Directory UMM :Journals:Journal_of_mathematics:AUA:

ACTA UNIVERSITATIS APULENSIS

No 19/2009

CERTAIN CLASSES OF ANALYTIC FUNCTIONS OF COMPLEX
ORDER

C.Selvaraj and C.Santhosh Moni
Abstract.By making use of the Hadamard product, we define a new class of
analytic functions of complex order. Coefficient inequalities, sufficient condition and
an interesting subordination result are obtained.
2000 Mathematics Subject Classification: 30C45, 30C50.
Keywords and Phrases: analytic functions, Hadamard product, generalized hypergeometric functions, coefficient inequalities, subordinating sequence.
1. Introduction, Definitions And Preliminaries
Let A denote the class of functions of the form
f (z) = z +


X

ak z k


ak ≥ 0,

(1)

k=2

which are analytic in the open disc U = {z ∈ C \ | z |< 1} and S be the class of
function f ∈ A which are univalent in U.
P∞
k
The
Hadamard
product
of
two
functions
f
(z)
=

z
+
k=2 ak z and g(z) =
P∞
z + k=2 bk z k is given by

X

ak bk z k .

(2)

(bk ≥ 0 for k ≥ 2)

(3)

(f ∗ g)(z) = z +

k=2


For a fixed function g ∈ A defined by
g(z) = z +


X

bk z k

k=2

m f : A −→ A by
We now define the following linear operator Dλ,
g
0
Dλ,
g f (z) = (f ∗ g)(z),

55

C.Selvaraj, C.Santhosh Moni - Certain Classes of Analytic Functions Of...



1
Dλ,
g f (z) = (1 − λ)(f (z) ∗ g(z)) + λ z(f (z) ∗ g(z)) ,
m−1
m
1
Dλ,
g f (z) = Dλ, g (Dλ, g f (z)).

(4)
(5)

If f ∈ A, then from (4) and (5) we may easily deduce that
m
Dλ,
g f (z) = z +



X

m
1 + (k − 1)λ ak bk
k=2

zk
,
(k − 1)!

(6)

where m ∈ N0 = N ∪ {0} and λ ≥ 0.
Remark 1. It is interesting to note that several integral and differential operator
m f (z), here we list few of them.
follows as a special case of Dλ,
g
m f (z) reduces to an operator introduced recently
1. When g(z) = z/(1 − z), Dλ,
g

by F. Al-Oboudi [1].

2. Let the coefficients bk be of the form
bk =

(α1 )k−1 . . . (αq )k−1
(β1 )k−1 . . . (βs )k−1 (k − 1)!

(7)

(α1 , . . . αq , β1 , . . . βs ∈ C and βj 6= 0, −1, −2, . . . for j={1,2,. . . ,s})
m f (z) reduces to the well-known Dziok-Srivastava operaand if m = 0, then Dλ,
g
tor. It is well known that Dziok-Srivastava operator includes as its special cases
various other linear operator which were introduced and studied by Hohlov,
Carlson and Shaffer and Ruscheweyh. For details we refer to [6, 7, 8]
m f (z) generalizes the well-known operators like
Apart from these, the operator Dλ,
g


al˘agean operator [14] and Bernardi-Libera-Livingston operator.
m f (z), we define Hm (g, δ; A, B) to be the class of functions
Using the operator Dλ,
g
λ
f ∈ A satisfying the inequality


 m+1
1 Dλ, g f (z)
1 + Az
1+
−1 ≺
,
m
δ Dλ, g f (z)
1 + Bz

z ∈ U,


(8)

where δ ∈ C \ {0}, A and B are arbitrary fixed numbers, −1 ≤ B < A ≤ 1, m ∈ N0 .
Remark 2. Several interesting well-known and new subclasses of analytic functions can be obtained by specializing the parameters in Hλm (g, δ; A, B). Here we list
a few of them.

56

C.Selvaraj, C.Santhosh Moni - Certain Classes of Analytic Functions Of...
z
, λ = 1 in (8), then the class Hλm (g, δ; A, B) reduces
1−z
to the well- known class




1 + Az
1 Dm+1 f (z)
m

−1 ≺
H (δ; A, B) := f : 1 +
δ Dm f (z)
1 + Bz

1. If we let g(z) =

where Dm f is the well- known S˘al˘
agean operator. The class Hm (δ; A, B) was
introduced and studied by Attiya [4].

