 4-5 (Indian Ocean).

Gobius striatus Bloch & Schneider, 1801: 71, pl. 16 (India: Tharangambadi).

Gobius plinianus Hamilton, 1822: 45, pl. 35, fig. 13 (India: Ganges Delta).

Boleophthalmus inornatus Blyth, 1860: 148 (Myanmar: Tenasserim).

Boleophthalmus sculptus Günther, 1861: 104 (India).

Apocryptes punctatus Day, 1867: 941 (India: Madras).

Material Examined. –LOMBOK: MUM 121-00022, 27 (38.8–101.2 mm), mangrove forest at Kelapa beach, Labuan Tereng, Lembar-West Lombok, coll. Y. Zamroni, 14 April 2010; MUM 121-00024, 4 (30.9–81.4 mm), location and collector as MUM 121-00022, 21 May 2013; SUMBAWA: MUM 121-00035, 7 (40.0–110.4 mm), Mbawi mangrove forest, Dompu, coll. Y. Zamroni, 15 November 2013; SULAWESI: MUM 121-00100, 1 (76.0 mm), Barombang river, Makassar, coll. Y. Zamroni, 21 January 2014; MUM 121-00091, 8 (54.4–82.6 mm), Maccini Baji harbor, Labakkang, Pangkajene, South Sulawesi, coll. Y. Zamroni, 22 January 2014.

Comparative Material Examined: JAVA: MUM 121-00003, 3 (50.3–94.8 mm), Gending beach, Probolinggo-East Java, coll. Y. Zamroni, 15 October 2013; MUM 121-00004, 3 (76.1–85.9 mm), Klaseman beach, Probolinggo-East Java, coll. Y. Zamroni, 16 October 2013; MUM 121-00006, 2 (46.1–50.0 mm), Tambak Sari beach, Pajarakan, Probolinggo-East Java, coll. Y. Zamroni, 17 October 2013; MZB (uncatalogued), 10 (117.4–129.9 mm), Segara Anak river, Alas Purwo National Park, eastern Java, coll. Maulana, S.Y., October 2015.

Distribution. Singapore (Larson et al. 2008); India, Thailand, Malaysia, Vietnam and Borneo (Murdy 1989); Sumatra, Java, Sulawesi, Lombok, Sumbawa, and Halmahera, Indonesia (Takita et al. 1999; Polgar et al. 2013; Wahyudewantoro et al. 2014; this study).

Remarks. This is the first record of Boleophthalmus boddarti from Lombok and Sumbawa. In Labuan Tereng in Lombok, this species was found in abundance on the mangrove-forest floor, on open mudflats, and on the banks of streams, canals and fishponds. In Mbawi in Sumbawa however, they were found only on the banks of rivers and canals.

Periophthalmodon freycineti (Quoy & Gaimard, 1824)

Periophthalmus freycineti Quoy & Gaimard, 1824: 257 (Indonesia: Timor: Babao River)

Periophthalmus australis Castelnau, 1875: 22 (Australia: Queensland).


(36)

16

Material Examined. TIMOR: MUM 121-00018, 2 (48.8–49.4 mm), Oebelo mangrove forest, Neilbaki, Kupang, coll. Y. Zamroni, 13 September 2012; MUM 121-00056, 2 (33.1–66.3 mm), Maubesi mangrove forest, Atapupu, coll. Y. Zamroni, 15 September 2012; AMBON: MUM 121-00112, 1 (31.0 mm), Passo, Ambon Bay, Moluccas province, coll. Y. Zamroni, 27 February 2014.

Distribution. Philippines, Australia and Indonesia (Murdy 1989); Papua, Halmahera, Timor and Ambon, Indonesia (Eggert 1935; Murdy 1989; this study).

Periophthalmodon schlosseri (Pallas, 1770)

Gobius schlosseri Pallas, 1770: 5, pl. 1, figs 1–4 (Indonesia: Ambon).

Periophthalmus ruber Bloch & Schneider, 1801: 64 (India: Tharangambadi).

Periophthalmus phya Johnstone, 1903: 296, pl. 14 (Malay Peninsula: southern Thailand: estuaries

of Jambu and Pattani Rivers).

Periophthalmodon schlosseri argentiventralis Eggert, 1935: 49 (Indonesia: Java: Edam Island).

Material Examined. None.

Comparative Material Examined: JAVA: MUM 121-00077, 1 (93.4 mm), Mayangan beach, Legon Kulon, Subang-West Java, coll. Y. Zamroni, 28 December 2013; MZB (uncatalogued), 1 (141.76 mm), Muara Angke, Jakarta, 16 May 2010; SUMATRA: MZB 2078, 2 (160.0–165.0 mm), Muara Way Belak, Palas, South Lampung, coll. Soetikno, 13 June 1975; MZB 1736, 2 (170.0–177.0 mm), interchange between Way river & Belukak river, Lampung, coll. Soetikno, 13 June 1975; MZB 5397, 1 (163.0 mm), Rantau Panjang Bayeun, East Aceh, coll. D. Wowor, 11 February 1984.

Distribution. Thailand, Singapore, Borneo and Malay Peninsula (Murdy 1989); Sumatra, Java, Sulawesi, and Ambon (Pallas 1770; Koumans 1953; Murdy 1989; Wahyudewantoro 2014; this study).

