Chapter II Analisa Lentur Dan Eksperimental Perkuatan Balok Beton Bertulang Dengan Sika Carbodur Plates Pasca Keruntuhan Pada Balok Beton Bertulang Normal

BAB II
TINJAUAN PUSTAKA

2.1.

Umum
Beton sebagai bahan konstruksi yang umum digunakan, memiliki kuat tekan yang tinggi

namun kuat tariknya rendah, untuk mengatasi hal ini dipasanglah tulangan untuk menahan
kelemahan beton terhadap tarik, inilah yang disebut beton bertulang. Sehingga ketika material
beton tidak mampu lagi menahan gaya tarik yang terjadi, maka tulangan yang sepenuhnya
bertugas untuk menahan gaya tarik, sedangkan gaya tekan tetap ditahan oleh beton.
2.2

Bahan yang digunakan
Beton tersusun atas tiga bahan penyusun utama, yaitu semen, agregat, dan air. Terkadang

juga diberi bahan tambahan (additive) ke dalam campuran beton untuk tujuan tertentu. Dalam
penelitian ini digunakan juga pipa pvc untuk membuat lubang di daerah tarik.
2.2.1


Semen Portland
Semen Portland adalah semen hidrolis yang berfungsi sebagai bahan perekat yang

dihasilkan dengan cara menggiling terak portland terutama yang terdiri dari kalsium silikat yang
bersifat hidrolis dan digiling bersama-sama dengan bahan tambahan berupa satu atau lebih
bentuk kristal senyawa kalsium sulfat yang boleh ditambah dengan bahan tambahan lain.
Berdasarkan American Society for Testing Materials (ASTM) ada lima jenis semen
portland, yaitu:
1. Tipe I : Semen serbaguna yang digunakan pada pekerjaan konstruksi biasa.
2. Tipe II : Semen modifikasi yang mempunyai panas hidrasi yang lebih rendah daripada
semen tipe I dan memiliki ketahanan terhadap sulfat yang cukup tinggi.

12

3. Tipe III : Semen dengan kekuatan awal yang tinggi yang akan menghasilkan, dalam waktu
24 jam, beton dengan kekuatan sekitar dua kali semen Tipe I. Semen ini memiliki
panas hidrasi yang jauh lebih tinggi.
4. Tipe IV : Semen dengan panas hidrasi rendah yang menghasilkan beton yang melepaskan
panas dengan sangat lambat. Semen jenis ini digunakan untuk struktur-struktur
beton yang sangat besar.

5.

Tipe V : Semen untuk beton-beton yang akan ditempatkan di lingkungan dengan konsentrasi
sulfat yang tinggi.

2.2.2 Agregat
Agregat merupakan material granular seperti kerikil, batu pecah, dan kerak tungku pijar
yang dipakai bersama-sama dengan suatu media pengikat untuk membentuk beton atau adukan
semen hidrolik. Agregat yang digunakan sebagai campuran beton harus memenuhi syarat-syarat
yaitu: bersih, kuat, tahan lama, tidak bercampur dengan lumpur, dan distribusi ukuran agregat
memenuhi ketentuan-ketentuan yang berlaku.
Agregat berdasarkan besar butiran dapat digolongkan menjadi dua,yaitu:
a. Agregat Halus
Agregat halus (pasir) merupakan hasil disintegrasi alami batuan atau pasir yang
dihasilkan oleh industri pemecah batu yang memiliki ukuran butir terbesar 5 mm. Pasir yang
digunakan sebagai bahan campuran beton harus memenuhi syarat berikut:
1. Berbutir tajam dan keras.
2. Bersifat kekal, yaitu tidak mudah lapuk atau hancur oleh perubahan cuaca, seperti terik
matahari dan hujan.


13

3. Tidak boleh mengandung lumpur lebih dari 5% dari berat keringnya. Jika kandungan lumpur
lebih dari 5% maka pasir tersebut harus dicuci.
4. Tidak boleh digunakan pasir laut (kecuali dengan petunjuk staf ahli), karena pasir laut ini
banyak mengandung garam yang dapat merusak beton/baja tulangan.
b. Agregat Kasar
Agregat kasar (kerikil) merupakan agregat yang mempunyai ukuran diameter 5 mm
sampai 40 mm. Sebagai pengganti kerikil dapat pula digunakan batu pecah (split). Kerikil atau
batu pecah yang digunakan sebagai bahan beton harus memenuhi syarat berikut:
1. Bersifat padat dan keras, tidak berpori.
2. Harus bersih, tidak boleh mengandung lumpur lebih dari 1%. Jika kandungan lumpur lebih
dari 1% maka kerikil/batu pecah tersebut harus dicuci.
3. Pada keadaan terpaksa, dapat dipakai kerikil bulat.
2.2.3

Air
Air dalam campuran beton berfungsi sebagai pemicu reaksi kimia dengan semen,

membasahi agregat, dan mempermudah pengerjaan beton karena air akan membuat beton

menjadi lecak. Air yang digunakan dalam campuran beton harus memenuhi syarat-syarat berikut:
1. Tidak mengandung lumpur atau benda melayang lainnya lebih dari 2 gram/liter.
2. Tidak mengandung garam yang dapat merusak beton ( asam, zat organic, dan lainnya).
3. Tidak mengandung klorida (Cl) lebih dari 0,5 gram/liter.
4. Tidak mengandung senyawa-senyawa sulfat lebih dari 1 gram/liter.

