PCD Lanjut Pertemuan 2 GLCM

PCD Lanjut – Pertemuan 2 Gray-Level Co- occurrence Matrix (GLCM) P r a j a n t o W a h y u A d i

  [email protected]

  • 6285 641 73 00 22

  PCD Lanjut

  1 Pengujian Kualitas Citra

  3 Principal Component Analysis (PCA)

  5 K-Nearest Neighbor (KNN)

  • Presentasi Tugas Besar*

  6 Jaringan Syaraf Tiruan (JST) 7 *Responsi*

  # Pokok Bahasan

  8 Modulus Function (MF) pada domain Integer Wavelet Transform (IWT)

  9 Chinese Remainder Theorem (CRT) pada domain IWT

  10

  11 Kompresi Lossy

  12

  13 Kompresi Loseless

  14

  Ujian Akhir Semester

PCD Lanjut Rencana Kegiatan Perkuliahan Semester # Pokok Bahasan

  • GLCM

  1

  • Contrast

  2

  • Correlation

  3

  • Energy

  4

  • Homogeneity

  5

  • Hasil Ekstraksi Fitur GLCM

  6

PCD Lanjut Content

  • 6285 641 73 00 22

  PCD Lanjut

  [email protected]

GLCM

  • GLCM adalah sebuah teknik untuk mendapatkan nilai statistik orde ke-2 dengan menghitung probabilitas hubungan kedekatan antara dua buah piksel pada jarak (d) dan sudut (θ) tertentu (Rahmanti, 2017).

  PCD Lanjut

GLCM

  • Nilai θ yang banyak adalah 0 , 45 , 90 , dan 135

  PCD Lanjut

  Contoh:

  • Diketahui sebuah citra 3-bit sebagai berikut: bentuklah GLCM dengan jarak 1 dan θ = 0 ([0 1]) !

  3

  5

  7

  2

  4

  1

  6

  3

  5

PCD Lanjut GLCM

  • Membentuk GLCM [0 1]:

  0 0 0 0 0 0 0 0

  0 0 0 0 0 0 0 0

  7

  0 0 0 1 0 0 0 0

  6

  0 0 0 0 0 0 0 1

  5

  0 1 0 0 0 0 0 0

  4

  0 0 0 0 0 2 0 0

  3

  0 0 0 0 1 0 0 0

  2

  0 0 0 0 0 0 0 0

  1

  7

  Contoh:

  6

  3

  5

  7

  2

  4

  1

  3

  6

  5 i j

  1

  2

  3

  4

  5

PCD Lanjut GLCM

  • Membentuk GLCM [0 1]:

  0 0 0 0 1

  7

  2

  Contoh:

  4

  1

  6

  3

  5

  0 0 0

  / 6

  2

  3

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  7

  6

  5

  4

  3

  2

  1

  5

Setelah Normalisasi = i j

  0 0 0 1

  / 6

  0 0 0 0

  7

  0 0 0 0 0 0 0 0

  6

  / 6

  0 0 0 0 0 0 0 1

  5

  4 1 / 6

  0 0

  / 6

  0 0 0 0 0 2

  3

  0 0 0 0 0 0

PCD Lanjut GLCM

GLCM

  • Ekstraksi fitur (feature extraction) tekstur GLCM menghasilkan beberapa fitur, antara lain:
    • – Contrast – Correlation – Energy – Homogeneity

  PCD Lanjut

  • 6285 641 73 00 22

  PCD Lanjut

  [email protected]

  • Contrast merupakan fitur yang merepresentasikan perbedaan tingkat warna atau skala keabuah (grayscale) yang muncul pada sebuah citra
  • Contrast akan bernilai 0 jika piksel

    ketetanggaan mempunyai nilai yang sama

  •  

PCD Lanjut Contrast

  • Hitunglah Contrast dari GLCM berikut: i j

  4 1 / 6

  0 0 0 0 0 0 0 0

  7

  0 0 0 0

  / 6

  0 0 0 1

  6

  / 6

  0 0 0 0 0 0 0 1

  5

  0 0 0 0 0 0

  0 0

  Contoh:

  / 6

  0 0 0 0 0 2

  3

  0 0 0

  / 6

  0 0 0 0 1

  2

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

PCD Lanjut Contrast

  • Hitunglah Contrast dari GLCM berikut: i j

  / 6

  Con

      

