T0__BAB II Institutional Repository | Satya Wacana Christian University: Implementasi Failover Clustering Pada Server Ltsp (Linux Terminal Service Project) T0 BAB II

BAB II
TINJAUAN PUSTAKA
1.1. Penelitian Terdahulu
Dalam

penelitian

sebelumnya

yang

dilakukan

oleh

Racharidan (2011), server LTSP berbasis Edubuntu 10.10
ditambahkan iptable sebagai fitur keamanan komputer server
LTSP. Penambahan iptable ini dimaksudkan untuk memberi
tambahan protokol keamanan yang digunakan dalam koneksi
jaringan LTSP, pada kondisi default tidak ada sistem keamanan
yang mampu melindungi dari serangan DoS (Denial of Service)

sedangkan, penelitian yang dilakukan oleh Dharmawan (2012)
tentang “Analisis Kinerja Server pada Jaringan Diskless Berbasis
Linux

Terminal

laboratorium

Server Project” diimplementasikan

komputer

SMA

Negeri

2

Salatiga


pada
yang

menggunakan distro Ubuntu versi 11.04 dan membahas tentang
spesifikasi hadware terbaik yang dipilih dari 3 jenis LTSP server
yang berbeda.
Tidak hanya membahas tentang server LTSP namun, akan
merancang dan membangun Failover Clustering yang berfungsi
untuk mengambil alih server yang downtime. Hasil penelitian
yang dilakukan oleh Bhaswara (2006) tentang “Cluster High
Availability pada server LTSP” menghasilkan sebuah system
clustering yang berbasis Failover Clustering dimana, Failover
Clustering dibangun di dalam sebuah sistem server LTSP yang
7

menggunakan sistem operasi Fedora core 4.0 dengan manajemen
cluster menggunakan Hearbeat dan Disk Array menggunakan
DBRD.
Perbedaan dengan tiga penelitian diatas adalah penelitian
ini diharapkan menghasilkan suatu Failover Clustering yang

dibangun di dalam sistem sebuah server LTSP menggunakan
turunan distro Red Hat yaitu CentOS 6.3 dengan berbagai macam
fitur server yang akan dihasilkan.
1.2. Landasan Teori
1.2.1. Topologi Jaringan
Topologi jaringan komputer merupakan susunan geometric
dari node dan link kabel dalam Local Area Network (LAN).
Topologi jaringan komputer mengacu pada bentuk, atau tata letak
jaringan.

Topologi

jaringan

komputer

menggambarkan

bagaimana node berbeda dalam jaringan terhubung satu sama lain
dan bagaimana berkomunikasi ditentukan oleh topologi jaringan

komputer.
Jaringan terdiri dari beberapa komputer yang terhubung
menggunakan beberapa jenis interface, masing-masing memiliki
satu atau lebih perangkat interface seperti Network Interface
Card (NIC) atau perangkat serial untuk jaringan Point to Point
Protocol (PPP). Setiap komputer didukung oleh perangkat
jaringan yang menyediakan fungsionalitas server atau klien.
Perangkat keras yang digunakan untuk mengirim data melalui
8

jaringan disebut media. Ini mungkin termasuk kabel tembaga,
serat optik atau transmisi nirkabel. Pengkabelan standar yang
digunakan untuk tujuan ini adalah 10 Base-T kategori 5 kabel
Ethernet.
Ada dua jenis utama dari kategori jaringan yaitu berbasis
server dan peer to peer. Dalam jaringan berbasis server komputer
yang menjadi penyedia layanan utama seperti layanan file atau
layanan email. Komputer menyediakan layanan ini desebut server
dan komputer yang meminta dan menggunakan layanan yang
disebut komputer klien sedangankan, jaringan peer-to-peer,

berbagai komputer pada jaringan dapat bertindak sebagai klien
dan server. Sebagai contoh, banyak microsoft windows yang
berbasis komputer akan memungkinkan sharing file dan print.
Komputer dapat bertindak sebagai klien dan server olehnya itu
disebut sebagai peers. Banyak jaringan adalah kombinasi jaringan
berbasis peer-to-peer dan server. Sistem operasi jaringan
menggunakan protokol data jaringan untuk berkomunikasi di
jaringan komputer lain. Sistem operasi jaringan mendukung
aplikasi pada komputer. Network Operating System (NOS)
termasuk Windows NT, Novell Netware, Linux, Unix dan lainlain.
Di dalam jaringan komputer memiliki beberapa macam
topologi jaringan yaitu :

