Directory UMM :Journals:Journal_of_mathematics:VMJ:
« ¤¨ª ¢ª §áª¨© ¬ ⥬ â¨ç¥áª¨© ¦ãà «
¯à¥«ì{¨îì, 2002, ®¬ 4, ë¯ã᪠2
517.956
. . «¥¥¢, . . ¥«å ஥¢
áâ ®¢«¥ë áãé¥á⢮¢ ¨¥ ¨ ¥¤¨á⢥®áâì à¥è¥¨ï ®¤®© ªà ¥¢®© § ¤ ç¨ ¤«ï á¬¥è ®£®
£¨¯¥à¡®«®-¯ à ¡®«¨ç¥áª®£® ãà ¢¥¨ï âà¥â쥣® ¯®à浪 .
áᬠâਢ ¥âáï ãà ¢¥¨¥
u , u + u; y > 0;
0 = @xx y 1
(1)
@x (uxx , uyy + 2 ux + 3 u); y < 0
¢ ®¡« áâ¨
, ®£à ¨ç¥®© ®â१ª ¬¨ AA0 ; BB0 ; A0 B0 ¯àï¬ëå x = 0; x = 1; y = h ᮮ⢥âá⢥® ¨ å à ªâ¥à¨á⨪ ¬¨ AC : x + y = 0; BC : x , y = 1 ãà ¢¥¨ï (1). ãáâì
1 =
\ (y > 0),
2 =
\ (y < 0), I = (0; 1).
¤ ç 1. ॡã¥âáï ©â¨ äãªæ¨î u(x; y ) á® á«¥¤ãî騬¨ ᢮©á⢠¬¨:
1) u(x; y ) | ॣã«ï஥ à¥è¥¨¥ ãà ¢¥¨ï (1) ¢ ®¡« áâ¨
¯à¨ y 6= 0;
2) u ¥¯à¥àë¢ ¢ § ¬ªã⮩ ®¡« áâ¨
;
3) ç áâë¥ ¯à®¨§¢®¤ë¥ ux ; uy ¥¯à¥àë¢ë ¢ ®¡« áâ¨
¨ ¢ â®çª å O (0; 0) ¨ A(1; 0) ¬®£ãâ
®¡à é âìáï ¢ ¡¥áª®¥ç®áâì ¯®à浪 ¬¥ìè¥ ¥¤¨¨æë;
4)
u 㤮¢«¥â¢®àï¥â ªà ¥¢ë¬ ãá«®¢¨ï¬:
u(0; y) = '1 (y); u(1; y) = '2 (y); u(x; ,x) = 1 (x); u(x; x , 1) = 2 (x);
£¤¥
'1 ; '2 ; 1 ;
2 | ¤®áâ â®ç® £« ¤ª¨¥ äãªæ¨¨, ¯à¨ç¥¬
1
1
'1 (0) = 1 (0); '2 (0) = 2 (0); 1 , 2 = 2 , 2 :
ãáâì ¢ ç «¥ 2 6= 0; 3 = 0. ®¡« áâ¨
2 ®¡é¥¥ à¥è¥¨¥ ãà ¢¥¨ï (1) ¬®¦¥â ¡ëâì
¯à¥¤áâ ¢«¥® ¢ ¢¨¤¥ [1]
£¤¥
(2)
u(x; y) = (x; y) + !(y);
(3)
xx , yy + 2 x = 0;
(4)
(x; y) | ®¡é¥¥ à¥è¥¨¥ ãà ¢¥¨ï
!(y) | ¯à®¨§¢®«ì ï ¤¢ ¦¤ë ¥¯à¥à뢮 ¤¨ää¥à¥æ¨à㥬 ï äãªæ¨ï. ¥§ ®£à ¨ç¥¨ï ®¡é®á-
⨠¬®¦® ¯à¥¤¯®«®¦¨âì
!(0) = ! (0) = 0:
¡®§ 稬 (x) = u(x; 0); v (x) = uy (x; 0).
0
c 2002 «¥¥¢ . ., ¥«å ஥¢ . .
(5)
2{24
. . «¥¥¢, . . ¥«å ஥¢
¥¬¬ 1.
᫨
1 6 0 ¨
lim u(x; 0)ux (x; 0) = xlim
!1, u(x; 0)ux (x; 0) = 0;
(6)
x!0+
â® ¤«ï «î¡®£® ॣã«ïண® ¢ ®¡« áâ¨
¢¥á⢮
Z1
0
1
à¥è¥¨ï ãà ¢¥¨ï
á¯à ¢¥¤«¨¢® ¥à -
Z1
(x)v(x) dx = , [ 02 (x) , 1 2 (x)] dx 6 0:
(7)
0
C ®ª § ⥫ìá⢮ «¥¬¬ë 1 ¯à¨¢¥¤¥® ¢ [2]. B
¥¬¬ 2. ᫨ u = 0 OC [ AC , â® ¤«ï «î¡®£®
à¥è¥¨ï ãà ¢¥¨ï
(1)
(1) á¯à ¢¥¤«¨¢® à ¢¥á⢮
Z1
0
ॣã«ïண® ¢ ®¡« áâ¨
(x)v(x) dx = 0:
2
(8)
C ®ª § ⥫ìá⢮ «¥¬¬ë 2 ¯à¨¢¥¤¥® ¢ [3]. B
à ¢¨¢ ï (7) ¨ (8) ¨¬¥¥¬, çâ® (x) 0.
¥®à¥¬ 1. ãáâì u(x; y ) | ॣã«ï஥ à¥è¥¨¥ ®¤®à®¤®© § ¤ ç¨ 1. ®£¤
u(x; y) 0 ¢
1 .