Periophthalmus argentilineatus Valenciennes, 1837

Periophthalmus argentilineatus Valenciennes in Cuvier & Valenciennes, 1837: 191 (Indonesia:

Waigeo)

Periophthalmus dipus Bleeker, 1854b: 320 (Indonesia: Java: Banten; Sumatra: Padang; Flores:

Larantuka)

Euchoristopus kalolo regius Whitley, 1931: 326 (Australia: King George Sound)

Periophthalmus vulgaris vulgaris Eggert, 1935: 81, pls. 6 & 7, figs. 23–28 (Indonesia: Java:

Jakarta)

Periophthalmus vulgaris notatus Eggert, 1935: 83, pl. 7, fig. 29 (Malaysia: Klappa Island)

Periophthalmus vulgaris ceylonensis Eggert, 1935: 85 (Sri Lanka: Galle)

Periophthalmus dipus parvus Eggert, 1935: 88, pl. 8, fig. 32 (Indonesia: Sumatra: Belawan)

Periophthalmus dipus angustiformis Eggert, 1935: 89, fig. 14 (Indonesia: Flores: Mbawa)

Periophthalmus argentilineatus striopunctatus Eggert, 1935: 94, pl. 9, fig. 36 (Indonesia:

Kalimantan: Balikpapan)

Periophthalmus sobrinus Eggert, 1935: 95, pl. 9, figs. 37–38 (Red Sea: Loe Arafali)

Material Examined. LOMBOK: MUM 121-00063, 15 (40.4–54.3 mm), Sepi Bay, Sekotong – West Lombok, coll. Y. Zamroni, 3 June 2013; MUM 121-00066,


(37)

5 (31.7–52.8 mm), Selindungan mangrove forest, Sekotong – West Lombok, coll. Y. Zamroni, 26 May 2013; MUM 121-00064, 12 (35.0–61.6 mm), Mangrove forest at Kelapa beach, Labuan Tereng, Lembar – West Lombok, coll. Y. Zamroni, 21 July 2012; MUM 121-00065, 6 (32.4–60.0 mm), Mangrove forest at Cemara beach, Lembar – West Lombok, coll. Y. Zamroni, 22 May 2013; MUM 121-00073, 10 (33.4–55.8 mm), Telong-elong mangrove forest, Keruak – East Lombok, coll. Y. Zamroni, 10 November 2013; SUMBAWA: MUM 121-00062, 6 (43.0–55.0 mm), Labuan Alas mangrove forest, coll. Y. Zamroni, 13 November 2013; MUM 121-00047, 6 (55.4–61.0 mm), Mbawi mangrove forest, Dompu, coll. Y. Zamroni, 15 November 2013; TIMOR: MUM 121-00067, 12 (49.6–63.0 mm), mangrove forest at Paradiso beach, Kupang, coll. Y. Zamroni, 17 September 2012; MUM 121-00069, 7 (36.7–50.2 mm), Oebelo mangrove forest, Neilbaki, Kupang, coll. Y. Zamroni, 13 September 2012; USNM 410697, 1 (42.6 mm), locality as MUM 121-00069, coll. Z. Jaafar & Y. Zamroni, 14 November 2012; USNM 427014, 1 (42.1 mm), Bipolo village, East Kupang, coll. Z. Jaafar & Y. Zamroni, 12 November 2012; SUMBA: MUM 121-00041, 3 (39.5–43.3 mm), Kawangu mangrove forest, Waingapu, coll. Z. Jaafar & Y. Zamroni, 10 November 2012; USNM 410592, 4 (42.2–47.3 mm), data as MUM 121-00041; ZRC 53866, 10 (not measured), data as MUM 121-00041; USNM 410678, 2 (54.0–54.5 mm), Bugis village, Waingapu, coll. Z. Jaafar & Y. Zamroni, 9 November 2012; ZRC 53913, 2 (not measured), data as USNM 410678;

FLORES: MUM 121-00054, 15 (38.3–48.5 mm), Terang Bay mangrove forest,

West Manggarai, coll. Y. Zamroni, 25 September 2012; KOMODO: MUM 121-00055, 7 (39.6–56.3 mm), Loh Sebita, Komodo Island, coll. Y. Zamroni, 22 September 2012; AMBON: MUM 121-00104, 15 (29.8–59.8 mm), Hunut mangrove forest, Ambon Bay, Ambon, Moluccas province, coll. Y. Zamroni, 11 March 2014; MUM 121-00097, 1 (55.4 mm), Suli-Ambon, Moluccas province, coll. Y. Zamroni, 15 March 2014; MUM 121-00105, 13 (31.3–57.3 mm), Lateri, Ambon, Moluccas province, coll. Y. Zamroni, 28 February 2014; MUM 121-00102, 11 (30.0–55.9 mm), Passo, Ambon Bay, Moluccas province, coll. Y. Zamroni, 27 February 2014; KEI: MUM 121-00110, 4 (49.0–67.9 mm), Fair, Tual, Kei islands, Moluccas province, coll. Y Zamroni, 8 March 2014;