X

(α1 )k−1 . . . (αq )k−1
ak z k in (8), then we have
(β1 )k−1 . . . (βs )k−1 (k − 1)!
n=2
following class of functions





1 + Az
1 Dm+1 (α1 , β1 )f (z)
m
−1 ≺
Hλ (α1 , β1 ; A, B) := f : 1 +
δ Dm (α1 , β1 )f (z)
1 + Bz

2. If we let g(z) = z +

introduced and studied by C. Selvaraj and K.R.Karthikeyan in [17].
z
, λ = 1, m = 0 in (8), then the class Hλm (g, δ; A, B) reduces
1−z
to the well- known class of starlike functions of complex order [12].

3. If we let g(z) =


Further, we note that several subclass of analytic functions can be obtained by
specializing the parameters in Hλm (g, δ; A, B) (see for example [3, 11, 12]).
We use Ω to denote the class of bounded analytic functions w(z) in U which
satisfy the conditions w(0) = 1 and | w(z) |< 1 for z ∈ U.
2.Coefficient estimates
Theorem 1. Let the function f (z) defined by (1) be in the class Hλm (g, δ; A, B).


(a) If (A − B)2 | δ |2 > (k − 1) 2B(A − B)λ Re{δ} + (1 − B 2 )λ2 (k − 1) , let
G=

(A − B)2 | δ |2

,
(k − 1) 2B(A − B)λ Re{δ} + (1 − B 2 )λ2 (k − 1)

k = 2, 3, . . . , m − 1,

M = [G] (Gauss symbol) and [G] is the greatest integer not greater than G.
Then, for j = 2, 3, . . . , M + 2
| aj |≤

1
[1 + (j − 1)λ]m λj−1 (j − 1)!bj

57

j
Y

k=2

| (A − B)δ − (k − 2)B |

(9)

C.Selvaraj, C.Santhosh Moni - Certain Classes of Analytic Functions Of...

and for
| aj |≤

j >M +2
1
[1 + (j − 1)λ]m λj−1 (j − 1) (M + 1)! bj

M
+3
Y

| (A − B)δ − (k − 2)B | .

k=2

(10)



(b) If (A − B)2 | δ |2 ≤ (k − 1) 2B(A − B)λ Re{δ} + (1 − B 2 )λ2 (k − 1) , then
| aj |≤

(A − B) | δ |
λ (j − 1) [1 + (j − 1)λ]m bj

j ≥ 2.

(11)

The bounds in (9) and (11) are sharp for all admissible A, B, δ ∈ C \ {0} and for
each j.
Proof. Since f (z) ∈ Hλm (g, δ; A, B), the inequality (8) gives


m+1
m+1
m
m
| Dλ,
f
(z)

D
f
(z)
|=
[(A

B)δ
+
B]D
f
(z)

BD
f
(z)
w(z).
λ,
g
λ,
g
g
λ, g

(12)

Equation (12) may be written as

X

[1 + (k − 1)λ]m λ(k − 1) bk ak z k

(13)

k=2

=



(A − B)δz +

m

[(A − B)δ − B(k − 1)λ][1 + (k − 1)λ] bk ak z

k=2

Or equivalently
j
X


X

[1 + (k − 1)λ]m λ(k − 1) bk ak z k +

k=2


X

k



w(z).

ck z k

k=j+1

=



j−1
X
(A−B)δz+ [(A−B)δ−B(k−1)λ][1+(k−1)λ]m bk ak z k w(z), (14)
k=2

for certain coefficients ck . Explicitly ck = [1 + (k − 1)λ]m λ(k − 1)bk ak − [(A − B)δ −
B(k − 2)λ][1 + (k − 2)λ]m bk−1 ak−1 z −1 . Since | w(z) |< 1, we have

X

X

j
m
k
k

[1 + (k − 1)λ] λ(k − 1) bk ak z +
ck z

k=2

k=j+1

58

(15)