C ®¡« áâ¨
1 à áᬮâਬ ⮦¤¥á⢮
u(uxx , uyy + 1 u) = (uux )x , uuy , u2x + 1 u2 0:
ந⥣à¨à®¢ ¢ ¥£® ¯à¨ ®¤®à®¤ëå £à ¨çëå ãá«®¢¨ïå (2) ¨ (x) 0, ¯®«ã稬
Z1
0
u2 (x; 1) dx +
Z
1
(u2x , 1 u2 ) dx dy = 0:
âáî¤ á«¥¤ã¥â, çâ® u(x; y) 0 ¢ ®¡« áâ¨
1 . ᨫã à ¢¥á⢠(x; 0) = u(x; 0),
y (x; 0) = uy (x; 0), ¨¬¥¥¬, çâ® (x; y) 0 ¢ ®¡« áâ¨
2 . § ãá«®¢¨ï (x; ,x) = ,!(y)
§ ª«îç ¥¬, çâ® !(y) = 0 ¯à¨ , 21 6 y 6 0. «¥¤®¢ ⥫ì®, u(x; y) 0 ¢
2 , â. ¥.
u(x; y) 0 ¢
¨ à¥è¥¨¥ § ¤ ç¨ 1 ¥¤¨á⢥®. B
¥®à¥¬ 2. ®¡« áâ¨
áãé¥áâ¢ã¥â à¥è¥¨¥ § ¤ ç¨ (1).
C § ¯ à ¡®«¨ç¥áª®© ç á⨠®¡« áâ¨
¯à¨ y ! 0+, ¯®«ã稬 § ¤ çã
00 (x) , v(x) + 1 (x) = 0;
(9)
(0)'1 (0); (0) = '2 (0):
(10)
(x; ,x) = 1 (x) , !(,x); (x; x , 1) = 2 (x) , !(x , 1);
(20 )
¥è¥¨¥ ãà ¢¥¨ï (4), 㤮¢«¥â¢®àïî饥 ªà ¥¢ë¬ ãá«®¢¨ï¬
2{25
à ¥¢ ï § ¤ ç ¤«ï á¬¥è ®£® £¨¯¥à¡®«®-¯ à ¡®«¨ç¥áª®£® ãà ¢¥¨ï
®¯à¥¤¥«ï¥âáï ä®à¬ã«®©
(x; y) =
1
x,y
+
2
2
x+y+1
2
,!
y,x
2
,!
x+y,1
2
:
(11)
¤ ç (9), (10) § ¬¥®©
(x) = z (x) + x2 + ('2 (0) , '1 (0) , 1)x + '1 (0) = z (x) + h(x)
¯à¨¢®¤¨âáï ª ¢¨¤ã
z (x) + 1 z (x) = f (x);
(12)
z (0) = 0; z (1) = 0;
(13)
00
£¤¥
f (x) = v(x) , h(x) , 2.
¥è¥¨¥ § ¤ ç¨ (12), (13) ¨¬¥¥â ¢¨¤
z (x) =
Z1
G(x; t; 1 )f (t) dt;
(14)
0
£¤¥
G(x; t; 1 ) =
p
p
8
sin ,1 t sin ,1 (1 , x)
>
>
p, sin p,
;
>
: , sin
1
| äãªæ¨ï ਠ. ®§¢à é ïáì ª äãªæ¨¨
(x)
0
p, x sin p, (1 , t)
p,1 sin p,1
;
1
1
1
Z1
6 t 6 x;
x6t61
(x), à ¢¥á⢮
(14) ¯¥à¥¯¨è¥¬ ¢ ¢¨¤¥
G(x; t; 1 )v(t) dt + f~(x);
(15)
0
£¤¥
f~ = h(x) ,
Z1
G(x; t; 1 )f2 + 1 h(t)g dt:
0
§ à ¢¥á⢠(11) ¨¬¥¥¬
(x; 0) = (x) =
y (x; 0) = v(x) = ,
1
2
0
1
x
1
2
x
2
+
+
1
2
2
0
2
x+1
2
x+1
2
x
, ! ,2 , !
x
x,1
2
, 2! ,2 , 2!
1
0
1
0
;
x,1
2
(16)
:
(17)
®¤áâ ¢«ïï (16), (17) ¢ à ¢¥á⢮ (15), ¯®«ã稬 ¨â¥£à®-äãªæ¨® «ì®¥ ãà ¢¥¨¥
!
x
,2
+!
x
2
,2
1
=
1
2
Z1
t
t
+!
G(x; t; 1 ) ! ,
0
0
0
2
2
,2
1
dt + g(x);
(18)
2{26
£¤¥
. . «¥¥¢, . . ¥«å ஥¢
Z1
t 1 t
1
1
0
0
g(x) = G(x; t; 1 ) 2 1 2 , 2 2 2 + 2 dt + 1 x2 + 2 x +2 1 + f~(x):
0
¨ää¥à¥æ¨àãï à ¢¥á⢮ (18), ¯®«ã稬
!0
1
Z
t
x
1
1
x
t
0
0
0
, 2 , ! 2 , 2 = , Gx(x; t; 1 ) ! , 2 + ! 2 , 2 dt = ,2g0 (x): (19)
0,
0
1
¡®§ ç ï ! , 2 = (z ), ¯®«ã稬 ¨â¥£à®-äãªæ¨® «ì®¥ ãà ¢¥¨¥ ¢¨¤
1
Z
1
1
(z) , ,z , 2 = , Gx(x; y; 1 ) (t) + ,t , 2 dt , 2g(,2z):
0
(20)
ãªæ¨î (z ) ¡ã¤¥¬ ¨áª âì ¢ ¢¨¤¥ (z ) = r(z ) , r ,z , 21 .
ç¨âë¢ ï ¯®á«¥¤¥¥ á« £ ¥¬®¥ ¢ à ¢¥á⢥ (20), ¯®«ã稬 äãªæ¨® «ì®¥ ãà ¢¥¨¥
(21)
r(z) , r ,z , 12 = ,2g(,2z);
ª®â®à®¥ ï¥âáï ç áâë¬ á«ãç ¥¬ «¨¥©®£® äãªæ¨® «ì®£® ãà ¢¥¨ï [4]
Af [ (t)] + Bf ['(t)] = F (t);
(22)
£¤¥ t | ¯¥à¥¬¥ ï, A; B; (t); '(t); F (t) | § ¤ ë¥ äãªæ¨¨ t, f | ¥¨§¢¥áâ ï
®¯¥à æ¨ï, ®¡à é îé ï ãà ¢¥¨¥ (22) ¢ ⮦¤¥á⢮.
ᯮ«ì§ãï ⥮à¨î ¨â¥à 樮®£® ¨áç¨á«¥¨ï, ¤®ª §ë¢ ¥âáï, çâ® äãªæ¨® «ì®¥
ãà ¢¥¨¥ (21) ¨¬¥¥â à¥è¥¨¥ [4]. § ¥¤¨á⢥®á⨠à¥è¥¨ï § ¤ ç¨ 1 á«¥¤ã¥â, çâ®
äãªæ¨ï !(y) ®¯à¥¤¥«ï¥âáï ¥¤¨áâ¢¥ë¬ ®¡à §®¬. ª¨¬ ®¡à §®¬, äãªæ¨ï u(x; y)
¯®«®áâìî ®¯à¥¤¥«¥ ¢ ®¡« áâ¨
.