9

a. Topologi BUS

Gambar 2.1 Topologi BUS
Topologi jaringan komputer BUS kedua ujung jaringan
harus diakhiri dengan terminator. Laras konektor dapat

digunakan untuk menyambung atau menambah panjang.
Topologi BUS merupakan teknologi jaringan komputer paling
tua dalam teknologi jaringan ethernet dan terdiri dari cable
coaxial yang menghubungkan komputer yang ada dalam
jaringan dimana tiap komputer terhubung dengan sambungan
konektor BNC jenis T.
a. Topologi Star

Gambar 2.2 Topologi Star

10

Topologi star mengacu pada jaringan dimana semua
node yang terhubung secara individual untuk satu hub umum.
Topologi jaringan dimana stasiun transmisi yang terhubung
sedemikian rupa ke simpul pusat didesain menyerupai bentuk
bintang. Semua komputer dalam topologi star terhubung ke
perangkat sentral seperti hub, switch atau router. Komputer di
jaringan biasanya dihubungkan dengan hub, router atau switch
dengan 1.527 Twited pair (UTP) atau kabel Shield Twited Pair

(STP).

Pada dasarnya, desain topologi bintang sangat mirip

dengan sebuah roda sepeda dengan jari-jari yang memancar
dari pusat. Dalam tipe jaringan ini, pertukaran data hanya
dapat dilakukan secara tidak langsung melalui simpul pusat ke
semua node lainnya yang terhubung.
b. Topologi Ring

Gambar 2.3 Topologi Ring
Topologi jaringan komputer type Ring, perangkat
terhubung dari satu ke yang lain, seperti dalam sebuah cincin,
data token digunakan untuk memberikan izin untuk setiap
komputer untuk berkomunikasi. Node berkomunikasi dengan
11

formasi ring, dengan setiap node berkomunikasi langsung
hanya dengan upstream dan downstream tetangganya.
Komputer atau perangkat memiliki dua tetangga yang

berdekatan untuk komunikasi. Di ring network, semua pesan
komunikasi perjalanan dalam direktori yang sama. Salah satu
metode transmisi data sekitar ring disebut token passing.
Token adalah seri bit khusus yang berjalan di jaringan token
ring. Setiap jaringan hanya memiliki satu token. Token
dilewatkan dari komputer ke komputer sampai mencapai
komputer yang memiliki data untuk dikirim. Data melewati
setiap komputer sampai menemukan satu dengan alamat yang
sesuai dengan alamat pada data. Komputer yang menerima
kembali pesan ke komputer pengirim yang menunjukkan
bahwa data telah diterima. Setelah verifikasi, komputer
pengirim membuat token baru dan mengalirkannya pada
jaringan. Token beredar di dalam ring sampai workstation
membutuhkannya untuk mengirim data. Mungkin kelihatannya
bahwa token passing akan memakan waktu yang lama, tapi
token sebenarnya bergerak kira-kira pada kecepatan cahaya.
Sebuah token dapat mengelilingi ring berdiameter 200 m
sekitar 477.376 kali per detik