C.Selvaraj, C.Santhosh Moni - Certain Classes of Analytic Functions Of...


j−1
X


m
k

≤ (A − B)δz +
[(A − B)δ − B(k − 1)λ][1 + (k − 1)λ] bk ak z .
k=2

Let z = reiθ , r < 1, applying the Parseval’s formula (see [9] p.138) on both sides of
the above inequality and after simple computation , we get
j
X

[1 + (k − 1)λ]2m λ2 (k − 1)2 b2k | ak |2 r2k +

k=2


X

| ck |2 r2k

k=j+1

2

2

2

≤ (A − B) | δ | r +

j−1
X

| (A − B)δ − B(k − 1)λ |2 [1 + (k − 1)λ]2m b2k | ak |2 r2k .

k=2

Let r −→ 1− , then on some simplification we obtain
[1 + (j − 1)λ]2m λ2 (j − 1)2 b2j | aj |2 ≤ (A − B)2 | δ |2
+

j−1
X

k=2


| (A − B)δ − B(k − 1)λ |2 −(k − 1)2 λ2 [1 + (k − 1)λ]2m b2k | ak |2

j ≥ 2.
(16)

Now the following two cases arises:


(a) Let (A − B)2 | δ |2 > (k − 1)λ 2B(A − B)Re(δ) + (1 − B 2 )λ(k − 1) , suppose
that j ≤ M + 2, then for j = 2, (16) gives
| a2 |≤

(A − B) | δ |
,
(1 + λ)m λ b2

which gives (9) for j = 2. We establish (9) for j ≤ M + 2, from (16), by
mathematical induction. Suppose (9) is valid for j = 2, 3, . . . , (k − 1). Then
it follows from (16)
[1 + (j − 1)λ]2m λ2 (j − 1)2 b2j | aj |2
≤ (A − B)2 | δ |2
+

j−1
X



| (A − B)δ − B(k − 1)λ |2 −(k − 1)2 λ2 [1 + (k − 1)λ]2m b2k | ak |2

j−1
X



| (A − B)δ − B(k − 1)λ |2 −(k − 1)2 λ2 [1 + (k − 1)λ]2m b2k

k=2

≤ (A − B)2 | δ |2
+

k=2

59

C.Selvaraj, C.Santhosh Moni - Certain Classes of Analytic Functions Of...

×


k
Y
1
2
| (A − B)δ − (n − 2)B |
[1 + (k − 1)λ]2m b2k {λk−1 (k − 1)!}2 n=2
2

2

= (A − B) | δ | +

j−1
X


| (A − B)δ − B(k − 1)λ |2 −(k − 1)2 λ2

k=2

×




k
Y
1
2
| (A − B)δ − (n − 2)B |
{λk−1 (k − 1)!}2



n=2

= (A − B)2 | δ |2 +

| (A − B)δ − Bλ |2 −λ2



1
λ2 (1!)2

| (A − B)δ − 2Bλ |2 −4λ2



(A − B)2 | δ |2 +

1
λ4 (2!)2

(A − B)2 | δ |2 | (A − B)δ − Bλ |2

+ . . . up to (k = j − 1)
=



j
Y
1
| (A−B)δ−(k−2)B |2 .
{λj−2 (j − 2)!}2
k=2

Thus, we get
| aj |≤

1
[1 + (j − 1)λ]m λj−1 (j − 1)!bj

j
Y

| (A − B)δ − (k − 2)B |,

k=2

which completes the proof of (9).
Next, we suppose j > M + 2. Then (16) gives
[1 + (j − 1)λ]2m λ2 (j − 1)2 b2j | aj |2 ≤ (A − B)2 | δ |2
+

M
−2
X
k=2

+



j−1
X


k=M +3


| (A − B)δ − B(k − 1)λ |2 −(k − 1)2 λ2 [1 + (k − 1)λ]2m b2k | ak |2

| (A − B)δ − B(k − 1)λ |2 −(k − 1)2 λ2 [1 + (k − 1)λ]2m b2k | ak |2 .

On substituting upper estimates for a2 , a3 , . . . , aM +2 obtained above and simplifying, we obtain (10).

60

C.Selvaraj, C.Santhosh Moni - Certain Classes of Analytic Functions Of...