ãáâì ⥯¥àì 2 = 0; 3 > 0. ®ª § ⥫ìá⢮ ¥¤¨á⢥®á⨠à¥è¥¨ï § ¤ ç¨ 1 ¢
í⮬ á«ãç ¥ ¯à®¢®¤¨âáï «®£¨ç® ¯à¥¤ë¤ã饬ã.
®¡« áâ¨
2 ®¡é¥¥ à¥è¥¨¥ ãà ¢¥¨ï (1) ¨¬¥¥â ¢¨¤ (3), £¤¥ (x; y) | ®¡é¥¥
à¥è¥¨¥ ãà ¢¥¨ï
xx , yy + 3 = 0:
(23)
¥è¥¨¥ § ¤ ç¨ ®è¨ á ç «ì묨 ¤ 묨
(x; 0) = u(x; 0) = (x); y (x; 0) = uy (x; 0) = v(x);
¨¬¥¥â ¢¨¤ [5]
(x; y) = (x , y) +2 (x , y) + 21
+ 21
xZ+y
x,y
@J
() @y
0
,p
xZ+y
x,y
p
J0
,p
p
3 (x , )2 , y2 v() d
3 (x , )2 , y2 v() d;
(24)
2{27
à ¥¢ ï § ¤ ç ¤«ï á¬¥è ®£® £¨¯¥à¡®«®-¯ à ¡®«¨ç¥áª®£® ãà ¢¥¨ï
J0 (z ) | äãªæ¨ï ¥áá¥«ï ¯¥à¢®£® த ã«¥¢®£® ¯®à浪 . ¤®¢«¥â¢®àïï (24) ªà ¥¢ë¬ ãá«®¢¨ï¬ (20 ), ¯®«ã稬
£¤¥
x
(x) = 2
1
+
+
0
1
,p
p
3 ( , x) v( ) d
0
2
( )
J0
(25)
x
@ ,p p
( ) J0 3 ( , x) d , 2! , ;
@x
2
x+1
2
Zx
Zx
2
(x) = 2
2
, 2'(0) +
Zx
, 2'2 (0) ,
Zx
J0
,p
3
p
(
, 1)( , x) v(x) d
1
@
J
@x 0
,p
3
p
(
, 1)( , x)
d , 2!
, x ,2 1
(26)
:
®á«¥ ®¡à é¥¨ï ¨â¥£à «ìëå ãà ¢¥¨© (25), (26) ®â®á¨â¥«ì®
(x),
ᮮ⢥â-
á⢥® ¯®«ã稬 [3]
(x) = 2
,2
x
1
Zx
2
J0
x
, 2! , 2
,p
Zx
J0
+
,p
0
p
3 x(x , )
1
(x) =2
2
,2
x+1
2
Zx
1
@
J
@x 0
, 2!
,p
3
x,1
2
p
(1
,
Zx
J0
1
, x)( , x)
, ! ,2
2
0
3 (x , ) v( ) d
,p
(27)
d;
3 (,x + )v( ) d
2
+ 1
2
, ! ,2
1
(28)
d:
¢¥á⢠(27), (28) ᮮ⢥âá⢥® ¯¥à¥¯¨è¥¬ ¢ ¢¨¤¥
(x) =
Zx
v( )J0
0
,p
Zx
+
1
0
(x) = ,
Zx
3 (x , ) d
v( )J0
2
J0
,p
p
3 x(x , )
Zx
+
!
0
0
,p
3 ( , x) d +
Zx
0
2
1
1
Zx
+
1
!
2
0
+1
,1
2
, 2
J0
J0
J0
,p
,p
,p
3
3
p
p
p
3 x(x , ) d;
(1
(1
, x)( , x)
, x)( , x)
(29)
d
(30)
d:
2{28
. . «¥¥¢, . . ¥«å ஥¢
(x) ¯®¤áâ ¢¨¬ (29) ¨ ¯®«ã祮¥ à ¢¥á⢮
«¥¢ãî ç áâì à ¢¥á⢠(15) ¢¬¥áâ®
¯à®¤¨ää¥à¥æ¨à㥬 ¯®
¥¨¥
v(x) +
Zx
0
x.
१ã«ìâ ⥠¡ã¤¥¬ ¨¬¥âì á¬¥è ®¥ ¨â¥£à «ì®¥ ãà ¢-
@ ,p
v( ) J0 3 (x , ) d =
@x
x
, ! ,2 ,
0
Zx
!
0
0
£¤¥
g(x) = f~(x) ,
,2
J0
2
0
0
,p
,3
p
x(x , ) d:
R(x; ) १®«ì¢¥âã ãà ¢¥¨ï (31)
᫨ ®¡®§ ç¨âì ç¥à¥§
(31)
0
1
Gx (x; ; 1 )v( ) d
@ ,p p
J0 3 x(x , ) + q (x);
@x
Zx
Z1
¨ ¯à¥¤¢ à¨â¥«ì® áç¨-
â âì ¥£® ¯à ¢ãî ç áâì ¨§¢¥á⮩, â® à¥è¥¨¥ í⮣® ãà ¢¥¨ï ¬®¦® ¯à¥¤áâ ¢¨âì ¯®
ä®à¬ã«¥
v(x) ,
Z1
Q0 (x; )v( ) d
=
,!
0
Q0 (x; ) = Gx (x; ; 1 ) +
Z1
0
x
2
,
Zx
Q1 (x; )!
,2
0
d + q~(x) = (x);
(32)
R(x; 1 )G(1 ; ; 1 ) d1 ;
0
Q1 (x; ) =
0
@ ,p p
J0 3 x(x , ) + R(x; ) +
@x
q~(x) =
Zx
Zx
R(x; 1 )
@ ,p p
J0 3 1 (1 , ) d;
@x
R(x; )q ( ) d:
0
0
ª¨¬ ®¡à §®¬, ¯®«ã稬 ®â®á¨â¥«ì®
T (x; )
¯®¬®éìî १®«ì¢¥âë
v(x)
ãà ¢¥¨¥ ।£®«ì¬ ¢â®à®£® த .