12


c. Topologi Mesh

Gambar 2.4 Topologi Mesh
Topologi jaringan komputer type Mesh merupakan suatu
hubungan satu sama lain diantara beberapa node. Umumnya,
suatu

topologi

mesh

dimaksudkan

untuk

keperluan

redundancy. Setiap jaringan kampus harus menerapkan suatu
topologi mesh untuk mencapai tingkat redundancy dan fault

tolerance yang merupakan tuntutan bisnis dari jaringan data
mereka. Ada dua jenis mesh yaitu full mesh dan partial mesh
topologi. Full mesh – setiap node saling berhubungan satu
sama lain dengan dedikasi line tersendiri sementara partial
seperti namanya hanya sebagian mempunyai jalur menurut
kebutuhan. Mesh topologi bekerja pada konsep rute. Topologi
mesh, pesan yang dikirim ke tujuan melalui rute terpendek,
yang termudah untuk mencapai tujuannya. Topologi jaringan
yang dibahas sebelumnya topologi star dan bus, pesan
biasanya dikirim ke setiap komputer, terutama dalam topologi
bus. Demikian pula pada topologi ring pesan dapat melakukan
13

perjalanan dengan hanya satu arah yaitu searah jarum jam atau
anticlockwise. Internet menggunakan topologi mesh, pesan
menemukan rute untuk tujuan. Router bekerja untuk
menemukan rute untuk mengirim

pesan mengantarkan ke


tempat tujuan .
d. Topologi Tree

Gambar 2.5 Topologi Tree

Topologi jaringan komputer tipe tree terdiri dari topologi
multi star di bus. Topologi tree mengintegrasikan topologi
multi star bersama-sama ke bus. Hanya hub perangkat dapat
terhubung langsung dengan bus tree dan masing-masing
fungsi hub sebagai perangkat jaringan akar tree. Topologi
jaringan komputer ini disebut juga sebagai topologi jaringan
komputer bertingkat. Topologi jaringan ini biasanya digunakan
untuk interkoneksi antar sentral dengan hirarki yang berbeda,
hirarki yang lebih rendah digambarkan pada lokasi yang
rendah dan semakin keatas mempunyai hirarki semakin tinggi.
Topologi jaringan komputer tipe tree ini paling ideal
14

digunakan pada sistem jaringan komputer. Jaringan tree,
terdapat beberapa tingkatan simpul atau node. Pusat atau
simpul yang lebih tinggi tingkatannya, dapat mengontrol
simpul dibawah tingktannya. Data yang dikirim perlu melalui
simpul pusat terlebih dahulu. Misalnya untuk bergerak dari
komputer dengan node-4 ke komputer node-8 seperti halnya
pada gambar, data yang ada harus melewati node-4, 6 dan
node-7

sebelum

berakhir

pada

node

8.

Kombinasi

bus/star/hybrid ini mendukung masa depan upgrade dari
jaringan komputer, jauh lebih baik daripada bus atau star.
1.2.2. Pengalamatan Jaringan
IP address (internet protocol) merupakan alamat logika
yang di berikan kepada perangkat jaringan yang menggunakan
protocol TCP/IP, dimana protocol TCP/IP digunakan untuk
meneruskan

packet

informasi

(routing)

dalam

jaringan

LAN,MAN,WAN dan internet atau lebih singkatnya IP address
adalah alamat unik dari suatu perangkat jaringan yang terdapat di
dalam jaringan. IP address terdiri dari bilangan 32 bit bilangan
biner yang dibagi atas 4 oktet. Setiap
Jangkauan

IP address

ecim terdiri atas 8 bit.

yang dapat digunakan adalah dari

00000000.00000000.00000000.00000000
11111111.

sampai

11111111. 11111111.11111111.

