MATEMATIKA SENI & PARIWISATA KODE B (82)
K M S L A SMK N MATEMATIKA
IO Kelompok Pariwisata, Seni dan S Kerajinan, Teknologi A Kerumahtanggaan, Pekerjaan
N Sosial dan Adm. Perkantoran
NKerjasama A JI UNIVERSITAS U GUNADARMA A R dengan
P
6 Dinas Pendidikan Provinsi DKI
1 Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon
2 /
5
1
P E T U N J U K U M U M
1. Sebelum mengerjakan ujian, telitilah terlebih dahulu jumlah dan nomor halaman yang terdapat pada naskah ujian.
2. Tulislah nomor peserta saudara pada lembar jawaban, sesuai dengan petunjuk yang diberikan oleh panitia.
3. Bacalah dengan cermat setiap petunjuk yang menjelaskan cara menjawab soal.
4. Jawablah dahulu soal-soal yang menurut saudara mudah, kemudian lanjutkan dengan menjawab soal-soal yang lebih sukar sehingga semua soal terjawab.
5. Tulislah jawaban saudara pada lembar jawaban ujian yang disediakan dengan cara dan petunjuk yang telah diberikan oleh petugas.
6. Untuk keperluan coret-mencoret dapat menggunakan tempat yang luang pada naskah ujian ini dan jangan sekali-kali menggunakan lembar jawaban.
7. Selama ujian saudara tidak diperkenankan bertanya atau minta penjelasan mengenai soal-soal yang diujikan kepada siapapun, termasuk pengawas ujian.
8. Setelah ujian selesai, harap saudara tetap duduk di tempat saudara sampai pengawas datang ke tempat saudara untuk mengumpulkan lembar jawaban.
9. Perhatikan agar lembar jawaban ujian tidak kotor, tidak basah, tidak terlipat dan tidak sobek.
10. Jumlah soal sebanyak 40 butir, setiap butir soal terdiri atas 5 (lima) pilihan jawaban.
82
11. Kode naskah ujian ini
3 4
5 x y z 1. Bentuk sederhana dari adalah ... . xyz 10 y A. 15 y 16 x
B. 19
y 15 y C. 20 x 19 y D. 16 y 15 y E. 10 x 3 3 3 2. Diketahui log 2 = a dan log 5 = b, maka log 150 = … .
A. 1 + 2a + b
B. 1 + a + 2b 2 C. 1 + a + b 2 D. 1 + a + b
E. 1 + a + b 5 5 5 3. Nilai dari log 150 – log 24 + log 4 = ... .
A. – 2
B. 1
C. 2
D. 5
E. 25 4. Bentuk sederhana dari adalah ... .
A.
B.
C.
D.
E.
5. Bentuk sederhana dari adalah ... .
A.
B.
C.
D.
E.
3 x 4 y
1
6. Jika x dan y adalah penyelesaian dari sistem persamaan linear :
4 x 3 y
32 Maka nilai 7x – y adalah … .
A. 8
B. 12
C. 30
D. 31
E. 35 2
7. Jika dan β merupakan akar-akar dari persamaan kuadrat x + 4x + 3 = 0,
2
2 nilai dari + β = ... .
A. 22
B. 10
C. –10
D. –17
E. –22
8. Dikatahui dan merupakan akar-akar dari persamaan . Persamaan kuadrat yang akar-akarnya dan adalah … .
A.
B.
C.
D.
E. 2 9. Himpunan penyelesaian pertidaksamaan kuadrat 2x – 5x + 3 ≤ 0 adalah … .
3
A. { x | -1 ≤ x ≤ }
2
3 B. { x | 1 ≤ x ≤ }
2
3 C. { x | x ≤ -1 atau x }
2
3
D. { x | ≤ x ≤ 1 }
2
3
E. { x | x ≤ atau x 1}
2
10. Ramzi, Ifan, dan Dika belanja di toko alat tulis. Ramzi membeli 2 buku tulis dan 3 penggaris dengan harga Rp22.000,00 dan Irfan membeli 3 buku tulis dan 2 penggaris dengan harga Rp20.500,00. Jika Dika membeli 1 buku dan 2 penggaris, maka harus membayar sebesar … .