14

2.2.4

Bahan Tambah (Additive)
Bahan tambah, aditif adalah bahan selain semen, agregat, dan air yang ditambahkan pada

adukan beton, selama pengadukan dalam jumlah tertentu untuk merubah beberapa sifatnya. Ada
beberapa jenis aditif yang sering digunakan,yaitu:
1. Air entertaining admixture
Sesuai dengan ASTM C260 dan C618, digunakan untuk meningkatkan ketahanan beton
terhadap efek beku dan cair dan memperbaiki ketahanan terhadap kerusakan yang disebabkan
oleh garam yang mencair. Sehingga ketika beton mencair, air dapat mengalir keluar dari
gelembung sehingga retak pada beton yang diberi tambahan zat ini akan lebih sedikit

dibandingkan tidak menggunakan tidak menggunakan air entertaining admixture
2. Accelerating admixture
Zat aditif ini seperti kalsium klorida yang bersifat mempercepat kekuatan beton. Hasil
dari penggunaan zat aditif ini ke dalam adukan beton adalah dapat mengurangi waktu untuk
perawatan dan perlindungan beton dan mempercepat waktu untuk pelepasan cetakan.
3. Retarding admixture
Zat ini digunakan untuk memperlambat pengerasan beton dan menghambat kenaikan
temperature. Zat ini sangat berguna untuk penuangan beton dalam jumlah besar dimana kenaikan
temperature yang signifikan mungkin terjadi.
4. Superplasticizer
Penggunaan zat aditif ini ke dalam campuran beton dapat mengurangi kandungan air di
dalam beton secara signifikan dan dalam waktu yang bersamaan meningkatkan nilai slump
beton.

15

5. Waterproofing material
Bahan aditif ini berguna untuk membantu memperlambat penetrasi air ke dalam beton
yang berpori, namun mungkin tidak akan membantu pada beton yang sudah padat dan terawatt
dengan baik.

2.3.

Sifat Beton

2.3.1. Kuat tekan
Kuat tekan beton diwakili oleh tegangan maksimum fc’ dengan satuan N/mm atau Mpa.
Kuat tekan beton umur 28 hari berkisar antara nilai 10-65 Mpa. Untuk struktur beton bertulang
umumnya menggunakan beton dengan kuat tekan berkisar 17-30 Mpa, sedangkan untuk beton
prategang digunakan beton dengan kuat tekan lebih tinggi, berkisar antara 30-45 Mpa.
Mutu beton dibedakan atas 3 macam menurut kuat tekannya, yaitu:
1. Mutu beton dengan fc’ kurang dari 10 Mpa, digunakan untuk beton non struktur (misalnya
kolom praktis, balok praktis).
2. Mutu beton dengan fc’ antara 10 Mpa sampai 20 Mpa, digunakan untuk beton struktur
12

(misalnya balok, kolom, pelat, maupun pondasi).
3. Mutu beton dengan fc’ sebesar 20 Mpa ke atas, digunakan untuk struktur beton yang
direncanakan tahan gempa.
Nilai kuat tekan beton diperoleh melalui tata cara pengujian standar, menggunakan mesin
uji dengan cara memberikan beban tekan bertingkat dengan kecepatan peningkatan beban

tertentu dengan benda uji silinder (diameter 150 mm, tinggi 300 mm) sampai hancur. Kuat tekan
masing-masing benda uji ditentukan oleh tegangan tekan tertinggi fc’ yang dicapai benda uji
umur 28 hari akibat beban tekan selama percobaan. Dengan demikian dicatat bahwa tegangan fc’

16

bukanlah tegangan yang timbul saat benda uji hancur, melainkan tegangan maksimum saat
regangan beton εc mencapai nilai ± 0,002.

40
35
Tegangan (Mpa)

30
25

fc' Maksimum
20
15
10

5
0
0

0,001

0,002
0,003
Regangan (mm/mm)

0,004

0,005

Gambar 2.1Hubungan Tegangan dan Regangan Benda Uji Beton
2.3.2. Kuat Tarik Beton
Kuat tarik beton dilakukan dengan pengujian split cylinder yang hasilnya mendekati kuat
tarik yang sebenarnya, dimana diperoleh nilai kulat tarik dari beberapa kali pengujian adalah
0,50-0,60 kali √f’c, sehingga untuk beton normal digunakan 0,57√f’c. Pengujian kuat tarik beton
ini juga menggunakan benda uji yang sama dengan uji kuat tekan, yaitu silinder beton

berdiameter 150 mm dan panjang 300 mm, yang diletakkan pada arah memanjang di atas alat
penguji. Kemudian silinder akan diberikan beban merata searah tegak dari atas pada seluruh
panjang silinder. Ketika kuat tariknya terlampaui, maka benda uji akan terbelah menjadi dua
bagian, dimana tegangan tarik yang timbul pada saat benda uji tersebut terbelah disebut split
cylinder strength, diperhitungkan sebagai berikut:
�� =

2 �
� ��
17

Dimana:
Ft



= Kuat tarik belah�� 2 �

P


= Beban pada waktu belah (N)

L

= Panjang benda uji silinder(m)

D

= Diameter benda uji silnder (m)

2.3.3. Kuat geser
Untuk komponen struktur beton bertulang, apabila gaya geser yang bekerja cukup besar
sehingga diluar kemampuan beton untuk menahannya, maka perlu memasang baja tulangan
tambahan untuk menahan geser tersebut. Persamaan yang digunakan untuk menunjukkan
tegangan lentur dan tegangan geser adalah:

