Aplikasi Fungsi Green Menggunakan Algoritma Monte Carlo dalam Persamaan Diferensial Semilinear

DAFTAR PUSTAKA

Andrieu C., Freitas De N., A. D. a. J. M. 2003. An Introduction to MCMC for Machine
Learning. Kluwer Academic Publisher. Manufactured in the Netherlands, pages
4–43.
Boyce, W. and DiPrima, R. 2008. Elementary Differential Equations and Boundary Value
Problems. Wiley.
Chang, J. 1999. Brownian Motions.
Chapra, S. 2008. Surface Water-Quality Modeling. Waveland Press.
Chapra, S. and Canale, R. 2010. Numerical Methods for Engineers. McGraw-Hill Higher
Education.
Davar, K. 2001. Five Lectures on Brownian Sheet: Summer Internship Program University of Wiscousin-Madison.
Duffy, D. 2001. Green’s Functions with Applications. Applied Mathematics. CRC Press.
Edwin, L. 2006. Introduction to Green’s Functions: Lecture notes.
Evans, L. C. 1998. Partial Differential Equations, volume 19 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, Rhode Island.
Ferziger, J. and Peric, M. 2001. Computational Methods for Fluid Dynamics. Springer
Berlin Heidelberg.
Haberman, R. 1998. Elementary Applied Partial Differential Equations: with Fourier
Series and Boundary Value Problems. Prentice Hall International (UK).
Logan, J. D. 2004. Applied Partial Differential Equations, 2nd. Springer.

Parnell, W. J. 2013. Green’s Functions, Integral Equations and Applications.
Pinchover, Y. and Rubinstein, J. 2005. An Introduction to Partial Differential Equations.
University Press Camridge, Camridge.
Varberg, D., Purcell, E., and Rigdon, S. 2000. Calculus. Prentice Hall.
Walsh, B. 2004. Markov Chain Monte Carlo and Gibbs Sampling.
White, D. and Stuart, A. M. 2009. Green’s Function by Monte Carlo. Monte Carlo and
Quasi-Monte Carlo Method 2008, pages 627–636.

70
Universitas Sumatera Utara