(b) Let (A − B)2 | δ |2 ≤ (k − 1)λ 2B(A − B)Re(δ) + (1 − B 2 )λ(k − 1) , then it
follows from (16)
[1 + (j − 1)λ]2m λ2 (j − 1)2 b2j | aj |2 ≤ (A − B)2 | δ |2

(j ≥ 2),

which proves (11).
The bounds in (9) are sharp for the functions f (z) given by
(
(A−B)δ
if B 6= 0,
z(1 + Bz) B
m
Dλ, g f (z) =
z exp(Aδz)
if B = 0.
Also, the bounds in (11) are sharp for the functions fk (z) given by

(A−B)δ

z(1 + Bz) Bλ(k−1)
if B 6= 0,


m
Dλ,
g fk (z) =


z k−1
if B = 0.
z exp λ(k−1)
Remark 2. If we let λ = 1, g(z) =
due to Attiya [4].

z
in Theorem 1, we get the result
1−z

3. A sufficient condition for a function to be in Hλm (g, δ; A, B)
Theorem 2. Let the function f (z) defined by (1) and let

X
k=2



[1 + (k − 1)λ]m (k − 1)+ | (A − B)δ − B(k − 1) | λ bk | ak |≤ (A − B) | δ | (17)

holds, then f (z) belongs to Hλm (g, δ; A, B).
Proof. Suppose that the inequality holds. Then we have for z ∈ U

m+1
m
m

| Dλ,
g f (z) − Dλ, g f (z) | − (A − B)δDλ, g f (z)−

 m+1

m

B Dλ,
f
(z)

D
f
(z)
λ,
g
g





X

X
m
k
m
k
[1 + (k − 1)λ] bk ak z −
[1 + (k − 1)λ] λ(k − 1) bk ak z − (A − B)δ z +
=
k=2

k=2

B


X
k=2

61



[1 + (k − 1)λ] λ(k − 1)bk ak z
m

k

C.Selvaraj, C.Santhosh Moni - Certain Classes of Analytic Functions Of...




X
k=2



[1 + (k − 1)λ]m (k − 1)λ+ | (A − B)δ − B(k − 1)λ | bk | ak | rk − (A − B) | δ | r.

Letting r −→ 1− , then we have


m+1
m
m

| Dλ,
g f (z) − Dλ, g f (z) | − (A − B)δDλ, g f (z)−



X
k=2

 m+1

m

B Dλ,
g f (z) − Dλ, g f (z)



[1 + (k − 1)λ]m (k − 1)λ+ | (A − B)δ − B(k − 1)λ | bk | ak | −(A − B) | δ |≤ 0.

Hence it follows that

Letting


m+1

Dλ, g f (z)

m
Dλ, g f (z) − 1
< 1,


Dm+1 f (z)



B Dλ,mg f (z) − 1 − (A − B)δ
λ, g


w(z) =
B



m+1
Dλ,
g f (z)
m f (z)
Dλ,
g

m+1
Dλ,
g f (z)
m f (z)
Dλ,
g



z ∈ U.

−1
,

− 1 − (A − B)δ

then w(0) = 0, w(z) is analytic in | z |< 1 and | w(z) |< 1. Hence we have
m+1
Dλ,
g f (z)
m f (z)
Dλ,
g

=

1 + [B + δ(A − B)]w(z)
1 + Bw(z)

which shows that f belongs to Hλm (g, δ; A, B).
3. Subordination Results For the Class Hλm (g, δ; A, B)
Definition 1. A sequence {bk }∞
k=1 of complex numbers is called a subordinating
factor sequence if, whenever f (z) is analytic, univalent and convex in U, we have
the subordination given by

X

bk ak z k ≺ f (z)

k=1

62

(z ∈ U, a1 = 1).

(18)

C.Selvaraj, C.Santhosh Moni - Certain Classes of Analytic Functions Of...
Lemma 1. The sequence {bk }∞
k=1 is a subordinating factor sequence if and only
if




X
k
>0
Re 1 + 2
bk z

(z ∈ U).