HALMAHERA: MZB 18768 (in part), 2 of 4 specimens (23.5–31.0 mm), Muara

Wasea, Central Weda, Central Halmahera district, North Moluccas province, coll. Renny K. H., D. Wowor & Sopian, 4 February 2010; SULAWESI: MUM 121-00088, 8 (51.4–78.5 mm), Banggai, Central Sulawesi, coll. Y. Zamroni, 17 January 2014; MUM 121-00093, 46 (30.7–56.6 mm), Poso beach, Central Sulawesi, coll. Y. Zamroni, 14 January 2014; MUM 121-00096, 14 (43.9–63.5 mm), Wanggu river, Andonuhu, Kendari Bay, SE Sulawesi, coll. Y. Zamroni, 18 January 2014; MUM 121-00095, 23 (36.6–50.5 mm), Donggala, Palu, Central Sulawesi, coll. Y. Zamroni, 12 January 2014; MZB 10480 (in part), 7 of 8 specimens (19.0–52.4 mm), Tongke-tongke mangrove forest, Sinjai-South Sulawesi, coll. Haryono & Harun, 6 August 1999; MZB 5982, 4 (29.1–37.7 mm), Bosa river at Alon mangrove forest, Karangkaranga village, Belopa, Luwu district-South Sulawesi, coll. M. Kottelat & A. Kottelat-Kloetzli, 11 June 1988; MZB 10675 (in part), 2 of 14 specimens (46.3–53.4 mm), Masic river, Paojepe village, Keera distric, Wajo-South Sulawesi, coll. Haryono, 23 September 2000.


(38)

18

Comparative Material Examined: SUMATRA: MZB 22862 (in part), 9 of 14 specimens (30.1–39.2 mm), Kahyapu beach, Kahyapu village, Enggano subdistric, northern Bengkulu, 28 April 2015; JAVA: MUM 121-00058, 4 (34.3– 52.1 mm), Gending beach, Probolinggo-East Java, coll. Y. Zamroni, 15 November 2013; MUM 121-00071, 4 (40.3–52.5 mm), Tambak Sari beach, Pajarakan, Probolinggo-East Java, coll. Y. Zamroni, 17 October 2013; MUM 121-00072, 7 (36.6–52.0 mm), Klaseman, Probolinggo-East Java, coll. Y. Zamroni, 16 October 2013; MZB 4339, 1 (48.7 mm), Cisumur, Sumur-Pandeglang, coll. Soetikno & D. I. Hartoto, 17 January 1982; MZB 4333, 1 (49.3 mm), Cisumur river, Sumur-Pandeglang, coll. D. I. Hartoto, 14 January 1982; MZB 4335, 5 (52.00–59.64 mm), Muara Baru river, Sumur-Pandeglang, coll. D. I. Hartoto & Soetikno, 18 January 1982; MZB 21580, 1 (50.4 mm), Sokel river, Watukarung village, Pringkuku subdistrict, Pacitan-eastern Java, coll. Renny K.H. & Sopian, 27 July 2013; MZB 21622, 1 (56.0 mm), Teleng river, Pacitan, eastern Java, coll. Renny K.H. & Sopian, 29 July 2013; BALI: MUM 121-00059, 6 (36.1–39.4 mm), Benoa Bay-Denpasar, coll. Y. Zamroni, 5 June 2013; MUM 121-00060, 28 (40.1–52.0 mm), Terima Bay, Labuan Lalang-Buleleng, coll. Y. Zamroni, 19 October 2013; MUM 121-00061, 6 (38.9–65.0 mm), Gilimanuk Bay-Jembrana, coll. Y. Zamroni, 19 October 2013; PAPUA: MUM 121-00046, 2 (50.2–54.0 mm), Gom island near Waigeo island, coll. K. Krey, 7 October 2011; ARU

ISLANDS: MUM 121-00111, 12 (75.0–78.0 mm), Babi island, Aru Islands, coll.

Y. Zamroni, 7 March 2014.

Distribution. South Africa, Tanzania, Kenya, Somalia, Eritrea, Seychelles, Madagascar, Pakistan, Myanmar, Sri Lanka, Thailand, Malaysia, Japan, Philippines, Indonesia, Australia, Papua New Guinea and Oceania (Murdy 1989). In Indonesia, this species could be found in Sumatra and their satelit islands such as Weh island, Bangka, Nias, Mentawai and Simalur; Java, Madura, Bali, Borneo; in Lesser Sunda islands such as Lombok, Sumbawa, Sumba, Timor, Flores, Komodo and Adonara; in Sulawesi and their satelit islands such as Tongian, Salibabu and Talaud; Moluccas islands such as Ambon, Buru, Ceram, Saparua, Banda, Obi, Halmahera, Ternate, Kei and Aru islands; New Guinea and Waigeo (Cuvier and Valenciennes 1837; Bleeker 1854b; Eggert 1935; Koumans 1953; Allen 1991; Kimura and Matsuura 2003; Wahyudewantoro 2009; this study).

Periophthalmus gracilis Eggert, 1935

Periophthalmus gracilis Eggert, 1935: 79, Pl.6 fig. 22 (Indonesia: Java: Cilacap and Jakarta;

Sumatra: Siboga).

