Pengaruh Penambahan Selulosa Nanokristal Dari Kulit Rotan Dengan Plasticizer Gliserol dan CO-Plasticizer Asam Asetat Dalam Pembuatan Biokomposit Berbahan Dasar Pati Sagu (Metroxylon sp)

DAFTAR PUSTAKA
[1] Pamilia C, Linda L dan Mardiyah R.A. 2014. ‘’Pembuatan Film Plastik
Biodegredabel dari Pati Jagung dengan Penambahan Kitosan dan Pemplasis
Gliserol’’. Jurnal Teknik Kimia, 20 (4) : hal. 22-30.
[2] Prima A.H dan Hesmita W. 2015. ‘’Pembuatan Film Plastik Biodegradable Dari
Limbah Biji Durian (Durio zibethinus Murr)’’. Jurnal Bahan Alam Terbarukan. 4
(1) : hal. 21-26.
[3] Yuniarty L.I, Gatot S.H dan Abdul R. 2014. ‘’Sintesis dan Karakterisasi
Bioplastik Berbasis Pati Sagu (Metroxylon Sp)’’. Jurnal Agrotekbis, 2 (1) : hal.
38-46.
[4] Yuli D, Sri Ismiyati D dan Tigor M. 2010. “Influence Concentration of
Plasticizer and Formulation of Banana Starch – Chitosan to Mechanical Property
and Water Uptake of Bioplastic”. International Journal of Engineering and
Science. 1 (4).
[5] Thawien B. 2008. “Plasticizer Effect on the Properties of Biodegradable Blend
Film From Rice Starch-Chitosan”. Songklanakarin Journal of Science and
Technology, 30 (1) : hal. 149-165.
[6] Zuraida A, Hazleen A dan Yusliza Y. 2011. ‘’The Study Of Biodegradable
Thermoplastics Sago Starch’’. Key Engineering Materials, 471-471 : hal. 397402.
[7] Ahmad E. 2012. ‘’Sintesis Bioplastik Dari Pati Ubi Jalar Menggunakan Penguat
Logam ZnO Dan Penguat Alami Kitosan’’. Skripsi. Program Studi Teknik

Kimia. Fakultas Teknik. Universitas Indonesia.
[8] Widyaningsih, S, Dwi K dan Yuni Tri N. 2012. ‘’Pengaruh Penambahan Sorbitol
dan Kalsium Karbonat Terhadap Karakteristik dan Sifat Biodegradasi Film dari
Pati Kulit Pisang’’. Molekul, 7, (1) : hal. 69-81.
[9] Eldo S.M. 2012. ‘’Sintesis Bioplastik dari Pati Ubi Jalar Menggunakan Penguat
Logam ZnO dan Penguat Alami Selulosa’’. Depok : Universitas Indonesia.
[10] Steven, Mardiyati dan Suratman R. 2014. ‘’Pembuatan Mikrokristalin Selulosa
Rotan Manau (Calamus manan sp.) Serta Karakterisasinya’’. Jurnal Selulosa, 4
(2) : hal. 89-96.
[11] Siti N, Sudirman, Lisdar I dan Mersi K. 2014. ‘’Pengembangan Teknologi Proses
Produksi Bionanokomposit Filler Biomassa Rotan’’. Jurnal Ilmu Pertanian
Indonesia (JIPI). 19 (3) : hal. 163-168.
[12] Siti N, Setyo P, Akhiruddin M, Tieneke M dan Aris P. 2010. ‘’Analisis Struktur
Selulosa Kulit Rotan Sebagai Filler Bionanokomposit Dengan Difraksi Sinar X’’.
Jurnal Sains Materi Indonesia, 13 (2) : hal. 97-102.
[13] Chen D. 2012. ‘’Biocomposites Reinforced with Cellulose Nanocrystals Derived
From Potato Peel Waste’’. Mc Master University.
[14] Peng B.L, Dhar N, Liu H.L dan Tam K.C. 2011. ‘’Chemistry and Applications of
Nanocrystalline Cellulose and Its Derivates : A Nanotechnology Perspective’’.
The Canadian Journal of Chemical Engineering, 9999 : hal. 1-16.