(19)

k=1

For convenience, we shall henceforth
σk (δ, λ, m, A, B)

(20)




= [1 + (k − 1)λ]m λ (k − 1)+ | (A − B)δ − B(k − 1) | bk
to be real.
e m (g, δ; A, B) denote the class of functions f ∈ A whose coefficients satisfy
Let H
λ
e m (g, δ; A, B) ⊆ Hm (g, δ; A, B).
the conditions (17). We note that H
λ
λ
e m (g, δ; A, B)
Theorem 3. Let the function f (z) defined by (1) be in the class H
λ
where −1 ≤ B < A ≤ 1. Also let C denote the familiar class of functions f ∈ A
which are also univalent and convex in U. Then

and

σ2 (δ, λ, m, A, B)

 (f ∗ g)(z) ≺ g(z)
2 (A − B)|δ| + σ2 (δ, λ, m, A, B)
Re(f (z)) > −

(A − B)|δ| + σ2 (δ, λ, m, A, B)
σ2 (δ, λ, m, A, B)

(z ∈ U; g ∈ C),

(z ∈ U).

(21)

(22)

σ2 (δ, λ, m, A, B)
 is the best estimate.
The constant 
2 (A − B)|δ| + σ2 (δ, λ, m, A, B)
e m (δ; A, B) and let g(z) = z + P∞ bk z k ∈ C. Then
Proof. Let f (z) ∈ H
k=2
λ
σ2 (δ, λ, m, A, B)

 (f ∗ g)(z)
2 (A − B)|δ| + σ2 (δ, λ, m, A, B)




X
σ2 (δ, λ, m, A, B)
k


z+
ak bk z .
=
2 (A − B)|δ| + σ2 (δ, λ, m, A, B)
k=2

Thus, by Definition 1, the assertion of the theorem will hold if the sequence

∞
σ2 (δ, λ, m, A, B)

 ak
2 (A − B)|δ| + σ2 (δ, λ, m, A, B)
k=1

is a subordinating factor sequence, with a1 = 1. In view of Lemma 1, this will be
true if and only if



X
σ2 (δ, λ, m, A, B)
k

 ak z
>0
(z ∈ U).
(23)
Re 1 + 2
2
(A

B)|δ|
+
σ
(δ,
λ,
m,
A,
B)
2
k=1
63

C.Selvaraj, C.Santhosh Moni - Certain Classes of Analytic Functions Of...

Now

Re 1+



X
σ2 (δ, λ, m, A, B)
ak z k
(A − B)|δ| + σ2 (δ, λ, m, A, B)
k=1


= Re 1+



σ2 (δ, λ, m, A, B)
a1 z
(A − B)|δ| + σ2 (δ, λ, m, A, B)



X
1
σ2 (δ, λ, m, A, B)ak z k
(A − B)|δ| + σ2 (δ, λ, m, A, B)
k=2




σ2 (δ, λ, m, A, B)
r
≥ 1−
(A − B)|δ| + σ2 (δ, λ, m, A, B)
+



X
1
k
+
σk (δ, λ, m, A, B)|ak |r .
|(A − B)|δ| + σ2 (δ, λ, m, A, B)|
k=2

Since σk (δ, λ, m, A, B) is a real increasing function of k (k ≥ 2)




σ2 (δ, λ, m, A, B)
r+

1−
(A − B)|δ| + σ2 (δ, λ, m, A, B)


X
1
σk (δ, λ, m, A, B)|ak |rk
|(A − B)|δ| + σ2 (δ, λ, m, A, B)|
k=2



(A − B)|δ|
σ2 (δ, λ, m, A, B)
r+
r
>1−
(A − B)|δ| + σ2 (δ, λ, m, A, B)
(A − B)|δ| + σ2 (δ, λ, m, A, B)
= 1 − r > 0.





Thus (23) holds true in U. This proves the inequality (21).PThe inequality (22)
z
k
= z+ ∞
follows by taking the convex function g(z) = 1−z
k=2 z in (21). To
σ2 (δ, λ, m, A,B)
 , we consider f0 (z) ∈
prove the sharpness of the constant 
2 (A−B)|δ|+σ2 (δ, λ, m, A,B)

e m (g, δ;
H
λ

A, B) given by

f0 (z) = z −

(A − B)|δ|
z2
σ2 (δ, λ, m, A, B)

(−1 ≤ B < A ≤ 1).