  2 ) 4 , 2 (

  1 ) 4 2 (

  6

  4

  6

  667 ,

  0 0 0 0 0 0 0 0

  7

  0 0 0 0

  / 6

  0 0 0 1

  6

  0 0 0 0 0 0 0 1

  Contoh:

  5

  0 0 0 0 0 0

  4 1 / 6

  0 0

  / 6

  0 0 0 0 0 2

  3

  0 0 0

  / 6

  0 0 0 0 1

  2

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

PCD Lanjut Contrast

  • Hitunglah Contrast dari GLCM berikut: i j

  6

  Con

      

  2 ) 5 , 3 (

  2 ) 5 3 (

  6

  8

  6

  1

  333 ,

  0 0 0 0 0 0 0 0

  7

  0 0 0 0

  / 6

  0 0 0 1

  / 6

  Contoh:

  0 0 0

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  3

  0 0 0 0 0 0 0 1

  0 0 0 0 0 2

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

  5

PCD Lanjut Contrast

  • Hitunglah Contrast dari GLCM berikut: i j

  6

  Con

      

  2 ) 1 , 4 (

  1 ) 1 4 (

  6

  9

  6

  1

  5 ,

  0 0 0 0 0 0 0 0

  7

  0 0 0 0

  / 6

  0 0 0 1

  / 6

  Contoh:

  0 0 0

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  3

  0 0 0 0 0 0 0 1

  0 0 0 0 0 2

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

  5

PCD Lanjut Contrast

  • Hitunglah Contrast dari GLCM berikut: i j

  / 6

  Con

      

  2 ) 7 , 5 (

  1 ) 7 5 (

  6

  4

  6

  667 ,

  0 0 0 0 0 0 0 0

  7

  0 0 0 0

  / 6

  0 0 0 1

  6

  0 0 0 0 0 0 0 1

  Contoh:

  5

  0 0 0 0 0 0

  4 1 / 6

  0 0

  / 6

  0 0 0 0 0 2

  3

  0 0 0

  / 6

  0 0 0 0 1

  2

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

PCD Lanjut Contrast

  • Hitunglah Contrast dari GLCM berikut: i j

  6

  Con

      

  2 ) 3 , 6 (

  1 ) 3 6 (

  6

  9

  6

  1

  5 ,

  0 0 0 0 0 0 0 0

  7

  0 0 0 0

  / 6

  0 0 0 1

  / 6

  Contoh:

  0 0 0

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  3

  0 0 0 0 0 0 0 1

  0 0 0 0 0 2

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

  5

PCD Lanjut Contrast

  • Hitunglah Contrast dari GLCM berikut: i j

  34

  0 0 0 0

  7

  0 0 0 0 0 0 0 0

  667 ,

  5

  6

  6

  0 0 0 1

  9

  4

  9

  8

  4  

       Con

  / 6

  6

  Contoh:

  0 0 0

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  3

  / 6

  0 0 0 0 0 2

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

  5

  0 0 0 0 0 0 0 1

PCD Lanjut Contrast

P r a j a n t o W a h y u A d i

  • 6285 641 73 00 22

  PCD Lanjut

  [email protected]

Correlation

  •   • Correlation merepresentasikan keterkaitan

  linear dari derajat dari citra keabuan

  • Correlation bernilai antara -1 hingga 1

  PCD Lanjut

Correlation

  •  
  • Correlation merepresentasikan keterkaitan linear dari derajat dari citra keabuan
  • Correlation bernilai antara -1 hingga 1 Dimana:

    PCD Lanjut

  • Hitunglah Correlation dari GLCM berikut: i j

  4 1 / 6

  0 0 0 0 0 0 0 0

  7

  0 0 0 0

  / 6

  0 0 0 1

  6

  / 6

  0 0 0 0 0 0 0 1

  5

  0 0 0 0 0 0

  0 0

  Contoh:

  / 6

  0 0 0 0 0 2

  3

  0 0 0

  / 6

  0 0 0 0 1

  2

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

PCD Lanjut Correlation

  • Menghitung :
  •  

  6

  0 0 0 0 0 0 0 0

  833 ,

  3

  6

  23

  6

  1

  1

  0 0 0 0

  5

  1

  4

  2

  3

  1

  2  

            ui

  7

  / 6

  Contoh:

  3

  i j

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  0 0 0

  0 0 0 0 0 2

  0 0 0 1

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

  5

  0 0 0 0 0 0 0 1

  / 6

  6

PCD Lanjut Correlation

  • Menghitung :
  •  

  7

  0 0 0 0 0 0 0 0

  167 ,

  4

  6

  25

  6

  1

  2

  0 0 0 0

  5

  1

  4

  1

  3

  1

  1  

            uj

  7

  / 6

  Contoh:

  3

  i j

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  0 0 0

  0 0 0 0 0 2

  0 0 0 1

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

  5

  0 0 0 0 0 0 0 1

  / 6

  6

PCD Lanjut Correlation

  • Menghitung :
  •  

  1

  7

  0 0 0 0 0 0 0 0

  56 , 216 121

  6

  1

  36 121

  6

  6

  / 6

  23

  2

  2 ) 4 , 2 (

      

     

      i

  

  0 0 0 0

  0 0 0 1

  Contoh:

  0 0 0

  i j

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  3

  6

  0 0 0 0 0 2

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

  5

  0 0 0 0 0 0 0 1

  / 6

PCD Lanjut Correlation

  • Menghitung :
  •  

  6

  0 0 0 0 0 0 0 0

  231 , 216

  50

  6

  2

  36

  25

  2

  0 0 0 0

  6

  23

  3

  2 ) 5 , 3 (

      

     

      i

  

  7

  / 6

  Contoh:

  3

  i j

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  0 0 0

  0 0 0 0 0 2

  0 0 0 1

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

  5

  0 0 0 0 0 0 0 1

  / 6

  6

PCD Lanjut Correlation

  • Menghitung :
  •  

  6

  0 0 0 0 0 0 0 0

  005 , 216

  1

  6

  1

  36

  1

  1

  0 0 0 0

  6

  23

  4

  2 ) 1 , 4 (

      

     

      i

  

  7

  / 6

  Contoh:

  3

  i j

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  0 0 0

  0 0 0 0 0 2

  0 0 0 1

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

  5

  0 0 0 0 0 0 0 1

  / 6

  6

PCD Lanjut Correlation

  • Menghitung :
  •  

  6

  0 0 0 0 0 0 0 0

  227 , 216

  49

  6

  1

  36

  49

  1

  0 0 0 0

  6

  23

  5

  2 ) 7 , 5 (

      

     

      i

  

  7

  / 6

  Contoh:

  3

  i j

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  0 0 0

  0 0 0 0 0 2

  0 0 0 1

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

  5

  0 0 0 0 0 0 0 1

  / 6

  6

PCD Lanjut Correlation

  • Menghitung :
  •  

  1

  7

  0 0 0 0 0 0 0 0

  782 , 216 169

  6

  1

  36 169

  6

  6

  / 6

  23

  6

  2 ) 3 , 6 (

      

     

      i

  

  0 0 0 0

  0 0 0 1

  Contoh:

  0 0 0

  i j

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  3

  6

  0 0 0 0 0 2

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

  5

  0 0 0 0 0 0 0 1

  / 6

PCD Lanjut Correlation

  • Menghitung :
  •  

  1

  0 0 0 1

  / 6

  0 0 0 0

  7

  0 0 0 0 0 0 0 0

  343 ,

  36

  / 6

  65 216 390 216

  169

  49

  1 50 121     

     i

  

  6

  0 0 0 0 0 0 0 1

  Contoh:

  / 6

  i j

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  0 0 0

  5

  3

  0 0 0 0 0 2

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

PCD Lanjut Correlation

  • Menghitung :
  •  

  6

  7

  0 0 0 0 0 0 0 0

  671 ,

  1 216 361

  6

  1

  36 361

  1

  / 6

  6

  25

  1

  2 ) 1 , 4 (

      

     

      j

  

  0 0 0 0

  0 0 0 1

  Contoh:

  0 0 0

  i j

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  3

  6

  0 0 0 0 0 2

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

  5

  0 0 0 0 0 0 0 1

  / 6

PCD Lanjut Correlation

  • Menghitung :
  •  

  6

  0 0 0 0 0 0 0 0

  227 , 216

  49

  6

  1

  36

  49

  1

  0 0 0 0

  6

  25

  3

  2 ) 3 , 6 (

      

     

      j

  

  7

  / 6

  Contoh:

  3

  i j

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  0 0 0

  0 0 0 0 0 2

  0 0 0 1

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

  5

  0 0 0 0 0 0 0 1

  / 6

  6

PCD Lanjut Correlation

  • Menghitung :
  •  

  6

  0 0 0 0 0 0 0 0

  005 , 216

  1

  6

  1

  36

  1

  1

  0 0 0 0

  6

  25

  4

  2 ) 4 , 2 (

      

     

      j

  