[15] Narjes K.M, Omid R dan Hossein K. 2012. ‘’Production Nanocrystalline
Cellulose From Sugarcane Baggase’’. Shahid Beheshti University.
[16] Gilang P.L, Sari Edi C. 2013. ‘’Preparation and Characterization Based
Bioplastic Chitosan and Cassava Starch with Glycerol Plazticizer. Journal of
Chemistry’’. Unesa Journal of Chemistry, 2 (3) : hal. 161-166.

60

Universitas Sumatera Utara

[17] Jose M.L dan Amparo L.R. 2011. ‘’Nanotechnology for Bioplastics:
Oportunities, Challenges and Strategies’’. Novel Material and Nanotechnology
Group. Trends in Food Science & Technology, (22) : hal. 611-617.
[18] Jusuf B.T, Kristomus B dan Ishak S.L. 2014. ‘’Pengaruh Perendaman terhadap
Sifat Mekanik Komposit Polyester Berpenguat Serat Kaca’’. Jurnal Teknik Mesin
Undana, 01 (02) : hal. 8-17.
[19] Diharjo K dan Triyono. 1999. “The Effect of Alkali Treatment on Tensile
Properties of Random Kenaf Fiber Reinforced Polyester Composite”. Part III of
Doctorate Dissertation Research Result, Post Graduate Study, Universitas
Gadjah Mada : Yogyakarta.

[20] Nurun N. 2013. “Teknologi Komposit”. Buku Pengantar Universitas Islam
Negeri Malang.
[21] Vico D. 2006. ‘’Kajian Pengaruh Penambahan Dietilen Glikol Sebagai Pemlastis
Pada karakteristik Bioplastik dari Poli-β-Hidroksialkanoat (PHA) yang dihasilkan
Ralstronia Eutropha Pada Substrat Hidrolisat Pati Sagu’’. Bogor : Institut
Pertanian Bogor.
[22] Laxmana R, Sanjeevani V dan Anusha G.G. 2013. “Study of Biplastics as Green
& Sustainable Alternative to Plastics”. International Journal of Emerging
Technology and Advanced Engineering, 3 (5) : hal. 82-89.
[23] Heni H. 2010. ‘’Karakterisasi Pola Gelatinisasi Tapioka dengan Mempergunakan
Alat Microwave’’. Jakarta : Balai Besar Penelitian dan Pengembangan
Pascapanen Pertanian.
[24] Sanchez-Vazquez S.A, Hailes H.C dan Evans J.R.G. 2013. ‘’Hydrophobic
Polymers from Food Waste : Resources and Synthesis’’. Polymer Reviews, 53 :
hal. 627-694.
[25] Marc J.E.C. van der M, Bart van der V, Joost C.M.U, Hans L dan L Dijkhuizen.
2002. ‘’Properties and Applications of Starch-Converting Enzymes of The αAmylase Family’’. Journal of Biotechnology, 94 : hal. 137–155.
[26] Sumaiyah. 2014. ‘’Pembuatan dan Karakterisasi Selulosa Mikrokristal dan
Nanokristal Tandan Aren (Arenga pinnata (Wurmb) Merr.) dan Penggunaannya
Sebagai Eksipien dalam Tablet Natrium Diklofenak’’. Medan : Universitas

