Directory UMM :wiley:Public:journals:jcc:suppmat:21:

Supplementary Material for
“All-atom empirical force field for nucleic acids: 2) Application to molecular
dynamics simulations of DNA and RNA in solution.”
Alexander D. MacKerell, Jr. and Nilesh K. Banavali

Supplementary Material Figure Legends
Figure 1) RMS differences versus time from solution MD simulations of the EcoRI dodecamer (A), the
CATTTGCATC decamer (B) and the RNA UAAGGAGGUGUA dodecamer (C). RMS differences are
for all non-hydrogen atoms excluding the terminal residues following least-squares fitting to the
canonical A (bold lines) and B (thin lines) forms of the respective sequences.
Figure 2) Probability distributions from an MD simulation of the CATTTGCATC decamer (bold lines)
and from a survey of the B structures in the NDB (thin lines) as a function of the dihedral angles  (A),
 (B),  (C),  (D),  (E),  (F), and  (G).
Figure 3) Probability distributions from an MD simulation of the CTCGAG hexamer (bold lines) in
aqueous solution starting from the canonical B form of DNA and from a survey of the B structures in the
NDB (thin lines) as a function of the dihedral angles  (A),  (B),  (C),  (D),  (E),  (F), and  (G).
Sampling was performed over the 500 to 2000 ps portion of the trajectory.
Figure 4) Probability distributions of the sugar puckering amplitudes from MD simulations (bold lines)
of the A) EcoRI dodecamer, B) CATTTGCATC decamer, C) RNA UAAGGAGGUGUA dodecamer,
D) CTCGAG hexamer in 75 % ethanol (initiated from A DNA) and E) the CTCGAG hexamer in
aqueous solution (initiated from B DNA). Thin lines represent the sugar puckering ampltude

probability distributions from a survey of the NDB for B (A, B and E) and A (D) form DNA structures
and for RNA structures (C).
Figure 5) Selected helicoid parameters from the EcoRI MD simulations (B with bold line) and crystal
structures of EcoRI dodecamer. NDB identifiers for the crystal structures are bd0005 (J),72 bdl001
(H),73 bdl002 (F),74 bdl005 (G),75 and bdl020 (E).76 Helicoidal parameters were calculated via the
FREEHELIX program.34
Figure 6) Stereodiagram (cross eye) of the EcoRI dodecamer including all water oxygens (triangles)
within 3.5 Å of the minor groove (excluding the terminal base pairs). The structure is the snapshot at 3
ns of the EcoRI MD solution simulation. The upper and lower images represent an approximately 90˚
rotation about the helical axis. Minor groove is defined as the purine N2, N3 or pyrimidine O2 atoms.
Image created with the MIDAS package.97 Color representations of this figure can be found on the
www page of ADM Jr. at www.pharmacy.ab.umd.edu/~alex.

Figure 7) RMS differences versus time from the solution MD simulation of the EcoRI dodecamer
performed using atom truncation for treatment of the electrostatic interactions. RMS differences are for
all non-hydrogen atoms excluding the terminal residues following least-squares fitting to the canonical
A (bold lines) and B (thin lines) forms of the respective sequences.
Figure 8) Probability distributions from the solution MD simulation of the EcoRI dodecamer (bold lines)
performed using atom truncation for treatment of the electrostatic interactions and from a survey of the
B structures in the NDB (thin lines) as a function of the dihedral angles  (A),  (B),  (C),  (D),  (E),

 (F),  (G) and pseudorotation angle (H).

Figure 1)
6

4

2

A
0
6

4

2

B
0
8


6

4

2

C
0
0

500

1000

1500

Time (picoseconds)

2000


2500

3000

Figure 2)
0.04

A

0.02
0
0.04

B

0.02
0
0.04


C

0.02
0
0.04

D

0.02
0
0.04

E

0.02
0
0.04

F


0.02
0
0.04

G

0.02
0
0

60

120

180

Dihedral Angle (degrees)

240


300

360

Figure 3)
0.04

A

0.02
0
0.04

B

0.02
0
0.04

C


0.02
0
0.04

D

0.02
0
0.04

E

0.02
0
0.04

F

0.02

0
0.04

G

0.02
0
0

60

120

180

Dihedral Angle (degrees)

240

300


360

Figure 4)
0.06

A

0.04

0.02
0

0.06

B

0.04

0.02


0

C

0.08

0.04

0

0.06

D

0.04
0.02

0

0.06

E

0.04

0.02
0
0

20

40
Amplitude (degrees)

60

80

Figure 5)
4.5
F

H
Ñ

4
3.5

Ñ
H
J
É
F

1

1ÑH
É
F
3

J

É
J
1ÑFH

A

J
1ÑH
É
F

1ÉÑH
F
J

1
JF
1ÉÑH



1

1FÉ

Ñ
1ÉH
F
J

H

F

H
Ñ
F
É
J

1

2.5
15

1F

10
5
0
-5

J
É
H
Ñ

1
F
Ñ
H
É
J

J

1ÉÑH
F



F
Ñ
H
J

1


Ñ
H

B

-10

Ñ
H
F
J
É

H
Ñ
J

1
É

F
H

Ñ
É
H
J
F

0

1



Ñ
J
H

1

Ñ
H
É
F
J

Ñ
H
É
F
J

JH
Ñ
É

1

H
Ñ
F

Ñ

J

C

É

J
Ñ
H

F

0.5

1J
1

1F

1F

H

Ñ

H
É
Ñ
J

1

H
Ñ
F

1

F

1

1

J

F

-0.5
1

0

J
É
F
Ñ
H

F
É
H
Ñ
J

Ñ
É
H
JF

1

1

F
1HÑÉ
J

D

1ÉÑFHJ

1ÑFHJÉ

1ÑÉFH
J

1ÑFH

1

É
J

F
É
Ñ
H
J

1

1ÉÑJ
F
H

-1
5

1
É
0

É

F
H

J
H
F



1
E

1ÉÑ
H
F
J

Ñ
J
H
É

H
J
Ñ


H
É
Ñ
J

F

É
J
1ÑH
F

F


1H
J
Ñ
F
É

1

-5

1

J
F
H
Ñ

Ñ
H

F

45

35

J
H
Ñ
F
É

F
1FÑH
É
J

1

J
H

1ÉÑF



2

3

F
J
É
Ñ
H

É

1ÑFHJ

1
1

1

J
Ñ
F
H

25

4

É
H
Ñ
J
F

H
Ñ
J
F
É

5

6
Residue

1

1FHÑJ
É

É
F
Ñ
J
H

7

8

9

10

11

Figure 6) EcoRI stereodiagram with waters

Figure 7)

6
5
4
3
2
1
0
0

400

800
Time (picoseconds)

1200

1600

2000

Figure 8

0.04

A

0.02
0
0.04

B

0.02
0
0.04

C

0.02
0
0.04

D

0.02
0
0.04

E

0.02
0
0.04

F

0.02
0
0.04

G

0.02
0
0.04

H

0.02
0
0

60

120

180

Dihedral Angle (degrees)

240

300

360