biasanya direpresentasikan dalam bilangan

15

IP

dengan
Address

ecimal. Range

address di atas dapat diubah menjadi address 0.0.0.0 sampai
address 255.255.255.255.
Saat ini ada 2 versi IP address yaitu:
a. IP versi 4(Ipv4)
Ipv4 ini menggunakan penomoran 32-bit dan terdiri dari
4 oktet decimal dan dibuat pada tahun 1983 dan masih di
gunakan pada sampai saat ini. Contoh pengalamatan
Ipv4:202.134.64.139. Dalam Ipv4 atau IP versi 4 alamat IP
address di bagi menjadi 5 kelas yaitu:
a.1. Kelas A : 1 – 126
IP address kelas A memiliki rentang alamat :
1.0.0.0 – 126.255.255.255 subnetmask default Kelas A:
255.0.0.0 default maximal host Kelas A: 16.777.214 host
secara default pada alamat IP Kelas A, 8-bit pertama
digunakan untuk alamat network dan 24-bit berikutnya
digunakan untuk alamat host.
a.2. Kelas B :128-191
IP address Kelas B memiliki rentang alamat
:128.0.0.0 – 191.255.255.255 subnetmask default kelas
B: 255.255.0.0 default maksimal host kelas B : 65.534
host secara default pada alamat IP address kelas B, 16
bit pertama digunakan untuk alamat network dan 16 bit
berikutnya digunakan untuk alamat host.
a.3. Kelas C :192-223

16

IP address kelas C memiliki rentang alamat :
192.0.0.0 – 233.255.255.255 subnetmask default kelas C
: 255.255.255.0 default maksimal host kelas C 256 host.
Secara default pada alamat IP address kelas C, 24 bit
pertama digunakan untuk

alamat network dan 8 bit

berikutnya digunakan untuk alamat host.
a.4. Kelas D :224-239
IP address kelas D memiliki rentang alamat :
244.0.0.0 – 239.255.255.255 4 bit pertama alamat kelas
D selalu di set ke nilai biner 1110 kelas D digunakan
sebagai alamat multicasting yaitu alamat yang digunakan
untuk menyampaikan satu paket ke banyak penerima.
a.5. Kelas E :240-255
IP address kelas E memiliki rentang alamat :
224.0.0.0 – 254.255.255.255 4 bit pertama kelas E
selalau di set ke dalam nilai biner 1111 alamat IP
address kelas E disediakan sebagai alamat yang bersifat
“eksperimental” atau percobaan yang di cadangkan
untuk digunakan pada masa depan.
b. IP versi 6 (Ipv6)
Ipv6 ini menggunakan penomoran 128-bit , dalam
Ipv6, alamat 128-bit akan dibagi ke dalam blok berukuran
16-bit, yang akan di konfersikan ke dalam blangan
heksadesimal berukuran 4digit. Setiap blok bilangan
heksadesimal tersebut akan di pisahkan dengan tanda titik
17

dua

contoh

pengalamatan

Ipv6

:21DA:00D3:2F3B:02AA:00FF:FE2
1.2.3. Komputer Cluster
Server merupakan induk dari segala komputer yang
terhubung pada sebuah jaringan yang berfungsi sebagai pengatur
sistem jaringan. Kegagalan devices pada sebuah server bukan
suatu yang tidak mungkin terjadi sehingga diperlukan solusi agar
sistem jaringan tidak terganggu. Bayangkan jika sebuah web
server mati yang disebabkan oleh suatu hal (power supply mati
atau yang lainnya), maka pengguna internet tidak akan bisa
mengkakses

situs

pada

web

server

tersebut.

Clustering

menawarkan solusi untuk menangani perpindahan tugas atau
pemerataan beban dari satu server ke server yang lainnya apa bila
terjadi kerusakan pada salah satu server.
Dalam dunia komputer yang dimaksud dengan server
clustering adalah menggunakan lebih dari satu server yang
menyediakan redundant interconnections, sehingga user hanya
mengetahui ada satu sistem server yang tersedia dan komputer
client tidak menyadari jika terjadi kegagalan pada sistem server
karena

tersedianya

sebagai redundant atau backup.

server

Clustering server dapat digunakan untuk Load Balancing
cluster ataupun Failover clustering.