  7

  / 6

  Contoh:

  3

  i j

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  0 0 0

  0 0 0 0 0 2

  0 0 0 1

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

  5

  0 0 0 0 0 0 0 1

  / 6

  6

PCD Lanjut Correlation

  • Menghitung :
  •  

  6

  0 0 0 0 0 0 0 0

  231 , 216

  50

  6

  2

  36

  25

  2

  0 0 0 0

  6

  25

  5

  2 ) 5 , 3 (

      

     

      j

  

  7

  / 6

  Contoh:

  3

  i j

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  0 0 0

  0 0 0 0 0 2

  0 0 0 1

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

  5

  0 0 0 0 0 0 0 1

  / 6

  6

PCD Lanjut Correlation

  • Menghitung :
  •  

  6

  7

  0 0 0 0 0 0 0 0

  338 ,

  1 216 289

  6

  1

  36 289

  1

  / 6

  6

  25

  7

  2 ) 7 , 5 (

      

     

      j

  

  0 0 0 0

  0 0 0 1

  Contoh:

  0 0 0

  i j

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  3

  6

  0 0 0 0 0 2

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

  5

  0 0 0 0 0 0 0 1

  / 6

PCD Lanjut Correlation

  • Menghitung :
  •  

  / 6

  

     j

  1 49 361     

  50

  216 289

  36 125 216 750

  1

  863 ,

  0 0 0 0 0 0 0 0

  7

  0 0 0 0

  / 6

  0 0 0 1

  6

  0 0 0 0 0 0 0 1

  Contoh:

  / 6

  i j

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  0 0 0

  5

  3

  0 0 0 0 0 2

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

PCD Lanjut Correlation

  2 ) 4 , 2 (

  • Menghitung Correlation: i j

  6

  11

  36 125

  36

  65

  6

  1

  6

  25

  4

  6

  23

    

  6

   

    

    

      

    

   

   

    

    

      

    

   

  Corr

  1

  1

  Contoh:

  0 0 0 0 0 0

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  0 0 0

  3

  0 0 0 0 0 2

  / 6

  0 0

  4 1 / 6

  5

  6

  0 0 0 0 0 0 0 1

  / 6

  6

  0 0 0 1

  / 6

  0 0 0 0

  7

  0 0 0 0 0 0 0 0 02 , 125

  65

  6

  11

  36 125

  65

PCD Lanjut Correlation

  3 ) 5 , 3 (  

  • Menghitung Correlation: i j

  6

  5

  36 125

  36

  65

  6

  2

  6

  25

  5

  6

  23

    

  6

   

     

    

     

    

   

   

    

    

      

    

   

  Corr

  5

  2

  Contoh:

  0 0 0 0 0 0

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  0 0 0

  3

  0 0 0 0 0 2

  / 6

  0 0

  4 1 / 6

  5

  6

  0 0 0 0 0 0 0 1

  / 6

  6

  0 0 0 1

  / 6

  0 0 0 0

  7

  0 0 0 0 0 0 0 0 093 , 125

  65

  6

  50

  36 125

  65

PCD Lanjut Correlation

  4 ) 1 , 4 (  

  • Menghitung Correlation: i j

  6

  1

  36 125

  36

  65

  6

  1

  6

  25

  1

  6

  23

    

  6

   

     

    

      

    

   

     

    

      

    

   

  Corr

  19

  1

  Contoh:

  0 0 0 0 0 0

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  0 0 0

  3

  0 0 0 0 0 2

  / 6

  0 0

  4 1 / 6

  5

  6

  0 0 0 0 0 0 0 1

  / 6

  6

  0 0 0 1

  / 6

  0 0 0 0

  7

  0 0 0 0 0 0 0 0 035 , 125

  65

  6

  19

  36 125

  65

PCD Lanjut Correlation

  5 ) 7 , 5 (

  • Menghitung Correlation: i j

  6

  7

  36 125

  36

  65

  6

  1

  6

  25

  7

  6

  23

    

  6

   

    

    

     

    

   

     

    

      

    

   

  Corr

  17

  1

  Contoh:

  0 0 0 0 0 0

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  0 0 0

  3

  0 0 0 0 0 2

  / 6

  0 0

  4 1 / 6

  5

  6

  0 0 0 0 0 0 0 1

  / 6

  6

  0 0 0 1

  / 6

  0 0 0 0

  7

  0 0 0 0 0 0 0 0 22 , 125

  65

  6 119

  36 125

  65

PCD Lanjut Correlation

  6 ) 3 , 6 (  

  • Menghitung Correlation: i j

  6

  13

  36 125

  36

  65

  6

  1

  6

  25

  3

  6

  23

    