Material Examined.- LOMBOK: MUM 121-00051, 5 (22.0–34.0 mm), Sepi Bay, Sekotong, West Lombok, coll. Y. Zamroni, 6 April 2010; SUMBAWA: MUM 121-00075, 16 (28.2–46.3 mm), Mbawi mangrove forest, Dompu, coll. Y. Zamroni, 15 November 2013.

Comparative Material Examined: JAVA: MUM 121-00009, 3 (37.4–41.5 mm), Klaseman beach, Probolinggo-East Java, coll. Y. Zamroni, 16 October 2013; MUM 121-00010, 19 (32.5–42.0 mm), Gending beach, Probolinggo-East Java,


(39)

coll. Y. Zamroni, 15 October 2013; MUM 121-00070, 8 (34.0–38.9 mm), Tambak Sari beach, Pajarakan, Probolinggo-East Java, coll. Y. Zamroni, 17 October 2013. Distribution. Malay Peninsula, Luzon (Philippines) and Queensland (Australia) (Murdy 1989); Singapore (Larson et al. 2008); Sumatra, Nias, Lombok, Sumbawa and Java, Indonesia (Eggert 1935; Koumans 1953; Takita et al. 1999, this study).

Periophthalmus kalolo Lesson, 1830

Periophthalmus kalolo Lesson, 1830: 146 (Indonesia: Papua: Waigeo).

Periophthalmus kallopterus Bleeker, 1853b: 342 (Indonesia: Ambon).

Periophthalmus fuscatus Blyth, 1858: 271 (Andaman Islands).

Periophthalmus harmsi Eggert, 1929: 402 (Indonesia: Java: Poeloe Popole).

Periophthalmus koelreuteri albostriatus Eggert, 1935: 73, fig. 10 (Indonesia: Java: Poeloe Popole).

Periophthalmus koelreuteri velox Eggert, 1935: 75 (Indonesia: Java: sand beach opposite

Amsterdam Island near Jakarta).

Periophthalmus koelreuteri africanus Eggert, 1935: 78, pl. 5, fig. 21 (Tanzania: Dar es Salaam).

Periophthalmus musgravei Whitley, 1961: 69 (Papua New Guinea: Misima island).

Material Examined. TIMOR: MUM 121-00020, 5 (40.3–76.7 mm), mangrove forest at Paradiso beach, Kupang, coll. Y. Zamroni, 17 September 2012;

AMBON: MUM 121-00098, 21 (36.9–95.6 mm), Suli-Ambon, Moluccas

province, coll. Y. Zamroni, 15 March 2014; MUM 121-00099, 36 (36.6–82.0 mm), Liang-Ambon, Moluccas province, coll. Y. Zamroni, 16 March 2014;

HALMAHERA: MZB 18768 (in part), 1 of 4 specimens (84.7 mm), Muara

Wasea, Central Weda, Central Halmahera district, North Moluccas province, coll. Renny K. H., D. Wowor & Sopian, 4 February 2010; SULAWESI: MUM 121-00087, 1 (105.8 mm), Banggai, Central Sulawesi, coll. Y. Zamroni, 17 January 2014.

Comparative Material Examined: BALI: MUM 121-00037, 5 (39.8–71.0 mm), Terima Bay, Labuan Lalang-Buleleng, coll. Y. Zamroni, 19 October 2013;

PAPUA: MUM 121-00044, 2 (57.3–59.4 mm), Gom island near Waigeo island,

coll. K. Krey, 7 October 2011; JAVA: MZB1592, 4 (73.7–102.4 mm), Handelem island, Ujung Kulon-West Java, coll. Soetikno, 27 February 1971; MZB 5566, 1 (102.0 mm), Buluran beach-East Java, coll. Moelyadi, July 1984; SUMATRA:

MZB 22868 (in part), 3 of 5 specimens (26.7–74.3 mm), Malakoni beach, Malakoni village, Enggano subdistric, northern Bengkulu, Bengkulu province, coll. Renny K.H. & Sopian, 26 April 2015; MZB 22862 (in part), 5 of 14 specimens (21.5–55.2 mm), Kahyapu beach, Kahyapu village, Enggano subdistric, northern Bengkulu, coll. Renny K.H. & Sopian, 28 April 2015.

Distribution. Djibouti, Tanzania, Madagascar, Seychelles, Sri Lanka, Thailand, Indonesia, Philippines, New Guinea, Micronesia and Oceania (Murdy 1989); Sumatra, Simalur, Nias, Enggano, Java, Bali, Sulawesi, Tongian, Talaud,Timor, Flores, Ambon, Halmahera, Ternate, Obi, Aru, Papua and Waigeo, Indonesia (Lesson 1830; Bleeker 1853b; Eggert 1929, 1935; Koumans 1953; Wahyudewantoro 2009; this study).