Dimana:

�=


�. �
�. �
��� � =

��

� = tegangan lentur

� = momen yang bekerja pada balok

� = jarak serat terluat terhadap garis netral

� = momen inersia penampang balok terhadap garis netral

� = tegangan geser

� = gaya geser akibat beban luar

� = Momen statis terhadap garis netral penampang

� = Lebar penampang

18

2.3.4. Rangkak
Ketika beton menerima beban secara terus menerus, maka beton akan mengalami
deformasi, dimana setelah deformasi awal terjadi, selanjutnya akan terjadi deformasi yang
disebut rangkak (creep). Hal-hal yang mempengaruhi rangkak adalah:
1. Tegangan sangat mempengaruhi rangkak, karena rangkak berbanding lurus dengan tegangan
selama tegangan yang terjadi tidak lebih dari 0,50 fc’, lebih dari tingkat ini maka rangkak
akan bertambah sangat cepat.
2. Lama waktu perawatan beton,semakin lama waktu perawatan maka rangkak yang terjadi
semakin kecil.
3. Beton mutu tinggi akan mengalami rangkak lebih sedikit daripada beton mutu rendah pada
tingkat tegangan yang sama.
4. Temperatur, semakin tinggi temperature maka rangkak akan semakin bertambah.
5. Kelembapan, semakin tinggi kelembapan maka rangkak akan semakin berkurang.
6. Beton dengan persentase pasta yang paling tinggi memiliki rangkak yang paling besar.
2.3.5. Susut
Susut adalah berkurangnya volume beton akibat kehilangan uap air karena penguapan.
Susut berlangsung selama bertahun-tahun, namun umumnya sekitar 90% susut terjadi pada tahun
pertama. Hal-hal yang mempengaruhi susut adalah:
1. Semakin besar luas permukaan dari salah satu elemen beton bila dibandingkan dengan
volumenya, semakin besar tingkat susutnya.
2. Lingkungan juga sangat mempengaruhi besarnya susut, jika beton terkena angin yang cukup
banyak selama perawatan, maka susut yang dialami akan semakin besar.

19

3. Penggunaan agregat yang tidak terlalu absorptive seperti granit dan batu kapur juga dapat
mengurangi susut.
4. Meminimalisasi jumlah air dalam campuran beton juga dapat mengurangi susut yang terjadi.
2.4.

Perilaku Tegangan-Regangan Beton
Tegangan merupakan perbandingan antara gaya yang bekerja pada beton dengan luas

penampang beton. Keadaan ini dapat dinyatakan sebagai berikut :
σ = P/A

Dimana :
σ = tegangan beton (Mpa)
P = beban (N)
A = luas penampang beton (mm²)
Regangan adalah perbandingan antara pertambahan panjang (ΔL) terhadap panjang
mula-mula (L). regangan dinotasikan dengan ε dan tidak mempunyai satuan. Regangan yang
terjadi pada beton dinyatakan dalam rumus berikut :
ε = ΔL / L
Dimana :
ΔL = perubahan panjang
L = panjang awal
Jika hubungan tegangan dan regangan dibuat dalam bentuk grafik dimana setiap nilai tegangan
dan regangan yang terjadi dipetakan kedalamnya dalam bentuk titik-titik, maka titik-titik tersebut
terletak dalam suatu garis lurus sehingga terdapat kesebandingan antara hubungan tegangan dan
regangan.
20

Gambar 2.2 Hubungan Tegangan- Regangan Linear
Hubungan tegangan – regangan seperti yang ditunjukkan gambar di atas adalah
hubungan yang linear, dimana regangan berbanding lurus dengan tegangannya. Hukum hooke
berlaku dalam keadaan ini. Akan tetapi dalam kondisi yang sebenarnya, tegangan tidak selalu
berbanding lurus dengan regangan, hubungan tersebut apabila dipetakan dalam bentuk titiktitik, maka akan berbentuk seperti gambar dibawah ini:

21

Gambar 2.3 Hubungan Tegangan Regangan Non Linear
2.5.

Balok Beton Bertulang
Beton bertulang adalah beton yang ditulangi dengan luas dan jumlah tulangan yang tidak

kurang dari nilai minimum yang di syaratkan dengan atau tanpa prategang, dan direncanakan
berdasarkan asumsi bahwa kedua bahan tersebut bekerja sama dalam memikul gaya-gaya. (SNI
03- 2847 – 2002, Pasal 3.13 )
Baja tulangan memiliki sifat kuat terhadap gaya tarik, sedangkan beton memiliki sifat
kuat terhadap tekan, namun lemah terhadap tarik. Berdasarkan kelebihan dan kekurangan kedua
material tersebut, maka lahirlah beton bertulang menjadi satu kesatuan yang komposit.
Beton bertulang mempunyai sifat sesuai dengan sifat bahan penyusunnya, yaitu sangat
kuat terhadap beban tarik maupun beban tekan. Beban tarik pada beton bertulang ditahan oleh
baja tulangan, sedangkan beban tekan cukup ditahan oleh beton. Beton juga dapat melindungi
baja dari kebakaran dan karat agar tetap awet.