  6

   

     

    

      

    

   

     

    

      

    

   

  Corr

  7

  1

  Contoh:

  0 0 0 0 0 0

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  0 0 0

  3

  0 0 0 0 0 2

  / 6

  0 0

  4 1 / 6

  5

  6

  0 0 0 0 0 0 0 1

  / 6

  6

  0 0 0 1

  / 6

  0 0 0 0

  7

  0 0 0 0 0 0 0 0 168 , 125

  65

  6

  91

  36 125

  65

PCD Lanjut Correlation

  • Menghitung Correlation: i j

  65

  0 0 0 0

  7

  0 0 0 0 0 0 0 0 056 , 125

  65

  6

  30 125

  6 91 119 )

  0 0 0 1

  ) 19 ( 50 (

  11  

    

    

       

  

  Corr

  / 6

  6

  Contoh:

  0 0 0

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  3

  / 6

  0 0 0 0 0 2

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

  5

  0 0 0 0 0 0 0 1

PCD Lanjut Correlation

  • 6285 641 73 00 22

  PCD Lanjut

  [email protected]

Energy

  •   • Energy

  merepresentasikan ukuran keseragaman pada citra

  • Semakin tinggi kemiripan citra maka akan semakin tinggi pula nilai Energy

  PCD Lanjut

  • Hitunglah Energy dari GLCM berikut: i j

  4 1 / 6

  0 0 0 0 0 0 0 0

  7

  0 0 0 0

  / 6

  0 0 0 1

  6

  / 6

  0 0 0 0 0 0 0 1

  5

  0 0 0 0 0 0

  0 0

  Contoh:

  / 6

  0 0 0 0 0 2

  3

  0 0 0

  / 6

  0 0 0 0 1

  2

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

PCD Lanjut Energy

  • Hitunglah Energy dari GLCM berikut: i j

   

  6

  1

  6

  1

  6

  1

  6

  2

  6

  1

  2 2 2 2 2 2 2 2

      

  2

    

    

     

    

     

    

     

    

     

    

  

  Eng

  1

  1

  Contoh:

  0 0 0 0 0 0

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  0 0 0

  3

  0 0 0 0 0 2

  / 6

  0 0

  4 1 / 6

  5

  1

  0 0 0 0 0 0 0 1

  / 6

  6

  0 0 0 1

  / 6

  0 0 0 0

  7

  0 0 0 0 0 0 0 0 222 ,

  36

  8

  6

  1

PCD Lanjut Energy

  • 6285 641 73 00 22

  PCD Lanjut

  [email protected]

Homogeneity

  •   • Homogeneity merepresentasikan ukuran

  keserbasamaan

  • Homogeneity akan bernilai tinggi jika semua piksel mempunyai nilai yang uniform

  PCD Lanjut

  • Hitunglah Homogeneity dari GLCM berikut: i j

  4 1 / 6

  0 0 0 0 0 0 0 0

  7

  0 0 0 0

  / 6

  0 0 0 1

  6

  / 6

  0 0 0 0 0 0 0 1

  5

  0 0 0 0 0 0

  0 0

  Contoh:

  / 6

  0 0 0 0 0 2

  3

  0 0 0

  / 6

  0 0 0 0 1

  2

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

PCD Lanjut Homogeneity

  • Hitunglah Homogeneity dari GLCM berikut: i j

  6

  0 0 0 0 0 0 0 0

    056 ,

  18

  1

  4

  2

  1

  1

  0 0 0 0

  4

  2

  1

  6

  1 ) 4 ,

  2 (  

        

  Hom

  7

  / 6

  Contoh:

  3

  0 0 0 0 0 0 0 0

  1

  0 0 0 0 0 0 0 0

  2

  0 0 0 0 1

  / 6

  0 0 0

  0 0 0 0 0 2

  0 0 0 1

  / 6

  0 0

  4 1 / 6

  0 0 0 0 0 0

  5

  0 0 0 0 0 0 0 1

  / 6

  6

PCD Lanjut Homogeneity

  • Hitunglah Homogeneity dari GLCM berikut: i j

  6

  0 0 0 0 0 0 0 0

    111 ,

  18

  2

  5

  3

  1

  2

  0 0 0 0

  5

  3

  1

  6

  2 ) 5 ,

  3 (  

        

  Hom