ãà ¢¥¨ï (32), § 票¥
騬 ®¡à §®¬
v(x) = (x) +
Z1
v(x)
§ ¯¨áë¢ ¥âáï á«¥¤ãî-
T (x; )( ) d:
(33)
0
®¤áâ ¢¨¢ § 票¥
(x) ¢ à ¢¥á⢮
v(x) =
Z1
0
M (x; )!
0
(33), ¯®«ã稬
,2
d , !
0
, x2
+ P (x);
(34)
à ¥¢ ï § ¤ ç ¤«ï á¬¥è ®£® £¨¯¥à¡®«®-¯ à ¡®«¨ç¥áª®£® ãà ¢¥¨ï
£¤¥
M (x; )
8
>
>
Q (x; )
>
< 1
=>
>
>
:
, T (x; ) +
,T (x; ) +
R1
R1
0 6 6 x;
T (x; 1 )Q(1 ; ) d1 ;
T (x; )Q1 (1 ; ) d1 ;
P (x)
=
Z1
2{29
x
6 6 1;
T (x; )~
q ( ) d:
0
¤à㣮© áâ®à®ë, § ¤ çã (1), (2) ¢ ¯ à ¡®«¨ç¥áª®© ç áâ¨
1 ®¡« áâ¨
, § ¬¥®©
¬®¦® ᢥá⨠ª § ¤ ç¥
u = e1 y ,
yy
= xx ;
(0; y )
= e1 y '1 (y);
(1; y )
= e1 y '2 (y):
(35)
¥è¥¨¥ § ¤ ç¨ (35) ¨¬¥¥â ¢¨¤
(x; y )
=
Z1
( )G(; 0; x; y ) d
0
,
Zy
+
Zy
e1 h '1 (h)G (0; h; x; y ) dh
0
e1 h '2 (h)G (1; h; x; y ) dh;
0
£¤¥ G(; h; x; y) | äãªæ¨ï ਠ¯¥à¢®© ªà ¥¢®© ®¤®à®¤®© § ¤ ç¨ (35). ©¤¥¬
¯à®¨§¢®¤ãî uy , § ⥬ ¢ ¯®«ã祮¬ à ¢¥á⢥ ¯®«®¦¨¬ y = 0. 㤥¬ ¨¬¥âì
v (x)
£¤¥
=
K (x; )
(x) =
@u
@y y=0
=
Z1
K (x; ) ( ) d
+ (x);
(36)
0
,
= 1 G(; 0; x; 0) + Gx (; 0; x; 0)
8
2 y
Z
<
@
y
1
4
e
e1 h '1 (h)G (0; h; x; y ) dh
@y :
,
0
Zy
0
;
39
=
h
1
5
:
e '2 (h)G (1; h; x; y ) dh
;
®¤áâ ¢«ïï ⥯¥àì (15) ¢ à ¢¥á⢮ (36), ¯®«ã稬
v (x)
=
Z1
e (x; )v ( ) d
K
+ (x);
0
£¤¥
e (x; )
K
=
Z1
0
K (x; )G(; 1 ; 1 ) d:
(37)
2{30
. . «¥¥¢, . . ¥«å ஥¢
¡®§ 稬 ç¥à¥§ N (x; ) १®«ì¢¥âã ãà ¢¥¨ï (37), à¥è¥¨¥ í⮣® ãà ¢¥¨ï
¬ë ¬®¦¥¬ ¯à¥¤áâ ¢¨âì ¯® ä®à¬ã«¥
v (x)
= (x) +
Z1
N (x; ) ( ) d:
(38)
0
®¤áâ ¢«ïï ¢ëà ¦¥¨¥ (38) ¤«ï v(x) ¢ ä®à¬ã«ã (34) ¯®«ã稬 ®â®á¨â¥«ì® !0 , x2
¨â¥£à «ì®¥ ãà ¢¥¨¥ ।£®«ì¬ ¢â®à®£® த
!0
x
,2 =
Z1
M (x; )! 0
0
, 2
d + (x);
(39)
£¤¥ (x) = P (x) , v(x).
ª ª ª íª¢¨¢ «¥â®áâì ¢áî¤ã á®åà ï¥âáï, â® ¨§ ¥¤¨á⢥®á⨠à¥è¥¨ï § ¤ ç¨ 1 á«¥¤ã¥â ®¤®§ ç ï à §à¥è¨¬®áâì ¨â¥£à «ì®£® ãà ¢¥¨ï (39).
«®£¨çë¬
®¡à §®¬ ¬®¦® ¯®«ãç¨âì ¨â¥£à «ì®¥ ãà ¢¥¨¥ (39) ®â®á¨â¥«ì
x
,
1
0
® ! 2 . ª¨¬ ®¡à §®¬, ®¯à¥¤¥«¥ë äãªæ¨¨ (x); v(x); !(y). «¥¤®¢ ⥫ì®,
®¯à¥¤¥«¥ äãªæ¨ï u(x; y) ¢ ®¡« áâ¨
. B
¨â¥à âãà
1. « å¨â¤¨®¢ . . à ¢¥¨ï á¬¥è ®-á®áâ ¢®£® ⨯ .| 誥â: , 1974.|156 á.
2. ¡¨â®¢ . . ⥮ਨ ãà ¢¥¨© á¬¥è ®£® ¯ à ¡®«®-£¨¯¥à¡®«¨ç¥áª®£® ⨯ ᮠᯥªâà «ìë¬ ¯ à ¬¥â஬ // ¨ää¥à¥æ. ãà ¢¥¨ï.|1989.|. 25, ü 1.|. 117{126.
3. § ஢ . ¤ ç ¨à¨å«¥ ¤«ï ®¤®£® ãà ¢¥¨ï á¬¥è ®£® ⨯ // §¢.
, á¥à.
䨧.-¬ â. ãª.|1984.|ü 6.|. 81{84.
4. ¥àᥢ ®¢ . . â¥à 樮®¥ ¨áç¨á«¥¨¥ ¨ ¥£® ¯à¨«®¦¥¨ï.|.: èáâன¨§¤ â, 1950.|69 á.
5. ¨å®®¢ . ., ¬ à᪨© . . à ¢¥¨ï ¬ ⥬ â¨ç¥áª®© 䨧¨ª¨.| .: 㪠, 1977.|716 á.