22

Ketika beban yang diterima kecil, maka beton dan tulangan akan bekerja sama dalam
menahan gaya-gaya yang terjadi, namun ketika beban yang diterima semakin besar maka
struktur akan mengalami retak, dimana gaya tarik yang terjadi sepenuhnya akan ditahan oleh
baja tulangan, sedangkan gaya tekan akan ditahan oleh beton.
Ada dua kondisi yang mungkin terjadi pada beton bertulang, yaitu ketika beton yang
tertekan hancur terlebih dahulu (beton mencapai kekuatan batasnya terlebih dahulu) sebelum
baja tulangan mencapai batas luluhnya. Keruntuhan ini terjadi secara tiba-tiba (brittle failure).
Kondisi kedua, tulangan mencapai tegangan lelehnya (fy) terlebih dahulu, setelah itu beton
mencapai regangan batasnya (c), dan selanjutnya struktur runtuh. Pada kasus ini terlihat ada
tanda-tanda berupa de
fleksi yang besar sebelum terjadi keruntuhan. Keruntuhan ini di sebut
keruntuhan yang daktail.

2.5.1

Baja Tulangan
Baja tulangan yang digunakan dalam struktur beton bertulang dapat berupa batang baja

lonjoran ataupun kawat rangkai las (welded wire fabric) yang berupa kawat baja yang dirangkai
dengan teknik pengelasan. Batang tulangan mengacu pada tulangan polos dan tulangan ulir.
Tulangan ulir yang diberi ulir guna mendapatkan ikatan yang lebih baik antara beton dan baja,
digunakan untuk hamper semua aplikasi. Sedangkan tulangan polos jarang digunakan kecuali
untuk membungkus tulangan longitudinal, terutama pada kolom.
Sifat fisik baja tulangan yang paling penting dalam perhitungan perencanaan beton
bertulang adalah tegangan luluh (fy) dan modulus elastisitas (Es). Tegangan luluh baja
ditentukan melalui prosedur pengujian standar dengan ketentuan bahwa tegangan luluhadalah
tegangan baja pada saat mana meningkatnya tegangan tidak disertai lagi dengan peningkatan

23

regangannya. Modulus elastisitas baja ditetapkan dalam SK SNI 03-2847-2002 adalah sebesar
200000 Mpa.
Tabel 2.2 Tegangan Leleh dan Kuat Tarik Minimum Baja Tulangan

Jenis

Simbol

Tegangan Leleh
Minimum (MPa)

Kuat Tarik Minimum
(MPa)

Tulangan
Polos

Bj TP 24
Bj TP 30
Bj TD 24
Bj TD 30
Bj TD 35
Bj TD 40
Bj TD 50

235
294
235
294
343
392
490

382
480
382
480
490
559
618

Tulangan
Ulir/Deform

2.5.2

Analisa Balok Beton Bertulang
Ketika suatu gelagar balok diberi beban sehingga menimbulkan momen lentur, maka

akan terjadi deformasi (regangan) lentur dalam balok tersebut. Pada kejadian momen lentur
positif, maka bagian atas akan mengalami regangan tekan dan bagian bawah mengalami
regangan tarik. Regangan-regangan tersebut akan menimbulkan tegangan-tegangan yang harus
dipikul oleh balok, dimana tegangan tekan akan terjadi di bagian atas dan tegangan tarik di
bagian bawah.
Pada saat beban kecil, belum terjadi retak pada beton, dalam kondisi ini beton dan baja
tulangan bersama-sama akan menahan tegangan yang terjadi. Distribusi tegangan akan tampak
linear, bernilai nol pada garis netral dan sebanding dengan regangan yang terjadi.

24

Gambar 2.4 Perilaku Lentur pada Beban Kecil

Ketika beban diperbesar lagi, nilai regangan dan tegangan tekan akan semakin
meningkat, dan cenderung untuk tidak sebanding lagi, dimana tegangan beton akan membentuk
kurva non linear. Bentuk tegangan beton tekan pada penampangnya akan beerupa garis lengkung
dimulai dari garis netral sampai ke serat atas balok, seperti yang terlihat pada gambar berikut ini:

Gambar 2.5 Perilaku Lentur Dekat Beban Ultimit
25

Nd adalah resultan gaya tekan dalam sedangkan Nt adalah resultan gaya tarik dalam.
Kedua gaya ini memiliki garis kerja sejajar, sama besar, tetapi berlawanan arah dan dipisahkan
dengan jarak z sehingga membentuk kopel momen tahanan dalam, dimana nilai maksimumnya
disebut kuat lentur atau momen tahanan penampang komponen struktur terlentur.
2.5.2.1 Analisa Balok Terlentur Tulangan Tarik (Tunggal)
Untuk merencanakan balok pada kondisi pembebanan tertentu maka harus diketahui
komposisi dimensi balok beton seperti lebar balok (b), tinggi balok (h), dan jumlah serta luas
tulangan baja (As), fc’ dan fy sehingga dapat menimbulkan momen tahanan dalam sama dengan
momen lentur maksimum yang ditimbulkan oleh beban.
Namun menentukan momen tahanan dalam bukanlah hal yang mudah karena hubungan
dengan bentuk diagram tegangan tekan diatas garis netral berbentuk garis lengkung. Untuk
mempermudah perhitungan, maka Whitney telah mengusulkan bentuk persegi panjang sebagai
distribusi tegangan beton tekan ekivalen. Standar SK SNI 03-2847-2002 juga pasal 12.2.7.1 juga
menetapkan bentuk tersebut sebagai ketentuan. Usulan ini juga sudah digunakan secara luas
karena bentuknya berupa empat persegi panjang yang cukup mudah dalam penggunaanya, baik
untuk

perencanaan

maupun

analisis.