A. Rp3.000,00
B. Rp5.500,00
C. Rp8.500,00
D. Rp11.000,00
E. Rp13.500,00
2 x y
2
4
1 T
11. Diketahui matriks A = dan B = . Jika A = B , maka nilai dari x dan y
1
3
2
3
berturut-turut adalah ... .
A. – 2 dan – 4
B. – 4 dan – 2
C. – 2 dan 4
D. 4 dan 2
E. 2 dan 4
4
1
3
2
2
6 12. Jika matriks A = B = dan C = maka 2A – B + C adalah ... .
2
5
1
4
7
2
A.
1
3
9
2
B.
1
3
3
6 C.
1
3
3
6 D.
9
5
9
2 E.
1
5
3
2
5 13. Jika matriks K = dan L = maka L = … . K
4
1
6
27
26 A.
16 B.
16 27
C.
26
8
8 D.
9
7
12
12 E.
20
6
5
2 14. Diketahui matriks A = . Determinan matriks A adalah ... . 4
1
A. – 3
B. – 1
C. 1
D. 3
E. 13
2
3
- -1 15. Invers dari matriks dari p = adalah P = ... .
3
6
2 1
A.
3
1
2
2
1
2 B.
1
3
2
1
2 C.
1
3
2 E.
C. Rp280.000,00
; ; 750 300 3 ; y x y x y x adalah … .
A. 1.500
B. 1.626
C. 2.500
D. 2.625
E. 2.800
18. Rina membuat kue tart dan puding sebanyak 18 loyang dengan modal Rp840.000,00. Biaya untuk membuat satu loyang tart dan satu loyang puding masing-masing Rp60.000,00 dan Rp40.000,00. Jika dijual akan menghasilkan keuntungan masing – masing sebesar Rp20.000,00 dan Rp10.000,00, maka keuntungan maksimum yang dapat diperoleh Rina adalah ... .
A. Rp180.000,00
B. Rp240.000,00
D. Rp320.000,00
10 5 ,
E. Rp360.000,00 19. Sebuah titik P(2, -3) bila didilatasi dengan skala 2 dan pusat O(0,0). Tentukan bayangannya.
A. P ( 2, 3 )
B. P (– 2, 3 )
C. P ( 2, – 6 )
D. P ( 4, – 3 )
E. P ( 4, – 6 )
20. Sebuah titik Q(-4, 3) bila didilatasi dengan skala 2 dan pusat O(0,0), kemudian dirotasi sebesar 90 . Bayangan titik Q adalah … .
A. Q ( –6, –8 )
B. Q (–8, –6 )
dari sistem pertidaksamaan linier
D.
3
2
1
1
3
2
I II X O 3 6
1
1
2 16. Daerah yang memenuhi sistem pertidaksamaan 4x + 3y ≥ 12, x + 2y ≤ 6, x ≥ 0, y ≥ 0 adalah … .
Y
A. I
B. II 4
C. III V
D. IV IV III
E. V 3
17. Nilai maksimum fungsi objektif y x y x f
C. Q ( 8, –6 )
D. Q ( –6, 8 )
E. Q ( 6, 8 ) o
21. Suatu segitiga PQR panjang sisi PR = 6 cm, QR = 8 cm. Jika besar sudut PRQ = 60 maka panjang sisi PQ = ... .
A.
2 cm
2
5 B. cm
2
13 C. cm
2
19 D. cm
2
37 E. cm
4
22. Diketahui tan 3 untuk 90 < < 180, maka sin = … .
4
A.
5
3
B.
5
3 C.
4
3 D.
5
4 E.
5 23. Pada segitiga ABC, AB = 24 cm, sudut ACB= 45 dan sudut BAC= 30 . Panjang BC = ... .
8
3 A. cm
8
6 B. cm
12
2 C. cm
24
2 D. cm
12
6 E. cm
24. Segitiga ABC. Panjang AB = 30, Panjang BC = 16 dan besar sudut BAC adalah 30 . Luas segitiga ABC adalah … .
A. 15
B. 30
C. 120
D. 240
E. 480 25. Rumus suku ke-n dari barisan aritmetika 48, 42, 36, 30, 24, … adalah … .
A. Un = 54 – 6n
B. Un = 52 – 6n
C. Un = 50 – 2n
D. Un = 50n – 2
E. Un = 6n + 42
26. Suku ke-4 dan suku ke-7 barisan aritmatika berturut – turut adalah 5 dan 20. Suku ke-31 barisan tersebut adalah ... .