«ì稪
â âìï ¯®áâ㯨« 18 ¯à¥«ï 2002 £.
¯à¥«ì{¨îì, 2002, ®¬ 4, ë¯ã᪠2
517.956
. . «¥¥¢, . . ¥«å ஥¢
áâ ®¢«¥ë áãé¥á⢮¢ ¨¥ ¨ ¥¤¨á⢥®áâì à¥è¥¨ï ®¤®© ªà ¥¢®© § ¤ ç¨ ¤«ï á¬¥è ®£®
£¨¯¥à¡®«®-¯ à ¡®«¨ç¥áª®£® ãà ¢¥¨ï âà¥â쥣® ¯®à浪 .
áᬠâਢ ¥âáï ãà ¢¥¨¥
u , u + u; y > 0;
0 = @xx y 1
(1)
@x (uxx , uyy + 2 ux + 3 u); y < 0
¢ ®¡« áâ¨
, ®£à ¨ç¥®© ®â१ª ¬¨ AA0 ; BB0 ; A0 B0 ¯àï¬ëå x = 0; x = 1; y = h ᮮ⢥âá⢥® ¨ å à ªâ¥à¨á⨪ ¬¨ AC : x + y = 0; BC : x , y = 1 ãà ¢¥¨ï (1). ãáâì
1 =
\ (y > 0),
2 =
\ (y < 0), I = (0; 1).
¤ ç 1. ॡã¥âáï ©â¨ äãªæ¨î u(x; y ) á® á«¥¤ãî騬¨ ᢮©á⢠¬¨:
1) u(x; y ) | ॣã«ï஥ à¥è¥¨¥ ãà ¢¥¨ï (1) ¢ ®¡« áâ¨
¯à¨ y 6= 0;
2) u ¥¯à¥àë¢ ¢ § ¬ªã⮩ ®¡« áâ¨
;
3) ç áâë¥ ¯à®¨§¢®¤ë¥ ux ; uy ¥¯à¥àë¢ë ¢ ®¡« áâ¨
¨ ¢ â®çª å O (0; 0) ¨ A(1; 0) ¬®£ãâ
®¡à é âìáï ¢ ¡¥áª®¥ç®áâì ¯®à浪 ¬¥ìè¥ ¥¤¨¨æë;
4)
u 㤮¢«¥â¢®àï¥â ªà ¥¢ë¬ ãá«®¢¨ï¬:
u(0; y) = '1 (y); u(1; y) = '2 (y); u(x; ,x) = 1 (x); u(x; x , 1) = 2 (x);
£¤¥
'1 ; '2 ; 1 ;
2 | ¤®áâ â®ç® £« ¤ª¨¥ äãªæ¨¨, ¯à¨ç¥¬
1
1
'1 (0) = 1 (0); '2 (0) = 2 (0); 1 , 2 = 2 , 2 :
ãáâì ¢ ç «¥ 2 6= 0; 3 = 0. ®¡« áâ¨
2 ®¡é¥¥ à¥è¥¨¥ ãà ¢¥¨ï (1) ¬®¦¥â ¡ëâì
¯à¥¤áâ ¢«¥® ¢ ¢¨¤¥ [1]
£¤¥
(2)
u(x; y) = (x; y) + !(y);
(3)
xx , yy + 2 x = 0;
(4)
(x; y) | ®¡é¥¥ à¥è¥¨¥ ãà ¢¥¨ï
!(y) | ¯à®¨§¢®«ì ï ¤¢ ¦¤ë ¥¯à¥à뢮 ¤¨ää¥à¥æ¨à㥬 ï äãªæ¨ï. ¥§ ®£à ¨ç¥¨ï ®¡é®á-
⨠¬®¦® ¯à¥¤¯®«®¦¨âì
!(0) = ! (0) = 0:
¡®§ 稬 (x) = u(x; 0); v (x) = uy (x; 0).
0
c 2002 «¥¥¢ . ., ¥«å ஥¢ . .
(5)
2{24
. . «¥¥¢, . . ¥«å ஥¢
¥¬¬ 1.
᫨
1 6 0 ¨
lim u(x; 0)ux (x; 0) = xlim
!1, u(x; 0)ux (x; 0) = 0;
(6)
x!0+
â® ¤«ï «î¡®£® ॣã«ïண® ¢ ®¡« áâ¨
¢¥á⢮
Z1
0
1
à¥è¥¨ï ãà ¢¥¨ï
á¯à ¢¥¤«¨¢® ¥à -
Z1
(x)v(x) dx = , [ 02 (x) , 1 2 (x)] dx 6 0:
(7)
0
C ®ª § ⥫ìá⢮ «¥¬¬ë 1 ¯à¨¢¥¤¥® ¢ [2]. B
¥¬¬ 2. ᫨ u = 0 OC [ AC , â® ¤«ï «î¡®£®
à¥è¥¨ï ãà ¢¥¨ï
(1)
(1) á¯à ¢¥¤«¨¢® à ¢¥á⢮
Z1
0
ॣã«ïண® ¢ ®¡« áâ¨
(x)v(x) dx = 0:
2
(8)
C ®ª § ⥫ìá⢮ «¥¬¬ë 2 ¯à¨¢¥¤¥® ¢ [3]. B
à ¢¨¢ ï (7) ¨ (8) ¨¬¥¥¬, çâ® (x) 0.
¥®à¥¬ 1. ãáâì u(x; y ) | ॣã«ï஥ à¥è¥¨¥ ®¤®à®¤®© § ¤ ç¨ 1. ®£¤
u(x; y) 0 ¢
1 .
C ®¡« áâ¨
1 à áᬮâਬ ⮦¤¥á⢮
u(uxx , uyy + 1 u) = (uux )x , uuy , u2x + 1 u2 0:
ந⥣à¨à®¢ ¢ ¥£® ¯à¨ ®¤®à®¤ëå £à ¨çëå ãá«®¢¨ïå (2) ¨ (x) 0, ¯®«ã稬
Z1
0
u2 (x; 1) dx +
Z
1
(u2x , 1 u2 ) dx dy = 0:
âáî¤ á«¥¤ã¥â, çâ® u(x; y) 0 ¢ ®¡« áâ¨
1 . ᨫã à ¢¥á⢠(x; 0) = u(x; 0),
y (x; 0) = uy (x; 0), ¨¬¥¥¬, çâ® (x; y) 0 ¢ ®¡« áâ¨
2 . § ãá«®¢¨ï (x; ,x) = ,!(y)
§ ª«îç ¥¬, çâ® !(y) = 0 ¯à¨ , 21 6 y 6 0. «¥¤®¢ ⥫ì®, u(x; y) 0 ¢
2 , â. ¥.
u(x; y) 0 ¢
¨ à¥è¥¨¥ § ¤ ç¨ 1 ¥¤¨á⢥®. B
¥®à¥¬ 2. ®¡« áâ¨
áãé¥áâ¢ã¥â à¥è¥¨¥ § ¤ ç¨ (1).