Gambar 2.6 Balok Tegangan Ekivalen Whitney
26

�� = 0,85 �� ′ �. �
�� = ��. ��
� = �₁�
�� =

0,85 �� ′ . �₁
600
.
��
600 + ��

��� = �. �. �

�� max = 0,75 ���
� max = 0,75 ��
� min = 1,4/��

�� = �� = ��
0,85 fc’ a.b = As.fy
Keterangan:
Nd

= Resultan seluruh gaya tekan di atas garis netral

Nt

= Resultan seluruh gaya tarik di bawah garis netral

Mr

= Momen tahanan

Z

= Jarak antara resultan gaya tekan dan tarik

C

= Jarak serat tekan terluar ke garis netral

Fy

= Tegangan luluh tulangan baja

F’c

= Kuat tekan beton

Asb

= Luas tulangan balok

ρ

= Rasio penulangan

d

= Tinggi efektif balok

b

= Lebar balok

β₁

= Konstanta yang merupakan fungsi dari kelas kuat beton
SK SNI 03-2847-2002 pasal S12.2.7 menetapkan nilai β₁ sebesar 0,85 untuk beton

dengan fc’≤ 30 MPa, berkurang 0,05 untuk setiap kenaikan 7 MPa bagi fc’ yang lebih dari 30

27

MPa. Syarat dasar untuk desain kekuatan menurut SNI 03-2847-2002 dapat diungkapkan sebagai
berikut:
Kuat rencana (Mr) ≥ Kuat perlu (Mu)
Mr = ØMn
Kuat perlu dapat diungkapkan sebagai bentuk beban-beban terfaktor ataupun momen, dan
gaya-gaya lain yang terkait yang kemudian dikalikan dengan faktor-faktor beban yang sesuai.
Penggunaan faktor reduksi kekuatan Ø untuk tarik aksial tanpa dan dengan lentur sebesar 0,8.
2.5.2.2 Analisa Balok Terlentur Tulangan Tekan-Tarik (Rangkap)
Anggapan- anggapan dasar yang digunakan dalam analisis balok terlentur tulangan
rangkap pada dasarnya sama dengan balok bertulangan tarik saja, namun ada satu anggapan
penting yaitu tegangan tulangan baja tekan (fs’) merupakan fungsi dari regangannya tepat pada
titik berat tulangan baja tekan. Tulangan baja berperilaku elastis hanya pada saat regangannya
mencapai luluh (εy), sehingga ketika regangan tekan baja (εs’) sama tau lebih besar dari
regangan luluhnya (εy) maka sebagai batas maksimum tegangan tekan baja (fs’) diambil sama
dengan tegangan luluhnya (fy).
Karena gaya tekan akan ditahan oleh dua bahan yang berbeda, yaitu beton dan baja, maka
gaya tekan total adalah penjumlahan dari gaya tekan yang ditahan oleh beton (Nd1) dan yang
ditahan oleh baja tulangan (Nd2). Di dalam analisis momen tahanan dalam siperhitungkan atas
dua bagian yaitu, kopel pasangan beton tekan dengan tulangan baja tarik, dan pasangan tulangan
baja tekan dengan tulangan baja tarik. Sehingga kuat momen total balok bertulangan rangkap
adalah penjumlahan dari kedua kopel momen dalam.

28

Gambar 2.7 Analisis Balok Bertulangan Rangkap
Nd1 = 0,85 fc’ a.b

a = β1.c

Nd2 = As’ f’s

As = As1+As2

Nt1 = As1 fy

As1 = ρmaks.b.d

�� ′ = ��2 =

�� ����
∅� ′ �(� − �′ )

��1 = ∅��2 �

� − �′
�′�
=

0,003

��2 = �� − ��1
�� = �� = ��

�� = ��1 + ��2

��. �� = 0,85 � ′ � �. � + �� ′ � ′ �
Keterangan:

Nd1

= Resultan seluruh gaya tekan di atas garis netral yang ditahan beton

Nd2

= Resultan seluruh gaya tekan di atas garis netral yang ditahan baja tekan

Nt1

= Resultan seluruh gaya tarik pada tulangan tarik akibat beton

Nt1

= Resultan seluruh gaya tarik pada tulangan tarik

29

Mr

= Momen tahanan

Z

= Jarak antara resultan gaya tekan dan tarik

C

= Jarak serat tekan terluar ke garis netral

Fy

= Tegangan luluh tulangan baja

F’c

= Kuat tekan beton

As1

= Luas tulangan baja tekan (As’)

As2

= Luas tulangan baja tarik

ρ

= Rasio penulangan

d

= Tinggi efektif balok

b

= Lebar balok

β₁

= Konstanta yang merupakan fungsi dari kelas kuat beton
Berdasarkan SK SNI 03-2847-2002 nilai β₁= 0,85 untuk beton dengan kuat tekan (f’c) ≤

30 Mpa dan akan berkurang 0,005 setiap kenaikan 7 Mpa untuk fc’ lebih dari 30 MPa.
2.5.2.3.Tulangan Geser

Perencanaan penulangan geser didasarkan pada anggapan bahwa beton akan menahan
sebagian dari gaya geser yang terjadi, namun kekuatan geser yang melebihi kemampuan beton
untuk menahannya akan ditahan oleh tulangan baja geser. Umumnya untuk menahan gaya geser
yang terjadi digunakan penulangan dengan sengkang karena selain lebih mudah dan sederhana
juga lebih tepat pemasangannya. Berdasarkan SK SNI 03-2847-2002 kapasitas kemampuan
beton untuk menahan geser adalah:
1
�� = ��′� ��. �
6
1
�� ≤ ∅��
2