18

Gambar 2.6 Komputer Cluster
a. Load Balancing Clustering
Load balancing cluster merupakan cluster server dimana
anggota cluster server dikonfigurasikan untuk saling berbagi
beban yang berfungsi mendistribusikan request dari client ke
anggota server load balanced cluster. Tipe konfigurasi
loadbalancing cluster sering disebut Load balanced cluster,
sedangkan teknologi platform load balancing sering disebut
sebagai Load balancers.
Secara

umum

menerima incoming

cara

kerja Load

request dari client dan

balancer adalah
meneruskan

request tersebut pada server tertentu jika dibutuhkan. Load
balancer menggunakan beberapa algoritma yang berbeda
19

untuk

melakukan control

traffic

Tujuan

network.

algoritma load balancer adalah untuk mendistribusikan beban
secara pintar atau memaksimalkan kerja anggota server
cluster. Beberapa contoh algoritma load balancer :
a.1. Round-Robin.
Algoritma round-robin mendistribusikan

beban

kepada semua server anggota cluster sehingga masing
masing server mendapat beban yang sama dalam waktu
yang

sama.

cocok

Round-robin

saat

server

anggota cluster memiliki kemampuan proccessing yang
sama,

jika

tidak,

beberapa

server

bisa

menerima request lebih

jadi
dari

kemampuan proccessing server itu sendiri sedang yang
lainnya

hanya

mendapat

beban

lebih

sedikit

dari resource yang dimiliki
a.2. Weighted round-robin.
Algoritma weighted
perhitungan

perbedaan

masing

round-robin melakukan
kemampuan proccessing dari

masing

server

anggota cluster. Administrator memasukan

secara

manual parameter beban yang akan ditangani oleh
masing

masing

server

kemudian scheduling

anggota cluster,

sequence secara

otomatis

dilakukan berdasarkan beban server. Request kemudian

20

diarahkan ke server yang berbeda sesuai dengan roundrobin scheduling sequence.
a.3. Least-connection.
Algoritma

melakukan

Least-connection

pengiriman request pada

anggota cluster,

server

berdasarkan pada server mana yang memiliki fewest
connections (koneksi paling sedikit).
a.4. Load-based.
Algoritma Load-based mengirimkan
paket request ke server anggota cluster berdasarkan
server mana yang memiliki beban terkecil.
b. Failover Clustering
Failover

clustering menyediakan

solusi high

availability server dimana jika terjadi kegagalan pada
perangkat

keras

seperti power

supply mati

yang

menyebabkan server mati total maka server lain anggota
cluster yang akan mengambil alih fungsi dari server yang
mati, sehingga komputer client tidak mengetahui jika
terjadi kegagala pada server, karena proses yang dilakukan
pada server yang gagal atau mati akan dilanjutkan oleh
server cadangan. Konsep konfigurasi failover cluster adalah
membuat satu server sebagai master server dan server yang
lain menjadi slave server dimana saat server dalam keadaan
normal master

server menangani

semua

request

dari client. Slave server akan mengambil alih tugas master
21

server apabila master

server tidak

berfungsi

atau

mati. Failover server memiliki dua mode yaitu mode aktifpasif (master-slave) dan (aktif-aktif).


Aktif-pasif (master-slave) : Dua server atau lebih, yang
melayani servicejaringan hanya satu server saja, yang
lain hanya sebagai cadangan jika terjadi kegagalan pada
server aktif (master).



Aktif-aktif (master-master) : Dua server yang kedua
duanya bisa melayani jaringan dan saling mem-backup,
jika salah satu server mati maka server yang lain akan
menggantikannya. Kedua server ini memiliki data yang
sama persis.

Gambar 2.7 Failover Cluster Master
22

Untuk topologi failover pada dasarnya ada dua yaitu
menggunakan shared

storage (NAS/SAN)

dan

tanpa

menggunakan shared storage, cukup menggunakan hard
disk internal pada masing-masing server. Gambar dibawah
merupan

topologi failover

server menggunakan shared

storage dimana aktif server dan pasif server menyimpan
data pada shared storage, sehingga jika ada salah satu
server mati data masih ada di shared storage dan data
masih bisa diakses oleh server lain.