(40)

20

Periophthalmus malaccensis Eggert, 1935

Periophthalmus malaccensis Eggert, 1935: 62, figs. 3–4 (Singapore)

Material Examined.- LOMBOK: MUM 121-00049, 6 (58.7–68.9 mm), Sepi Bay, Sekotong, West Lombok, coll. Y. Zamroni, 6 April 2010; MUM 121-00050, 10 (50.7–75.0 mm), Sepi Bay, Sekotong, West Lombok, coll. Y. Zamroni, 3 June 2013; SUMBAWA: MUM 121-00036, 12 (32.8–64.7 mm), Mbawi, Dompu, coll. Y. Zamroni, 15 November 2013; KOMODO: MUM 121-00052, 13 (58.6–67.5 mm), Loh Sebita, Komodo island, coll. Y. Zamroni, 22 September 2012;

FLORES: MUM 121-00053, 2 (64.0–75.5 mm), Terang Bay, West Manggarai,

coll. Y. Zamroni, 25 September 2012; SUMBA: MUM 121-00040, 2 (45.6–48.8 mm), Kawangu mangrove forest, Waingapu, coll. Z. Jaafar & Y. Zamroni, 10 November 2012; USNM 410589, 4 (34.0–43.0 mm), data as MUM 121-00040; USNM 410591, 3 (73.1–85.0 mm), data as MUM 121-00040; ZRC 53863, 2 (46.0–50.0 mm), data as MUM 121-00040; ZRC 53864, 1 (69.2 mm), data as MUM 121-00040; AMBON: MUM 121-00101, 2 (68.9–80.1 mm), Passo mangrove fores, Ambon Bay, Moluccas province, coll. Y. Zamroni, 27 February 2014; MUM 121-00103, 5 (55.0–80.0 mm), Hunut mangrove forest, Ambon Bay, Moluccas province, coll. Y. Zamroni, 11 March 2014; HALMAHERA: MZB 18768 (in part), 1 of 4 specimens (61.3 mm), Muara Wasea, Central Weda, Central Halmahera district, North Moluccas province, coll. Renny K. H., D. Wowor & Sopian, 4 February 2010; SULAWESI: MUM 121-00089, 2 (54.9– 88.5 mm), Donggala, Palu, Central Sulawesi, coll. Y. Zamroni, 12 January 2014; MUM 121-00090, 3 (58.5–74.4 mm), Wanggu river, Andonuhu, Kendari Bay, SE Sulawesi, coll. Y. Zamroni, 18 January 2014; MUM 121-00092, 1 (79.5 mm), Poso beach, Central Sulawesi, coll. Y. Zamroni, 14 January 2014; MZB 10683, 2 (38.0–71.3 mm), Kujuk Kujunge river, Paojepe village, Wajo-South Sulawesi, coll. Haryono, 26 December 2000; MZB 10480 (in part), 1 of 8 specimens (74.6 mm), Mangrove forest Tongke-Tongke, Sinjai, South Sulawesi, coll. Haryono & Harun, 13 June 1975; MZB 10675 (in part), 12 of 14 specimens (74.0–98.0 mm), Masic river, Paojepe village, Keera distric, Wajo-South Sulawesi, coll. Haryono, 23 September 2000.

Comparative Material Examined: JAVA: MUM 121-00002, 4 (39.8–90.7 mm), Gending beach, Probolinggo-East Java, coll. Y. Zamroni, 15 October 2013; MUM 121-00007, 6 (50.5–90.1 mm), Klaseman beach, Probolinggo-East Java, coll. Y. Zamroni, 16 October 2013; MUM 121-00012, 6 (36.2–90.5 mm), Tambak Sari beach, Pajarakan, Probolinggo-East Java, coll. Y. Zamroni, 17 October 2013;

PAPUA: MUM 121-00045, 1 (64.5 mm), Gom island near Waigeo island, coll.

K. Krey, 7 October 2011;

Distribution. Singapore (Eggert 1935); Philippines (Murdy 1989); Java, Sulawesi, Lombok, Sumbawa, Sumba, Komodo, Flores, Ambon, Halmahera, and Papua (Waigeo), Indonesia (Murdy 1989; this study).

Remarks. – Although described from Singapore (Eggert 1935) this species has not since been recovered despite exhaustive sampling throughout the island. Instead, recent collections were made only within Indonesia and Philipines


(1)

58

ASEAN-Australian Symposium on Living Coastal Resources, Vol. 2: Research Papers. Chulalongkorn Univ.: Bangkok.

Linnaeus C. 1758. Systema Nature: Per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonimis, Locis. Editio Decima, Reformata. Holmiae: Impensis Direct. Laurentii Salvii, 824 pp. Lohman DJ, et al. 2011. Biogeography of the Indo-australian Archipelago. The

Annual Review of Ecology, Evolution, and Systematics 42: 205-226.

Macleay W. 1878. The fishes of Port Darwin. P Lin Soc N S W, 2 (4), 344–367. Magtoon W. 2010. Oryzias songkhramensis, a new species of ricefish

(Beloniformes: Adrianichthyidae) from Northeast Thailand and Central Laos. Tropcal Natural History, 10: 107–129.

Matsuura K, Sumadhiharga OK, Tsukamoto K. 2000. Field guide to Lombok island: Identification guide to marine organisms in seagress beds of Lombok island, Indonesia. Ocean Research Institute, University of Tokyo, Tokyo, 449 pp.

Michaux B. 2010. Biogeology of Wallacea: geotectonic models, areas of endemism, and natural biogeographical units. Biological Journal of the Linnean Society, 101, 193–212.

Monk KA, de Fretesi Y, Reksodihardjo-Lilley G. 2000. Ekologi Nusa Tenggara dan Maluku: Seri Ekologi Indonesia Buku V. Prenhallindo, Jakarta, 966 pp. [in Indonesian].