30

1

Jika Vu ≥2 ∅��maka diperlukan tulangan geser

Luas penampang tulangan geser yang diperlukan berdasarkan SK SNI 03-2847-2002 disebutkan
dalam persamaan berikut:

Keterangan:

�� =

1 �� �
3 ��

Vc = Gaya geser yang bekerja pada beton (N)
Vu = Gaya geser dalam yang bekerja(N)
Av = Luas tulangan geser (mm²)
Bw = Lebar balok(mm)
S = jarak pusat ke pusat batang tulangan geser ke arah sejajar tulangan pokok memanjang (mm)
Fy = Kuat luluh tulangan geser (Mpa)
2.6

Retak
Ada 3 jenis retak yang terjadi pada balok beton bertulang, yaitu:

a. Retak lentur
Retak lentur adalah retak vertikal yang memanjang dari sisi tarik balok dan mengarah ke
atas sampai daerah sumbu netralnya serta terjadi pada daerah momen lentur yang besar. Jika
balok memiliki web yang sangat tinggi, jarak retak akan sangat dekat, dengan sebagian retak
terjadi bersamaan sampai di atas tulangan, dan sebagian lagi tidak sampai ke tulangan. Retak ini
akan lebih lebar di pertengahan balok daripada di bagian dasarnya. Pada penelitian ini, jenis
retak inilah yang akan diidentifikasi.
b. Retak miring
Retak miring karena geser dapat terjadi pada bagian web balok beton bertulang baik
sebagai retak bebas atau perpanjangan retak lentur. Retak geser web kadang-kadang terjadi pada
31

web-web penampang prategang, terutama penampang dengan flens yang besar dan web yang
tipis. Jenis retak geser miring yang paling umum ditemukan adalah retak geser lentur yang
terjadi pada balok prategang dan non prategang.
c. Retak puntir
Retak puntir cukup mirip dengan retak geser, namun retak ini melingkar di sekeliling
balok. Jika sebuah batang beton tanpa tulangan menerima torsi murni, batang tersebut akan retak
dan runtuh di sepanjang garis spiral 45º karena tarik diagonal yang disebabkan tegangan puntir.

Gambar 2.8 Retak pada Balok
Beton bertulang akan menaglami retak karena kekuatan tarik beton yang rendah. Retak
tidak dapat dicegah namun dapat dibatasi ukurannya dengan menyebar atau mendistribusikan
tulangan. Lebar retak masksimum yang dapat diterima bervariasi dari sekitar 0,004 sampai 0,016
in, tergantung lokasi, jenis struktur, tekstur permukaan beton, iluminasi, dan factor-faktor lain.
Komite ACI 224, dalam laporannya tentang retak memperlihatkan sejumlah perkiraan
lebar retak maksimum yang diizinkan untuk batang beton bertulang dalam berbagai situasi.
Nilai-nilai ini dapat dilihat dalam tabel berikut (Jack C. McCormac, 2004):

32

Tabel 2.3 Lebar Retak Maksimum yang Diizinkan
Batang yang bersentuhan dengan
Udara kering
Udara lembab, tanah
Larutan bahan kimia
Air laut dan percikan air laut

Lebar retak yang diizinkan (inch)
0,016
0,012
0,007
0,006

Digunakan pada struktur penahan air

0,004

2.7 Lendutan
Lendutan memiliki arti yang penting dalam suatu struktur, karena lendutan yang
berlebihan pada balok dapat mengakibatkan penurunan lantai, cekungan pada atap datar, getaran
yang berlebihan, merusak tampilan dari suatu struktur, dan bahkan dapat menimbulkan rasa takut
bagi penghuni bangunan tersebut. Cara terbaik untuk meminimalisasi terjadinya lendutan adalah
dengan meningkatkan ketebalan batang. Berikut adalah tabel pada SK SNI 03-2847-2002 yang
memuat tentang lendutan izin maksimum yang dapat digunakan:
Tabel 2.4 Perhitungan Lendutan Maksimum yang Diizinkan
Jenis batang struktur
Atap datar yang tidak menahan
atau tidak disatukan dengan
komponen nonstruktural yang
mungkin rusak oleh lendutan
yang besar
Lantai yang tidak menahan atau
tidak disatukan dengan
komponen nonstruktural yang
mungkin rusak oleh lendutan
yang besar
Konstruksi atap atau lantai
yang menahan atau disatukan
dengan komponen
nonstruktural yang mungkin
rusak oleh lendutan yang besar

Lendutan yang harus
diperhitungkan

Batas
lendutan

Lendutan seketika akibat
beban hidup ( L )


180

Lendutan seketika akibat
beban hidup ( L )


360

Bagian dari lendutan total
yang terjadi setelah
penempelan batang
nonstructural (jumlah
lendutan jangka panjang


480

33

Konstruksi atap atau lantai
yang disebabkan oleh
yang menahan atau disatukan seluruh beban tetap dan
dengan komponen
lendutan yang segera terjadi
nonstruktural yang mungkin
karena penambahan beban
tidak akan rusak oleh lendutan
hidup )
yang besar
(Keterangan: � adalah panjang bentang)