C § ¯ à ¡®«¨ç¥áª®© ç á⨠®¡« áâ¨
¯à¨ y ! 0+, ¯®«ã稬 § ¤ çã
00 (x) , v(x) + 1 (x) = 0;
(9)
(0)'1 (0); (0) = '2 (0):
(10)
(x; ,x) = 1 (x) , !(,x); (x; x , 1) = 2 (x) , !(x , 1);
(20 )
¥è¥¨¥ ãà ¢¥¨ï (4), 㤮¢«¥â¢®àïî饥 ªà ¥¢ë¬ ãá«®¢¨ï¬
2{25
à ¥¢ ï § ¤ ç ¤«ï á¬¥è ®£® £¨¯¥à¡®«®-¯ à ¡®«¨ç¥áª®£® ãà ¢¥¨ï
®¯à¥¤¥«ï¥âáï ä®à¬ã«®©
(x; y) =
1
x,y
+
2
2
x+y+1
2
,!
y,x
2
,!
x+y,1
2
:
(11)
¤ ç (9), (10) § ¬¥®©
(x) = z (x) + x2 + ('2 (0) , '1 (0) , 1)x + '1 (0) = z (x) + h(x)
¯à¨¢®¤¨âáï ª ¢¨¤ã
z (x) + 1 z (x) = f (x);
(12)
z (0) = 0; z (1) = 0;
(13)
00
£¤¥
f (x) = v(x) , h(x) , 2.
¥è¥¨¥ § ¤ ç¨ (12), (13) ¨¬¥¥â ¢¨¤
z (x) =
Z1
G(x; t; 1 )f (t) dt;
(14)
0
£¤¥
G(x; t; 1 ) =
p
p
8
sin ,1 t sin ,1 (1 , x)
>
>
p, sin p,
;
>
: , sin
1
| äãªæ¨ï ਠ. ®§¢à é ïáì ª äãªæ¨¨
(x)
0
p, x sin p, (1 , t)
p,1 sin p,1
;
1
1
1
Z1
6 t 6 x;
x6t61
(x), à ¢¥á⢮
(14) ¯¥à¥¯¨è¥¬ ¢ ¢¨¤¥
G(x; t; 1 )v(t) dt + f~(x);
(15)
0
£¤¥
f~ = h(x) ,
Z1
G(x; t; 1 )f2 + 1 h(t)g dt:
0
§ à ¢¥á⢠(11) ¨¬¥¥¬
(x; 0) = (x) =
y (x; 0) = v(x) = ,
1
2
0
1
x
1
2
x
2
+
+
1
2
2
0
2
x+1
2
x+1
2
x
, ! ,2 , !
x
x,1
2
, 2! ,2 , 2!
1
0
1
0
;
x,1
2
(16)
:
(17)
®¤áâ ¢«ïï (16), (17) ¢ à ¢¥á⢮ (15), ¯®«ã稬 ¨â¥£à®-äãªæ¨® «ì®¥ ãà ¢¥¨¥
!
x
,2
+!
x
2
,2
1
=
1
2
Z1
t
t
+!
G(x; t; 1 ) ! ,
0
0
0
2
2
,2
1
dt + g(x);
(18)
2{26
£¤¥
. . «¥¥¢, . . ¥«å ஥¢
Z1
t 1 t
1
1
0
0
g(x) = G(x; t; 1 ) 2 1 2 , 2 2 2 + 2 dt + 1 x2 + 2 x +2 1 + f~(x):
0
¨ää¥à¥æ¨àãï à ¢¥á⢮ (18), ¯®«ã稬
!0
1
Z
t
x
1
1
x
t
0
0
0
, 2 , ! 2 , 2 = , Gx(x; t; 1 ) ! , 2 + ! 2 , 2 dt = ,2g0 (x): (19)
0,
0
1
¡®§ ç ï ! , 2 = (z ), ¯®«ã稬 ¨â¥£à®-äãªæ¨® «ì®¥ ãà ¢¥¨¥ ¢¨¤
1
Z
1
1
(z) , ,z , 2 = , Gx(x; y; 1 ) (t) + ,t , 2 dt , 2g(,2z):
0
(20)
ãªæ¨î (z ) ¡ã¤¥¬ ¨áª âì ¢ ¢¨¤¥ (z ) = r(z ) , r ,z , 21 .
ç¨âë¢ ï ¯®á«¥¤¥¥ á« £ ¥¬®¥ ¢ à ¢¥á⢥ (20), ¯®«ã稬 äãªæ¨® «ì®¥ ãà ¢¥¨¥
(21)
r(z) , r ,z , 12 = ,2g(,2z);
ª®â®à®¥ ï¥âáï ç áâë¬ á«ãç ¥¬ «¨¥©®£® äãªæ¨® «ì®£® ãà ¢¥¨ï [4]
Af [ (t)] + Bf ['(t)] = F (t);
(22)
£¤¥ t | ¯¥à¥¬¥ ï, A; B; (t); '(t); F (t) | § ¤ ë¥ äãªæ¨¨ t, f | ¥¨§¢¥áâ ï
®¯¥à æ¨ï, ®¡à é îé ï ãà ¢¥¨¥ (22) ¢ ⮦¤¥á⢮.
ᯮ«ì§ãï ⥮à¨î ¨â¥à 樮®£® ¨áç¨á«¥¨ï, ¤®ª §ë¢ ¥âáï, çâ® äãªæ¨® «ì®¥
ãà ¢¥¨¥ (21) ¨¬¥¥â à¥è¥¨¥ [4]. § ¥¤¨á⢥®á⨠à¥è¥¨ï § ¤ ç¨ 1 á«¥¤ã¥â, çâ®
äãªæ¨ï !(y) ®¯à¥¤¥«ï¥âáï ¥¤¨áâ¢¥ë¬ ®¡à §®¬. ª¨¬ ®¡à §®¬, äãªæ¨ï u(x; y)
¯®«®áâìî ®¯à¥¤¥«¥ ¢ ®¡« áâ¨
.