Moss SJ, Wilson EJ, 1998. Biogeographic implications of the tertiary palaeogeographic evolution of Sulawesi and Borneo. In: Hall, R., Holloway, J.D. (Eds.), Biogeography and Geological Evolution of SE Asia. Bachyus Publishers, Leiden, The Netherlands, pp.133–163.

Murdy EO. 1989. A taxonomic revision and cladistic analysis of the oxudercine gobies (Gobiidae: Oxudercinae). Rec Aust Mus, Supplement 11, 1–93.

Murdy EO. 2002. Karsten: A new genus of eel goby (Gobiidae: Amblyopinae) with a key to “Trypauchen” group genera. Copeia, 3, 787–791.

Murdy EO. 2006. A revision of the gobiid fish genus Trypauchen (Gobiidae: Amblyopinae). Zootaxa, 1343, 55–68.

Murdy EO. 2008a. Trypauchenichthys larsonae, a new species of amblyopine goby from Australia (Gobiidae: Amblyopinae) with a key to the species in the genus. Aqua, 14(2), 59–68.

Murdy EO. 2008b. Paratrypauchen, a new genus for Trypauchen microcephalus Bleeker, 1860, (Perciformes: Gobiidae: Amblyopinae) with a redescription of Ctenotrypauchen chinensis Steindachner, 1867, and a key to ‘Trypauchen’ group genera. Aqua, 14(3), 115–128.

Murdy EO. 2011. A list of the valid species of Gobioidei. Available from http://gobiidae.com/gobiidae_murdy/VALID_SPECIES_OF_GOBIIDAE.htm (accessed 24 February 2016).

Murdy EO. 2012. Systematics of Amblyopinae. In: Patzner, R.A., van Tassell, J.L., Kovačić, M. & Kapoor B.G. (eds), The Biology of Gobies. CRC Press, Boca Raton, pp. 107–118.

Murdy EO, Ferraris CJ. 2003. Gymnoamblyopus novaeguineae, a new genus and species of worm goby from Papua New Guinea (Gobiidae: Amblyopinae). Zootaxa, 150, 1–6.


(2)

59 Murdy EO, Shibukawa K. 2001 A revision of the gobiid fish genus

Odontamblyopus (Gobiidae: Amblyopinae). Ichthyol Res, 48, 31–43.

Murdy EO, Shibukawa K. 2003. A revision of the Indo-Pacific fish genus Caragobius (Gobiidae: Amblyopinae). Zootaxa, 301, 1–12.

Myers SD, Bishop KD. 2005. A review of historic and recent bird records from Lombok, Indonesia. Forktail 21: 147-160.

Nanami A, Takegaki T. 2005. Age and growth of the mudskipper Boleophthalmus pectinirostris in Ariake Bay, Kyusu, Japan. Fish Res 74: 24–34.

Nenadic O, Greenacre M. 2007. Correspondence analysis in R, with two-and three dimensional graphics: The ca package. J Stat Softw 20: 1–13.

Nolf D, Rana RS, Singh H. 2006. Fish otoliths from the Ypresian (early Eocene) of Vastan, Gujarat, India. Bulletin de I’Institut royal des Sciences naturelles de Belgique, Sciences de la Terre 76: 105-118.

Noor YR, Khazali M, Suryadiputra INN. 1999. Panduan pengenalan mangrove di Indonesia. PKA/WI-IP, Bogor. [Indonesian].

Pallas PS. 1770. Spicilegia zoologica, quibus novae imprimis et obscurae animalium species iconibus, descriptionibus atque commentaris illustrantur. Berolini, Vol. I, fasc. 8, 54 pp, 5 pls.

Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289-290.

Parenti LR. 1989. A phylogenetic revision of the phallostethid fishes (Atherinomorpha, Phallostethidae). Procedings of the California Academy of Sciences, 46: 243–277.

Parenti LR. 2008. A phylogenetic analysis and taxonomic revision of ricefishes, Oryzias and relatives (Beloniformes, Adrianichthyidae). Zoological Journal of the Linnean Society, 154: 494–610.

Parenti L, Ebach MC. 2009. Comparative Biogeography: Discovering and Classifying Biogeographical Patterns of a Dynamic Earth. Berkeley: University of California Press, CA.

Parenti LR, Ebach MC. 2010. Wallacea deconstructed. In Williams DM & Knapp S (eds) Beyond Cladistics: The Branching of a Paradigm. University of California Press, Berkeley, CA.

Parenti LR, Ebach MC. 2013. Evidence and hypothesis in biogeography. J Biogeogr, 40: 813–820.

Peristiwady T. 2012. Historycal review of ichtyological research in Indonesia. Coast Mar Sci, 35 (1), 153–156.

Pezold FL, Larson HK. 2015. A revision of the fish genus Oxyurichthys (Gobioidei: Gobiidae) with descriptions of four new species. Zootaxa 3988: 1– 95.

Polgar G. 2008. Species-area relationship and potential role as a biomonitor of mangrove communities of Malayan mudskippers. Wet. Eco. and Mant., 17: 157-164.