A. 140
B. 145
C. 150
D. 155
E. 160
27. Dari suatu deret aritmetika diketahui U 5 = 36 dan U 9 = 52, maka jumlah 10 suku pertama deret tersebut adalah … .
A. 340
B. 350
C. 360
D. 370
E. 380
28. Gaji pokok seorang karyawan pabrik pada bulan pertama sebesar Rp1.050.000,00. Karena prestasi kerjanya bagus, perusahaan menaikkan gajinya sebesar Rp50.000,00 setiap bulannya.
Maka jumlah gaji karyawan tersebut selama 1 tahun adalah… .
A. Rp20.920.000,00
B. Rp15.900.000,00
C. Rp15.535.000,00
D. Rp14.980.000,00
E. Rp12.000.300,00
1
29. Suku pertama dari deret geometri adalah 9. Jika suku ke-5 deret tersebut , maka rasio dari
3 deret tersebut adalah … .
1 A.
27
1 B.
9
1 C.
3 D. 3
E. 9
30. Pertambahan penduduk suatu kelurahan setiap tahun mengikuti deret geometri. Pada tahun 2003 pertambahannya 42 dan pada tahun 2005 pertambahannya 168. Pertambahan penduduk pada tahun 2008 adalah ... .
A. 336
B. 572
C. 672
D. 1344
E. 2688
31. Jumlah tak hingga deret geometri adalah 18. Jika suku pertamanya 12, maka rasio deret tersebut adalah ... .
2 A.
3
1 B.
3
1 C.
4
1 D.
5
1 E.
6
32. Diagram lingkaran di samping menunjukkan tentang olahraga yang digemari siswa disuatu SMK yang jumlah siswanya 360 orang.
Banyak siswa yang gemar olahraga karate adalah ... .
K
A. 36 siswa
V 25%
B. 54 siswa
C. 72 siswa
D. 90 siswa
R 30% SB 10%
E. 108 siswa
B 15%
33. Nilai rata – rata ujian matematika dari 10 siswa adalah 7,50. Jika ditambah dengan nilai dua siswa yang mengikuti ujian susulan nilai rata – ratanya menjadi 7,60. Rata – rata nilai siswa yang mengikuti ujian susulan adalah ... .
A. 7,25
B. 7,50
C. 8,00
D. 8,10
E. 8,50
34. Diketahui data absensi siswa suatu kelas dalam satu semester adalah sebagai berikut : Absensi (hari)
3
4
5
6
7
8 Frekuensi
4
3
6
4
2
1 Maka rata – rata absen siswa adalah ... .
A. 3 hari
B. 4 hari
C. 5 hari
D. 6 hari
E. 7 hari 35. Nilai rata – rata dari data pada tabel frekwensi kelompok di bawah ini adalah ... .
Nilai f 40 – 46
4 A. 58,8 47 – 53
10 B. 58,4 54 – 60
17 C. 58,0 61 – 67
12
68 – 74
5 D. 57,8 75 – 81
2 E. 57,6 Jumlah
50 36. Modus dari tabel di bawah ini adalah ... .
Nilai Frekuensi 140 – 144
3 A. 155 145 – 149
6 B. 156 150 - 154
12 C. 157 155 - 159
15 D. 158 160 - 164
8 E. 159 165 - 169 10 170 - 174
6 37. Simpangan rata – rata dari data : 4, 6, 5, 3, 2 adalah ... .
A. 0,1
B. 1
C. 1,5
D. 2
E. 4 38. Rata – rata harmonis dari data : 3, 4, 6, adalah ... .
A. 0,25
B. 2,25
C. 4
D. 4,33
E. 6 39. Nilai desil ke-6 dari tabel berikut adalah ... .
Berat badan(kg) Frekuensi 50 – 54 2 55 – 59 6 60 – 64
12 65 – 69 10 70 – 74
7 75 – 79
3 Jumlah
40 A. 62,50
B. 63,25
C. 64,50
D. 65,50
E. 66,50 40. Simpangan baku dari data : 7, 8, 10, 7, 8 adalah ... .
1 ,
2 A.
5 B.
6 C.
7 D.