240

2.7.1. Perhitungan Lendutan

Lendutan yang terjadi pada balok beton bertulang dapat dihitung dengan menggunakan
persamaan-persamaan lendutan biasa, seperti yang ditunjukkan pada Tabel 2.5 dibawah (Jack C.
Mccormac,2004).
Tabel 2.5 Perhitungan Lendutan pada Beberapa Tumpuan
Kondisi tumpuan

Lendutan

�=

�=

5��⁴
384��

��⁴
384��

34

�=

�=

�=

��³
48��

��³
192��

�=

�=

��⁴
8��

��³
3��

��³
16��

35

�=

�. �(3� 2 − 4� 2 )
24 ��

2.7.2. Momen Inersia Penampang Retak
Momen inersia terhadap garis netral penampang retak disebut sebagai Icr dengan
anggapan bahwa beton di daerah tarik telah retak. Sedangkan saat penampang masih mampu
untuk menahan lendutan, momen inersia keadaan penampang utuh tanpa retak dinotasikan
sebagai Ig.
SK SNI 03-2847-2002 memberikan persamaan momen inersia yang digunakan dalam
perhitungan lendutan. Momen inersia ini disebut Ie (momen inersia efektif) yang didasarkan
pada perkiraan jumlah retak yang mungkin terjadi oleh momen yang bervariasi di sepanjang
bentang:
��� 3
��� 3
� (��) + �1 − �
� � ���
�� = �
��
��

Mcr = Momen retak

��� =

�� ��
��

Ma = Momen beban layan maksimum yang terjadi pada kondisi yang diharapkan
Ie = Momen inersia efektif
Ig = Momen inersia penampang

36

Icr = Momen inersia transformasi pada penampang retak
Fr = modulus retak beton (0,7��′�)
Yt = jarak garis netral penampang utuh ke serat tepi tertarik (0,5 h)

2.8 Sejarah Fiber Reinforced polymer (FRP)
Bakelite adalah jenis FRP yang pertama kali diciptakan oleh peneliti bernama Dr. Baekelite,
seiring berkembangnya penggunaan bahan-bahan kimia dalam dunia teknologi maka dalam
pertemuan para peneliti di American ChemicalSociety diumumkanlah bahwa penemuan FRP itu
disahkan pada 5 Pebruari 1909.
Penelitian tentang FRP terus berkembang sampai pada era tahun 1930-an di Inggris, para
peneliti di bidang industri penerbangan yaitu Norman de Bruyne dan Owens-Illinois menemukan
bahwa FRP sangat dibutuhkan di industri penerbangan dan merupakan material ringan dan
mempunyai kemampuan yang sangat dibutuhkan pada industri penerbangan, sehingga penemuan
terbaru ini dipatenkan oleh perusahaan Corning.
Perkembangan yang cukup signifikan pada tahun-tahun berikutnya yaitu dengan
ditemukannya variasi dari FRP. Variasi FRP seperti untuk Glass, Carbon, Aramid ditemukan.
Salah satu jenis varian FRP yaitu jenis Carbon pertama kali ditemukan pada tahun 1950, dan
terus dikembangkan sejak saat itu penggunaan FRP di dunia industri. Perkembangan pesat
seiring dengan kebutuhan penggunaan FRP secara global dan penemuan-penemuan dalam
peningkatan kemampuan dan efisiensi FRP terus berkembang.

37

2.9 Penggunaan FRP pada Struktur Bangunan
FRP dapat digunakan untuk memperkuat bagian-bagian struktur seperti balok,kolom dan
lantai pada bangunan dan jembatan. FRP dapat meningkatkan kekuatan bagian struktur pada
pembebanan besar. Kerusakan beton yang akan diperbaiki harusdibersihkan dari kotoran dan
diisi dengan mortar atau epoxy resin.
Penggunaan FRP untuk memperkuat struktur terhadap lentur yaitu denganmelekatkan
pada FRP pada daerah yang mengalami tarik, sedangkan untuk perkuatanterhadap geser, FRP
dilekatkan pada bagian badan struktur. Perkuatan pada lantaidengan melekatkan FRP di bagian
bawah atau pada bagian lantai yang tertarik.
Khusus untuk perkuatan kolom jenis FRP wrap yang digunakan sebagaibahan perkuatan.
Prinsip dari FRP wrap ini serupa dengan penulangan spiral padakolom. FRP yang dipasang,
menutupi semua bagian kolom. Epoxy yang digunakansebagai perekat untuk jenis ini berbeda
dari penggunaan epoxy pada bagian jenisstruktur yang digunakan untuk menambah kekuatan
lentur atau struktur yang yangmemerlukan penambahan kekuatan geser.

2.10 Material FRP (Fiber Reinforced Polymers)
Material FRP (Fiber Reinforced Polymers) adalah kumpulan serat-serat fiber yang
mempunyai kekuatan tarik yang tinggi. Jenis fiber yang digunakan pada FRP terbuat dari glass
(kaca), carbon, dan aramid. Perbedaan dari masing masing bahan terdapat pada kemampuan
elastisitas bahan yang linier terhadap kuat tarik dari masing-masing bahan seperti terdapat pada
tabel 2.1 berikut ini.