Polgar G. 2012. Ecology and evolution of mudskippers and oxudercine gobies (Gobiidae: Oxudercinae): Perspectives and possible research directions. In: Sasekumar, A. & Chong, V.C. (eds) Mangrove and coastal environment of Selangor, Malaysia. University of Malaya, Kuala Lumpur, pp. 117–137.

Polgar G, Jaafar Z, Konstantinidis P. 2013. A new species of mudskipper, Boleophthalmus poti (Teleostei: Gobiidae: Oxudercinae) from the Gulf of


(3)

60

Papua, Papua New Guinea, and a key to the genus. Raff Bull Zool, 61(1), 311– 321.

Polgar G, Lim R. 2011. Mudskippers: human use, ecotoxicology and biomonitoring of mangroves and other soft bottom intertidal ecosystems. In: Metras JN (ed) Mangroves: ecology, biology and taxonomy. Nova Science Publishers, Hauppauge pp.51-82.

Polgar G & Sasekumar A (2010) The potential of ecotourism and flagship species, and the urgent need for more holistic approaches and higher levels of connectivity for endangered tropical mudflats and coastal swamps. In: Krause A & Weir E (eds) Ecotourism: management, development and impact. Nova Science Publishers, Hauppauge.

Polgar G, Zane L, Babbucci M, Barbisan F, Patarnello T, Ruber L, Papetti C. 2014. Phylogeography and Demographic History of Two Widespread Indo-Pacific Mudskippers (Gobiidae: Periophthalmus). Mol Phylogenet Evol, 73: 161-176.

Polidoro BA, Carpenter KE, Collins L, Duke NC, Ellison AM, et al. 2010. The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5: e10095.

Popta CML. 1922. Vierte und letzte fortsetzung der Beschreibung von neuen Fischarten der Sunda-Expedition. Zool Meded, 7, 27–39.

Pressey RL, Humphries CJ, Margules CR, Vane-Wright D, William PH. 1993. Beyond opportunism: key principles for systematic reserve selection. Trends Ecol Evol 8: 124-128.

Pribadi, R., H. Endrawati and I. Pratikto. 2013. Komunitas ikan diperairan kawasan Pulau Parang, Kepulauan Karimunjawa, Jepara. Ilmu Kelautan 18(1): 45–53. [In Indonesian].

Prokofiev AM. 2015. An Overview of Gobies of the Subfamily Amblyopinae (Gobiidae) from the Western South China Sea (Vietnam and Indonesia) and Pacific Waters of the Philippines. Journal of Ichthyology, 55 (6), 783–791. Quoy JRC, Gaimard P. 1824. Zoologie. Vol. 1 + Atlas. In: L. de Freycinet,

Voyage autour du monde, entrepris par ordre du Roi, exécuté sur les corvettes de S. M. l'Uranie et la Physicienne, pendant les années 1817, 1818, 1819 et 1820. Pillet, Paris, pp. 183–328.

R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Ravi V, Kesavan K, Sandhya S, Rajagopal S. 2010. Antibacterial activity of the mucus of mudskipper Boleophthalmus boddarti (Pallas, 1770) from Vellar Estuary. AES Bioflux 2: 11–14.

Richards DR, Friess DA. 2015. Rates and drivers of mangrove deforestation in Southeast Asia, 2000-2012. Proc Nat Acad Sci USA 113: 344-349.

Richardson J. 1845. Ichthyology. Part 3. In: Hinds, R.B. (ed.), The zoology of the voyage of H. M. S. Sulphur, under the command of Captain Sir Edward Belcher during the years 1836–1842. Smith, Elder & Co., London, pp. 99–150, pls. 55–56.

Richardson J. 1846. Report on the ichthyology of the seas of China and Japan. Reports of the meetings of the British Association for the Advancement of Science, 1845–1846, pp. 187–320.


(4)

61 Roxas HA, Ablan GL. 1940. New Philippine gobioid fishes. Philippine Journal of

Science, 73, 301–311.

Schilder FA, Schilder M. 1939. Prodome of a monograph on living Cypraeidae. Procedings of the Malacaological Society of London, 23: 181–252.

Shibukawa K, Murdy EO. 2012. A redescription of the ell goby Trypauchenopsis (Gobiidae: Amblyopinae) with comments on relationships. Copeia, 3, 527–534. Simpson G. G. 1977. Too many lines; the limits of the Oriental and australian

zoogeographic regions. Proc. Am. Philos. Soc., 121: 107-120.

Smith CL. 1964. Taenioides limicola, a new goby from Guam. Micronesica, 1, 145–150.

Smith JLB. 1943. Interesting new fishes of three genera new to South Africa, with a note on Mobula diabolus (Shaw). Transactions Royal Society of South Australia, 30, 67–77.

Smith HM. 1932. Descriptions of new genera and species of Siamese fishes. P U.S. Nat Mus, 79, 1–48.

Smith HM, Seale A. 1906. Notes on a collection of fishes from the island of Mindanao, Philippine Archipelago, with descriptions of a new genera and species. P Biol Soc Wash, 19, 73–82.

Stelbrink B, Albrecht C, Hall R, von Rintelen T. 2012. The biogeography of Sulawesi revisited: Is there evidence for a vicariant origin of taxa on Wallace’s “Anomalous island”? Evolution, 66, 2252–2271.