Sumatera Utara.
[27] Namikaze L. 2014. ‘’Struktur dan Metabolisme Karbohidrat’’. Jakarta :
Universitas Negeri Jakarta.
[28] Klemm D, Philipp B, Heinze T, Heinze U dan Wagenknecht W. 1998.
‘’Fundamentals and Analytical Methods’’. Comprehensive Cellulose Chemistry,
1 : hal. 1, 14, 18.
[29] Saharman G. 2010. ‘’Innovative Bio-Nanocomposites Based on Bacterial
Cellulose’’. A Thesis Submitted to The University of London for The Degree of
Doctor of Philosophy, 14 : hal. 36-37.
[30] Refi A. 2011. ‘’Kajian Perlakuan Awal Secara Basa dan Enzimatis untuk
Menghidrolisis Ampas Tebu Menjadi Gula Reduksi’’. Lampung : Universitas
Lampung.
[31] Habibi Y, Lucia L.A dan Rojas. 2010. ‘’Cellulose Nanocrystals: Chemistry, SelfAssembly, and Applications’’. Chemical Reviews, 110 : hal. 3479– 3500.
[32] Fenny A, Marpongahtun dan Saharman G. 2013. ‘’Studi Penyediaan Nanokristal
Selulosa dari Tandan Kosong Sawit (TKS)’’. Jurnal Saintia Kimia, 1 (2).

61

Universitas Sumatera Utara


[33] Rossi M. 2008. ‘’Glycerol : Properties and Production’’. Future Of Glycerol,
ISBN : 978-0-85404-124-4.
[34] Gervásio Paulo da S, Matthias M dan Jonas C. 2009. ‘’Glycerol : A Promising
and Abundant Carbon Source for Industrial Microbiology. Biotechnology
advances, 27 : hal. 30-39.
[35] Arief W.U, Bambang D.A dan Mochammad B.H. 2013. ‘’Pengaruh suhu dan
lama pengeringan Terhadap Karakteristik Fisikokimiawi Plastik Biodegradable
dari Komposit Pati Lidah Buaya (Aloe Vera)-Kitosan’’. Jurnal Bioproses
Komoditas Tropis, 1 (1) : hal. 73-79.
[36] Celanese. 2016. ‘’Acetic Acid, Chemical Abstract Registry’’. Number 64-19-7
Wiswesser Line Formula Chemical Notation QV1.
[37] Harrison S dan M. Hendra S.G. 2014. ‘’ Kajian Awal Pembuatan Film Plastik
(Bahan Plastik Pengemas) dari Pati Batang Ubi Kayu’’. Jurnal Teknik Kimia
Usu, 3 (1) : hal 27-31.
[38] Hendri S, Lutfi, Musthofa dan Masruroh. 2014. “Optimasi Plastik Biodegradable
Berbahan Jelarut (Marantha arundinacea L) dengan Variasi LLDPE untuk
Meningkatkan Karakteristik Mekanik”. Jurnal Keteknikan Pertanian Tropis dan
Biosistem, 2 (2) : hal. 124-130.
[39] Thermo N. 2001. ‘’Introduction Fourier Transform InfraRed Spectrometry’’.
Madison.

[40] ASTM D792-91. 1991. “Standard Test Method for Density and Specific Gravity
(Relative Density) of Plastics by Displacement”. The American Society for
Testing and Materials.
[41] ASTM D 638-00. 2005. ‘’Standard Test Method for Tensile Properties of
Plastics’’. An American National Standard.
[42] ASTM 570-98. 2005. ‘’Standard Test Method for Water Absorption of Plastics’’.
The American Society for Testing and Materials.
[43] Savadekar N.R dan Mhaske S.T. 2012. ‘’Synthesis of Nano Cellulose Fibers and
Effect on Thermoplastics Starch Based Films’’. Carbohydrate Polymers, 89 : hal.
146-151.
[44] John M.J dan Thomas S. 2008. ‘’Biofibres and Biocomposites’’. Carbohydrate
Polymers, 71: hal. 343–364.
[45] Adel A.M, El-Wahab Z.H.A dan Ibrahim A.A, Al-Shemy M.T. 2010.
‘’Characterization of Microcrystalline Cellulose Prepared from Lignocellulosic
Materials’’. Bioresource Technology, 101 : hal. 4446-4455.
[46] Abraham E, Deepa B, Pothan L.A, Jacob M, Thomas S, Cvelbard U dan
Anandjiwala R. 2011. ‘’Extraction of Nanocellulose Fibrils from Lignocellulosic
Fibres: A Novel Approach’’. Carbohyd Polym, 86 : hal. 1468-1475.
[47] Lavoine N, Desloges I, Dufresne A, Bras J. 2012. ‘’Microfibrillated Cellulose. Its
Barrier Properties and Application in Cellulosic Materials: A Review’’.