Gambar 2.8 Failover Cluster Klien
Failover di

bawah

tidak

menggunakan shared

storage, tetapi cukup menggunakan internalhard disk,
dan hard disk tersebut di konfigurasi mirror atau sering
disebut juga dengan RAID 1 over network. Apapun yang
23

ditulis pada aktif server, seperti format, membuat partisi
(jika diimplementasikan dengan Iscsi), dll, akan selalu
terjadi sama persis pada hard disk pasif server.

Gambar 2.9 Backup Failover Cluster
c. Failover cluster vs Load Balancing
Failover

cluster dan Load

Balancing memiliki

manfaat dalam memanage server secara bersamaan. Tapi
untuk failover cluster memiliki
dibanding Load

Balancing

beberapa
yaitu

:

kekurangan

Peng-integrasi-an

masing-masing server yang agak rumit, khususnya pada
perangkat

lunak

yang

digunakan

harus

memiliki setting yang sama antar server anggota cluster.
24

Selain itu failover cluster terbatas untuk beberapa protocol
seperti HTTP, samba dll.
SLB (server load balancing) merupakan sebuah
platform dan OS neutral. SLB dapat menyeimbangkan
beban (load) antar masing masing server. SLB juga
mendukung beberapa network protocol dari HTTP hingga
NFS, TCP dan UDP protocol. SLB di-desain secara simple
sehingga tidak memerlukan interaksi antar server, sedikit
melakukan trouble-shoot.

25

26

Dokumen yang terkait

FREKUENSI KEMUNCULAN TOKOH KARAKTER ANTAGONIS DAN PROTAGONIS PADA SINETRON (Analisis Isi Pada Sinetron Munajah Cinta di RCTI dan Sinetron Cinta Fitri di SCTV)

27 310 2

PENILAIAN MASYARAKAT TENTANG FILM LASKAR PELANGI Studi Pada Penonton Film Laskar Pelangi Di Studio 21 Malang Town Squere

17 165 2

APRESIASI IBU RUMAH TANGGA TERHADAP TAYANGAN CERIWIS DI TRANS TV (Studi Pada Ibu Rumah Tangga RW 6 Kelurahan Lemah Putro Sidoarjo)

8 209 2

MOTIF MAHASISWA BANYUMASAN MENYAKSIKAN TAYANGAN POJOK KAMPUNG DI JAWA POS TELEVISI (JTV)Studi Pada Anggota Paguyuban Mahasiswa Banyumasan di Malang

20 244 2

FENOMENA INDUSTRI JASA (JASA SEKS) TERHADAP PERUBAHAN PERILAKU SOSIAL ( Study Pada Masyarakat Gang Dolly Surabaya)

63 375 2

PEMAKNAAN MAHASISWA TENTANG DAKWAH USTADZ FELIX SIAUW MELALUI TWITTER ( Studi Resepsi Pada Mahasiswa Jurusan Tarbiyah Universitas Muhammadiyah Malang Angkatan 2011)

59 326 21

KONSTRUKSI MEDIA TENTANG KETERLIBATAN POLITISI PARTAI DEMOKRAT ANAS URBANINGRUM PADA KASUS KORUPSI PROYEK PEMBANGUNAN KOMPLEK OLAHRAGA DI BUKIT HAMBALANG (Analisis Wacana Koran Harian Pagi Surya edisi 9-12, 16, 18 dan 23 Februari 2013 )

64 565 20

PENGARUH PENGGUNAAN BLACKBERRY MESSENGER TERHADAP PERUBAHAN PERILAKU MAHASISWA DALAM INTERAKSI SOSIAL (Studi Pada Mahasiswa Jurusan Ilmu Komunikasi Angkatan 2008 Universitas Muhammadiyah Malang)

127 505 26

PEMAKNAAN BERITA PERKEMBANGAN KOMODITI BERJANGKA PADA PROGRAM ACARA KABAR PASAR DI TV ONE (Analisis Resepsi Pada Karyawan PT Victory International Futures Malang)

18 209 45

STRATEGI PUBLIC RELATIONS DALAM MENANGANI KELUHAN PELANGGAN SPEEDY ( Studi Pada Public Relations PT Telkom Madiun)

32 284 52