38

2.11 Sika CarboDur Plates sebagai Bahan CFRP
Sika

CarboDur

Plates

termasuk

pada

jenis

Carbon

Fiber

Reinforced

Polymer(CFRP),digunakan sebagai bahan untuk memperkuat struktur beton, kayu dan batubata.
Jenis ini ditempelkan di bagian permukaan luar dari struktur yang berfungsisebagai tulangan .
1. Kegunaan dari Sika CarboDur Plates untuk memperkuat struktur :
a. Akibat penambahan beban seperti,
1. Meningkatnya kebutuhan kapasitas dari lantai dan balok.
2. Meningkatnya kebutuhan kapasitas jembatan untuk melayani
penambahan beban lalu lintas.
3. Pemasangan mesin yang lebih besar.
4. Menstabilkan getaran pada struktur.
5. Memperkuat struktur akibat perubahan fungsi.
b. Kerusakan pada elemen struktur akibat,
1. Rendahnya mutu pada material yang digunakan.
2. Terjadinya korosi pada tulangan baja.
3. Benturan kenderaan, kebakaran, Gempa Bumi.
c. Meningkatkan kemampuan struktur seperti,

39

1. Mengurangi terjadinya lendutan.
2. Mengurangi tegangan pada tulangan baja.
3. Mengurangi lebar retak.
4. Mengurangi kelelahan pada struktur.

d. Perubahan pada sistem struktur seperti,
1. Perubahan letak dinding atau kolom.
2. Perubahan bukaan lantai.
e. Kesalahan pada perencanaan seperti,
1. Kekurangan pada penulangan.
2. Kekurangan tebal struktur.
2. Karakteristik dan keuntungan dari Sika CarboDur Plates untuk memperkuat
struktur adalah :
a. Tidak korosi dan mempunyai kekuatan yang sangat tinggi, tahan lama
dan ringan.
b. Panjang tidak terbatas, tidak memerlukan sambungan, tipis dan dapat
dilapisi.
c. Mudah dalam pengangkutan karena dapat digulung dan mudah
dipasang pada persilangan.
d. Sangat mudah dipasang terutama yang letaknya di atas.
e. Tahan terhadap kelelahan.
f. Persiapan dalam pemasangan tidak sulit, dapat dipasang berlapis.

40

g. Tahan terhadap alkali, permukaan yang bersih dan giakui di banyak
Negara di dunia.
3. Tipikal Sika CarboDur Plates
Modulus Elastisitas : 165.000 N/mm2
Tabel 2.2 Tipikal Sika CarboDur Plates

2.12 Sikadur 30 sebagai bahan perekat (Bonding)
Sikadur -30 adalah bahan perekat sika carboDur Plates yang bersifatadhesi. Keuntungan
dari Sikadur -30 sebagai berikut:
1. Mudah dalam pencampuran, tidak diperlukan penambahan lain.
2. Tahan terhadap rangkak dalam pembebanan tetap.
3. Bahan adhesi yang baik untuk beton, bata, pasangan batu, baja, besi,
aluminium, kayu dengan SikaDur plates.
4. Tahan terhadap abrasi dan kejut.
5. Bersifat impermeable.

41

Dokumen yang terkait

FREKUENSI KEMUNCULAN TOKOH KARAKTER ANTAGONIS DAN PROTAGONIS PADA SINETRON (Analisis Isi Pada Sinetron Munajah Cinta di RCTI dan Sinetron Cinta Fitri di SCTV)

27 310 2

PENILAIAN MASYARAKAT TENTANG FILM LASKAR PELANGI Studi Pada Penonton Film Laskar Pelangi Di Studio 21 Malang Town Squere

17 165 2

APRESIASI IBU RUMAH TANGGA TERHADAP TAYANGAN CERIWIS DI TRANS TV (Studi Pada Ibu Rumah Tangga RW 6 Kelurahan Lemah Putro Sidoarjo)

8 209 2

MOTIF MAHASISWA BANYUMASAN MENYAKSIKAN TAYANGAN POJOK KAMPUNG DI JAWA POS TELEVISI (JTV)Studi Pada Anggota Paguyuban Mahasiswa Banyumasan di Malang

20 244 2

FENOMENA INDUSTRI JASA (JASA SEKS) TERHADAP PERUBAHAN PERILAKU SOSIAL ( Study Pada Masyarakat Gang Dolly Surabaya)

63 375 2

PEMAKNAAN MAHASISWA TENTANG DAKWAH USTADZ FELIX SIAUW MELALUI TWITTER ( Studi Resepsi Pada Mahasiswa Jurusan Tarbiyah Universitas Muhammadiyah Malang Angkatan 2011)

59 326 21

PENGARUH PENGGUNAAN BLACKBERRY MESSENGER TERHADAP PERUBAHAN PERILAKU MAHASISWA DALAM INTERAKSI SOSIAL (Studi Pada Mahasiswa Jurusan Ilmu Komunikasi Angkatan 2008 Universitas Muhammadiyah Malang)

127 505 26

PEMAKNAAN BERITA PERKEMBANGAN KOMODITI BERJANGKA PADA PROGRAM ACARA KABAR PASAR DI TV ONE (Analisis Resepsi Pada Karyawan PT Victory International Futures Malang)

18 209 45

STRATEGI PUBLIC RELATIONS DALAM MENANGANI KELUHAN PELANGGAN SPEEDY ( Studi Pada Public Relations PT Telkom Madiun)

32 284 52

Analisis Penyerapan Tenaga Kerja Pada Industri Kerajinan Tangan Di Desa Tutul Kecamatan Balung Kabupaten Jember.

7 76 65