ãáâì ⥯¥àì 2 = 0; 3 > 0. ®ª § ⥫ìá⢮ ¥¤¨á⢥®á⨠à¥è¥¨ï § ¤ ç¨ 1 ¢
í⮬ á«ãç ¥ ¯à®¢®¤¨âáï «®£¨ç® ¯à¥¤ë¤ã饬ã.
®¡« áâ¨
2 ®¡é¥¥ à¥è¥¨¥ ãà ¢¥¨ï (1) ¨¬¥¥â ¢¨¤ (3), £¤¥ (x; y) | ®¡é¥¥
à¥è¥¨¥ ãà ¢¥¨ï
xx , yy + 3 = 0:
(23)
¥è¥¨¥ § ¤ ç¨ ®è¨ á ç «ì묨 ¤ 묨
(x; 0) = u(x; 0) = (x); y (x; 0) = uy (x; 0) = v(x);
¨¬¥¥â ¢¨¤ [5]
(x; y) = (x , y) +2 (x , y) + 21
+ 21
xZ+y
x,y
@J
() @y
0
,p
xZ+y
x,y
p
J0
,p
p
3 (x , )2 , y2 v() d
3 (x , )2 , y2 v() d;
(24)
2{27
à ¥¢ ï § ¤ ç ¤«ï á¬¥è ®£® £¨¯¥à¡®«®-¯ à ¡®«¨ç¥áª®£® ãà ¢¥¨ï
J0 (z ) | äãªæ¨ï ¥áá¥«ï ¯¥à¢®£® த ã«¥¢®£® ¯®à浪 . ¤®¢«¥â¢®àïï (24) ªà ¥¢ë¬ ãá«®¢¨ï¬ (20 ), ¯®«ã稬
£¤¥
x
(x) = 2
1
+
+
0
1
,p
p
3 ( , x) v( ) d
0
2
( )
J0
(25)
x
@ ,p p
( ) J0 3 ( , x) d , 2! , ;
@x
2
x+1
2
Zx
Zx
2
(x) = 2
2
, 2'(0) +
Zx
, 2'2 (0) ,
Zx
J0
,p
3
p
(
, 1)( , x) v(x) d
1
@
J
@x 0
,p
3
p
(
, 1)( , x)
d , 2!
, x ,2 1
(26)
:
®á«¥ ®¡à é¥¨ï ¨â¥£à «ìëå ãà ¢¥¨© (25), (26) ®â®á¨â¥«ì®
(x),
ᮮ⢥â-
á⢥® ¯®«ã稬 [3]
(x) = 2
,2
x
1
Zx
2
J0
x
, 2! , 2
,p
Zx
J0
+
,p
0
p
3 x(x , )
1
(x) =2
2
,2
x+1
2
Zx
1
@
J
@x 0
, 2!
,p
3
x,1
2
p
(1
,
Zx
J0
1
, x)( , x)
, ! ,2
2
0
3 (x , ) v( ) d
,p
(27)
d;
3 (,x + )v( ) d
2
+ 1
2
, ! ,2
1
(28)
d:
¢¥á⢠(27), (28) ᮮ⢥âá⢥® ¯¥à¥¯¨è¥¬ ¢ ¢¨¤¥
(x) =
Zx
v( )J0
0
,p
Zx
+
1
0
(x) = ,
Zx
3 (x , ) d
v( )J0
2
J0
,p
p
3 x(x , )
Zx
+
!
0
0
,p
3 ( , x) d +
Zx
0
2
1
1
Zx
+
1
!
2
0
+1
,1
2
, 2
J0
J0
J0
,p
,p
,p
3
3
p
p
p
3 x(x , ) d;
(1
(1
, x)( , x)
, x)( , x)
(29)
d
(30)
d:
2{28
. . «¥¥¢, . . ¥«å ஥¢
(x) ¯®¤áâ ¢¨¬ (29) ¨ ¯®«ã祮¥ à ¢¥á⢮
«¥¢ãî ç áâì à ¢¥á⢠(15) ¢¬¥áâ®
¯à®¤¨ää¥à¥æ¨à㥬 ¯®
¥¨¥
v(x) +
Zx
0
x.
१ã«ìâ ⥠¡ã¤¥¬ ¨¬¥âì á¬¥è ®¥ ¨â¥£à «ì®¥ ãà ¢-
@ ,p
v( ) J0 3 (x , ) d =
@x
x
, ! ,2 ,
0
Zx
!
0
0
£¤¥
g(x) = f~(x) ,
,2
J0
2
0
0
,p
,3
p
x(x , ) d:
R(x; ) १®«ì¢¥âã ãà ¢¥¨ï (31)
᫨ ®¡®§ ç¨âì ç¥à¥§
(31)
0
1
Gx (x; ; 1 )v( ) d
@ ,p p
J0 3 x(x , ) + q (x);
@x
Zx
Z1
¨ ¯à¥¤¢ à¨â¥«ì® áç¨-
â âì ¥£® ¯à ¢ãî ç áâì ¨§¢¥á⮩, â® à¥è¥¨¥ í⮣® ãà ¢¥¨ï ¬®¦® ¯à¥¤áâ ¢¨âì ¯®
ä®à¬ã«¥
v(x) ,
Z1
Q0 (x; )v( ) d
=
,!
0
Q0 (x; ) = Gx (x; ; 1 ) +
Z1
0
x
2
,
Zx
Q1 (x; )!
,2
0
d + q~(x) = (x);
(32)
R(x; 1 )G(1 ; ; 1 ) d1 ;
0
Q1 (x; ) =
0
@ ,p p
J0 3 x(x , ) + R(x; ) +
@x
q~(x) =
Zx
Zx
R(x; 1 )
@ ,p p
J0 3 1 (1 , ) d;
@x
R(x; )q ( ) d:
0
0
ª¨¬ ®¡à §®¬, ¯®«ã稬 ®â®á¨â¥«ì®
T (x; )
¯®¬®éìî १®«ì¢¥âë
v(x)
ãà ¢¥¨¥ ।£®«ì¬ ¢â®à®£® த .