Sun X, Li X, Luo Y, Chen X. 2000. The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea. Plaeogeography, Palaeoclimatology, Palaeoecology 160: 301-316.

Swofford DL. 2003. PAUP* (Phylogenetic Analysis Using Parsimony and other methods). Sunderland, Sinauer.

Takita T, Agusnimar, Ali AB. 1999. Distribution and habitat requirements of oxudercine gobies (Gobiidae: Oxudercinae) along the Straits of Malacca. Ichthyol Res, 46, 131–138.

Takegaki T (2008) Threatened fishes of the world: Boleophthalmus pectinirostris (Linnaeus 1758) (Gobiidae). Environmental Biology of Fishes, 81(4): 373-374. Takita T, Larson HK, Ishimatsu A. 2011. The natural history of mudskippers in

northern Australia, with field identification characters. The Beagle, 27, 189– 204.

Teske PR, et al. 2005. Molecular evidence for long-distance colonization in an Indo-Pacific seahorse lineage. Mar Ecol Prog Ser, 286: 249–260.

Turpie JK, Beckley LE, Katua SM. 2000. Biogeography and the selection of priority areas for conservation of South African coastal fishes. Biol Conserv 92: 59–72.

UNEP-WCMC (2009). UNEP-WCMC Species Database: CITES-Listed Species.

Available online at: http://sea.unepwcmc.

org/isdb/CITES/Taxonomy/?displaylanguage=eng. Visited in April 2016. Volz W. 1903. Neue Fische aus Sumatra. Zoologischer Anzeiger, 26, 553–559. Voris HK. 2000. Maps of Pleistocene sea levels in Southeast Asia: shorelines,

river systems and time durations. J Biogeogr, 27, 1153–1167.

Wang X, Sun X, Wang P, Stattegger K. 2007. A high-resolution history of vegetation and climate history on Sunda Shelf since the last glaciations. Sci China Ser D-Earth Sci 50: 75-80.


(5)

62

Wang X, Sun X, Wang P, Stattegger K. 2009. Vegetation on Sunda Shelf, South China Sea, during the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 278: 88-97.

Wahyudewantoro, G. 2009. Keanekaragaman fauna ikan ekosistem mangrove di kawasan Taman Nasional Ujung Kulon, Pandeglang-Jawa Barat. Berita Biologi 9(4): 379–386. [In Indonesian].

Wahyudewantoro, G., M.M. Kamal, R. Afandi and Mulyadi. Jenis-jenis ikan diperairan mangrove Suaka Margasatwa Muara Angke, Jakarta Utara. Zoo Indonesia 23(2): 75–83. [In Indonesian].

Wallace AR, 1863. On the physical geography of the Malay Archipelago. J. R. Geogr. Soc. 33: 217-234

Wallace AR. 1894. What are zoological regions? Nature 49: 610–613.

Weber M. 1913. Die fische der Siboga-Expedition. Buchhandlung und Druckerei, Leiden, 710 pp, 12 pls.

Welton LJ, Travers SL, Siler CD, Brown RM. 2014. Integrative taxonomy and phylogeny-based species delimitation of Philippine water monitor lizards (Varanus salvator Complex) with descriptions of two new cryptic species. Zootaxa, 3881: 201–227.

Whitten AJ, Mustafa M, Henderson GS. 1987. The ecology of Sulawesi. Gajahmada University Press, Yogyakarta.

Wilkie ML, Fortuna S. 2003. Status and trends in mangrove area extend worldwide. FAO, Rome.

Whitley GP. 1931. New names for Australian fishes. Aus Zool, 6, 310–334.

Whitley GP. 1961. A new mudskipper from Papua. P Roy Soc N S W 1958–1959, 69–70.

You X, et al. 2014. Mudskippers genomes provide insights into the terrestrial adaptation of amphibious fishes. Nature communications 5: 5594.

Zamroni Y, Rohyani IS. 2007. Produksi serasah hutan mangrove di perairan pantai Dusun Selindungan, Lombok Barat. Proseding Seminar Nasional Perkembangan MIPA dan Pendidikan MIPA Menuju Profesionalisme Guru dan Dosen. Universitas Mataram, Mataram, 3 November 2007. [Indonesian].


(6)

63

CURRICULUM VITAE

The author was born in Mataram at 1981 as seventh son of Masyhur Hamnur (†) and Saidah. The author got married with Novita Tri Artiningrum and had one beautiful daughter (Annisa Hishnul Izza). At 2003, he achieved his Bachelor of Science in Jenderal Soedirman University. Since 2005, the author has been working as lecturer in Biology Study Program, Faculty of Mathematics and Natural Sciences, Mataram University. At 2011, he studied morphological of gobies (Gobiidae) from Lombok island and achieved his Master of Science at the same year from Bogor Agricultural University. He continued to pursuit his doctoral at Bogor Agricultural University with scholarship from Directorate General of Higher Education (DIKTI) at the same year. During his master and doctoral studies, the author following several courses in taxonomy and phylogeny at Museum Zoologicum Bogoriense, Indonesian Institute of Science (LIPI) Cibinong, Indonesia; Lee Kong Chian Museum of Natural History, National University of Singapore, Singapore; and the Institut Català de Paleontologia Miquel Crusafont, Barcelona, Spain.