Thus from (21), we have
z
σ2 (δ, λ, m, A, B)

 f0 (z) ≺
.
1−z
2 (A − B)|δ| + σ2 (b, λ, m, A, B)
64

(24)

C.Selvaraj, C.Santhosh Moni - Certain Classes of Analytic Functions Of...

It can be easily verified that

 
1
σ2 (δ, λ, m, A, B)
 f0 (z)
=−
min Re 
2
2 (A − B)|δ| + σ2 (δ, λ, m, A, B)
This shows that the constant 

σ2 (δ, λ, m, A,B)

2 (A−B)|δ|+σ2 (δ, λ, m, A,B)

(z ∈ U).

 is best possible.

Remark 3.By specializing the parameters, the above result reduces to various
other results obtained by several authors.
References
[1] F. M. Al-Oboudi, On univalent functions defined by a generalized S˘
al˘
agean
operator, Int. J. Math. Math. Sci. 2004, no. 25-28, 1429–1436.
[2] M. K. Aouf, S. Owa and M. Obradovi´c, Certain classes of analytic functions
of complex order and type beta, Rend. Mat. Appl. (7) 11 (1991), no. 4, 691–714.
[3] M. K. Aouf, H. E. Darwish and A. A. Attiya, On a class of certain analytic
functions of complex order, Indian J. Pure Appl. Math. 32 (2001), no. 10, 1443–
1452.
[4] A. A. Attiya, On a generalization class of bounded starlike functions of complex order, Appl. Math. Comput. 187 (2007), no. 1, 62–67.
[5] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), no. 4, 737–745.
[6] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with
the generalized hypergeometric function, Appl. Math. Comput., 103(1999), 1-13.
[7] J. Dziok and H. M. Srivastava, Some sublasses of analytic functions with
fixed argument of coefficients associated with the generalized hypergeometric function,
Adv. Stud. Contemp. Math., 5(2002), 115-125.
[8] J. Dziok and H. M. Srivastava, Certain sublasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct.,
14(2003), 7-18.
[9] P.L.Duren, Univalent functions, Springer - verlag, Berlin, 1983.
[10] Yu. E. Hohlov, Operators and operations in the class of univalent functions,
Izv. Vyss. Ucebn. Zaved. Matematika, 10(1978), 83-89.
[11] G. Murugusundaramoorthy and N. Magesh, Starlike and convex functions
of complex order involving the Dziok-Srivastava operator, Integral Transforms Spec.
Funct. 18 (2007), no. 5-6, 419–425.
[12.] M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Natur.
Sci. Math. 25 (1985), no. 1, 1–12.
[13.] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math.
Soc., 49(1975), 109-115.
65

C.Selvaraj, C.Santhosh Moni - Certain Classes of Analytic Functions Of...

[14.] G. S
¸ . S˘
al˘agean, Subclasses of univalent functions, in Complex analysis—
fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362–372, Lecture Notes
in Math., 1013, Springer, Berlin.
[15.] N. S. Sohi and L. P. Singh, A class of bounded starlike functions of complex
order, Indian J. Math. 33 (1991), no. 1, 29–35.
[16.] C.Selvaraj and K.R.Karthikeyan, Differential sandwich theorems for certain subclasses of analytic functions, Math. Commun. 12 (2008), no. 2.
[17.] C.Selvaraj and K.R.Karthikeyan, Certain classes of analytic functions
of complex order involving a family of generalized differential operators, J. Math.
Inequ. Appl. 2 (2008), no. 4, 449-458.
[18.] H. S. Wilf, Subordinating factor sequences for convex maps of the unit
circle, Proc. Amer. Math. Soc. 12 (1961), 689–693.
C.Selvaraj
Department of Mathematics,
Presidency College,
Chennai-600 005,
Tamilnadu, India
email: [email protected]
C. Santhosh Moni
R.M.K.Engineering College
R.S.M.Nagar,
Kavaraipettai-601206,
Thiruvallur District, Gummidipoondi Taluk,
Tamilnadu,India
email: [email protected].

66