Carbohydrate Polymers, 90 : hal. 735-64.
[48] Mandal A dan Chakrabarty D. 2011. ‘’Isolation of Nanocellulose from Waste
Sugarcane Bagasse (Scb) and Its Characterization’’. Carbohydrate Polymers, 86 :
hal. 1291-1299.
[49] Bilbao-Sainz C, Bras J, Williams T, Sénechal T dan Orts W. 2011. ‘’HPMC
Reinforced With Different Cellulose Nano-Particles’’. Carbohydrate Polymers,
86 : hal. 1549-1557.

62

Universitas Sumatera Utara

[50] Hongjia L, Yu G, Longhui Z dan Xiong L. 2013. ‘’Morphological, Crystalline,
Thermal and Physicochemical Properties of Cellulose Nanocrystals Obtained from
Sweet Potato Residue’’. Food Research International, 50 : hal. 121–128.
[51] Anupama K dan Ramanpreet K. 2016. ‘’ Thermoplastic Starch Nanocomposites
Reinforced With Cellulose Nanocrystals: Effect of Plasticizer on Properties’’.
Composite Interfaces, ISSN : 0927-6440.
[52] Halimatuddahliana N, Yurnaliza, Veronicha, Irmadani dan Sitompul S. 2017.
‘’Preparation and Characterization of Cellulose Microcrystalline (MCC) from

Fiber of Empty Fruit Bunch Palm Oil’’. Materials Science and Engineering, 180 :
hal. 1-8.
[53] Lu P dan Hsieh Y.L. 2010. ‘’Preparation and Properties of Cellulose Nanocrystals:
Rods, Spheres, and Network’’. Carbohydrate Polymers, 82 : hal. 329-336.
[54] Morán JI, Alvarez VA, Cyraz VP, Vázquez A. 2008. ‘’Extraction of Cellulose and
Preparation of Nanocellulose from Sisal Fibers’’. Cellulose, 15 : hal. 149-159.
[55] Elanthikkal S, Gopalakrishnapanicker U, Varghese S dan Guthrie J.T. 2010.
‘’Cellulose Microfibres Produced from Banana Plant Wastes’’. Isolation and
characterization. Carbohyd Polym, 80 : hal. 852–859.
[56] Hanieh K, Ishak Ahmad Ibrahim A, Alain D, Siti Yasmine Za dan Rasha M.S.
2012. ‘’Effects of Hydrolysis Conditions on The Morphology, Crystallinity, and
Thermal Stability of Cellulose Nanocrystals Extracted from Kenaf Bast Fibers’’.
Cellulose, 19 : hal. 855–866.
[57] Elnaz Z, Vahid H dan Hossein R.M. 2014. ‘’Nanocrystalline Cellulose Grafted
Random Copolymers of N-Isopropylacrylamide and Acrylic Acid Synthesized by
Raft Polymerization: Effect of Different Acrylic Acid Contents on Lcst
Behavior’’. RSC Adv, 4 : hal. 31428–31442.
[58] Rumpoko W, Khaswar S, Indah Y dan Muhamad N. 2013. ‘’Cellulose Nanofibers
from Cassava Bagasse: Characterization and Application on Tapioca-Film’’.
Chemistry and Materials Research, 3 (13) : hal. 79-87.