ãà ¢¥¨ï (32), § 票¥
騬 ®¡à §®¬
v(x) = (x) +
Z1
v(x)
§ ¯¨áë¢ ¥âáï á«¥¤ãî-
T (x; )( ) d:
(33)
0
®¤áâ ¢¨¢ § 票¥
(x) ¢ à ¢¥á⢮
v(x) =
Z1
0
M (x; )!
0
(33), ¯®«ã稬
,2
d , !
0
, x2
+ P (x);
(34)
à ¥¢ ï § ¤ ç ¤«ï á¬¥è ®£® £¨¯¥à¡®«®-¯ à ¡®«¨ç¥áª®£® ãà ¢¥¨ï
£¤¥
M (x; )
8
>
>
Q (x; )
>
< 1
=>
>
>
:
, T (x; ) +
,T (x; ) +
R1
R1
0 6 6 x;
T (x; 1 )Q(1 ; ) d1 ;
T (x; )Q1 (1 ; ) d1 ;
P (x)
=
Z1
2{29
x
6 6 1;
T (x; )~
q ( ) d:
0
¤à㣮© áâ®à®ë, § ¤ çã (1), (2) ¢ ¯ à ¡®«¨ç¥áª®© ç áâ¨
1 ®¡« áâ¨
, § ¬¥®©
¬®¦® ᢥá⨠ª § ¤ ç¥
u = e1 y ,
yy
= xx ;
(0; y )
= e1 y '1 (y);
(1; y )
= e1 y '2 (y):
(35)
¥è¥¨¥ § ¤ ç¨ (35) ¨¬¥¥â ¢¨¤
(x; y )
=
Z1
( )G(; 0; x; y ) d
0
,
Zy
+
Zy
e1 h '1 (h)G (0; h; x; y ) dh
0
e1 h '2 (h)G (1; h; x; y ) dh;
0
£¤¥ G(; h; x; y) | äãªæ¨ï ਠ¯¥à¢®© ªà ¥¢®© ®¤®à®¤®© § ¤ ç¨ (35). ©¤¥¬
¯à®¨§¢®¤ãî uy , § ⥬ ¢ ¯®«ã祮¬ à ¢¥á⢥ ¯®«®¦¨¬ y = 0. 㤥¬ ¨¬¥âì
v (x)
£¤¥
=
K (x; )
(x) =
@u
@y y=0
=
Z1
K (x; ) ( ) d
+ (x);
(36)
0
,
= 1 G(; 0; x; 0) + Gx (; 0; x; 0)
8
2 y
Z
<
@
y
1
4
e
e1 h '1 (h)G (0; h; x; y ) dh
@y :
,
0
Zy
0
;
39
=
h
1
5
:
e '2 (h)G (1; h; x; y ) dh
;
®¤áâ ¢«ïï ⥯¥àì (15) ¢ à ¢¥á⢮ (36), ¯®«ã稬
v (x)
=
Z1
e (x; )v ( ) d
K
+ (x);
0
£¤¥
e (x; )
K
=
Z1
0
K (x; )G(; 1 ; 1 ) d:
(37)
2{30
. . «¥¥¢, . . ¥«å ஥¢
¡®§ 稬 ç¥à¥§ N (x; ) १®«ì¢¥âã ãà ¢¥¨ï (37), à¥è¥¨¥ í⮣® ãà ¢¥¨ï
¬ë ¬®¦¥¬ ¯à¥¤áâ ¢¨âì ¯® ä®à¬ã«¥
v (x)
= (x) +
Z1
N (x; ) ( ) d:
(38)
0
®¤áâ ¢«ïï ¢ëà ¦¥¨¥ (38) ¤«ï v(x) ¢ ä®à¬ã«ã (34) ¯®«ã稬 ®â®á¨â¥«ì® !0 , x2
¨â¥£à «ì®¥ ãà ¢¥¨¥ ।£®«ì¬ ¢â®à®£® த
!0
x
,2 =
Z1
M (x; )! 0
0
, 2
d + (x);
(39)
£¤¥ (x) = P (x) , v(x).
ª ª ª íª¢¨¢ «¥â®áâì ¢áî¤ã á®åà ï¥âáï, â® ¨§ ¥¤¨á⢥®á⨠à¥è¥¨ï § ¤ ç¨ 1 á«¥¤ã¥â ®¤®§ ç ï à §à¥è¨¬®áâì ¨â¥£à «ì®£® ãà ¢¥¨ï (39).
«®£¨çë¬
®¡à §®¬ ¬®¦® ¯®«ãç¨âì ¨â¥£à «ì®¥ ãà ¢¥¨¥ (39) ®â®á¨â¥«ì
x
,
1
0
® ! 2 . ª¨¬ ®¡à §®¬, ®¯à¥¤¥«¥ë äãªæ¨¨ (x); v(x); !(y). «¥¤®¢ ⥫ì®,
®¯à¥¤¥«¥ äãªæ¨ï u(x; y) ¢ ®¡« áâ¨
. B
¨â¥à âãà
1. « å¨â¤¨®¢ . . à ¢¥¨ï á¬¥è ®-á®áâ ¢®£® ⨯ .| 誥â: , 1974.|156 á.
2. ¡¨â®¢ . . ⥮ਨ ãà ¢¥¨© á¬¥è ®£® ¯ à ¡®«®-£¨¯¥à¡®«¨ç¥áª®£® ⨯ ᮠᯥªâà «ìë¬ ¯ à ¬¥â஬ // ¨ää¥à¥æ. ãà ¢¥¨ï.|1989.|. 25, ü 1.|. 117{126.
3. § ஢ . ¤ ç ¨à¨å«¥ ¤«ï ®¤®£® ãà ¢¥¨ï á¬¥è ®£® ⨯ // §¢.
, á¥à.
䨧.-¬ â. ãª.|1984.|ü 6.|. 81{84.
4. ¥àᥢ ®¢ . . â¥à 樮®¥ ¨áç¨á«¥¨¥ ¨ ¥£® ¯à¨«®¦¥¨ï.|.: èáâன¨§¤ â, 1950.|69 á.
5. ¨å®®¢ . ., ¬ à᪨© . . à ¢¥¨ï ¬ ⥬ â¨ç¥áª®© 䨧¨ª¨.| .: 㪠, 1977.|716 á.
«ì稪
â âìï ¯®áâ㯨« 18 ¯à¥«ï 2002 £.