[59] Juan I.M, Vera A.A, Viviana P dan Cyras A.V. 2008. ‘’Extraction of cellulose and
preparation of nanocellulose from sisal fibers’’. Cellulose, 15 : hal. 144-159.
[60] Guangping H, Siqi H, jingquan H, Zhen Z dan Qinglin W. 2013. ‘’Effect of Acid
Hydrolysis
Conditions
of
Cellulose
Nanoparticle
Reinforced
Polymethylmethacrylate Composites’’. Materials, 7 : hal 16-29.
[61] Fui K.L, Sinin H, Rezaur R, Mohamad R, Josephine C.H.L, Faruk H dan M
Rahman. 2015. ‘’Synthesis and Characterization of Cellulose from Green Bamboo
by Chemical Treatment with Mechanical Process’’. Journal of Chemistry, March.
(Hindawi Publishing Corporation).
[62] Peng B.L, Dhar N, Liu H.L dan Tam K.C. 2011. ‘’Chemistry and Applications of
Nanocrystalline Cellulose and Its Derivates: A Nanotechnology Perspective’’. The
Canadian Journal of Chemical Engineering, 9999 : hal. 1-16.
[63] Melissa B A, Bashir A, Shanna Marie M.A. dan Famille M.P. 2014. ‘’Bioplastic
Based on Starch and Cellulose Nanocrystals from Rice Straw’’. Journal of
Reinforced Plastics and Composites, 24 : hal. 2205–2213.

[64] Karim Z.Z, Chowdhury, Bee S, Hamid A dan Ali E. 2014. “Statistical
Optimization for Acid Hydrolysis of Microcrystalline Cellulose and Its
Physiochemical Characterization by Using Metal Ion Catalyst,” Materials, 7 : hal.
6982–6999.

63

Universitas Sumatera Utara

[65] Hanisyah S.S, Chi H.C, Chin H.C, Sarani Z dan Sharifah N.S.J. 2015. ‘’Isolation
and Fractination of Cellulose Nanocrystals from Kenaf Core’’. Sains Malaysiana,
11 : hal. 1635-1642.
[66] Xiaofei, Jiugao M. Y, John dan Kennedy. 2005. “Studies on the Properties of
Natural Fibers-Reinforced Thermoplastics Starch Comosites. Carbohydrate
Polymers, 62 : hal 19-24.
[67] Maulida L, Mari B.H, Muhammad Hendra S.G, Mora S dan Hidayatul A. 2016.
‘’Effect of Microcrystalline Cellulose (MCC) from Sugar Palm Fibres and
Glycerol Addition on Mechanical Properties of Bioplastic from Avocado Seed
Starch (Persea Americana Mill)’’. Full Paper Proceeding ECBA. University of
Sumatera Utara, Indonesia, 31: hal. 1-10.

[68] Babak G, Hadi A dan Ali A.E. 2010. ‘’Improving The Barrier And Mechanical
Properties of Cornstarch Based Edible Films: Effect of Citric Acid And Carboxy
Methyl Cellulose’’.
[69] Rodrigo O.T. 2015. “Development and Characterization of Corn Starch Film by
Blending with More Hydrophobic Compounds”. Doctoral Thesis. Universitat
Politenvia De Valencia. Program de Doctorado, Valencia.
[70] Zimmermann T, Bordeanu N dan Strub E. 2010. ‘’Properties of Nanofibrillated
Cellulose from Different Raw Materials and Its Reinforcement Potential’’.
Carbohydrate Polymers, 79 : hal. 1086-1093.
[71] Kengkhetkit N dan Amornsakchai T. 2012. ‘’Utilisation of Pineapple Leaf Waste
for Plastic Reinforcement’’. Ind Crop Prod 40 : hal. 55-61.
[72] Khaswar S, Chilwan P dan Eva R.L. 2008. “Pengaruh Penambahan Polioksietilen(20)-Sorbitan Monolaurat Pada Karakteristik Bioplastik Poli-Hidroksialkanoat
(PHA) Yang Dihasilkan Ralstonia eutropha Pada Substrat Hidrolisat Pati Sagu”.
Departemen Teknologi Industri Pertanian, Fakultas Teknologi Pertanian – IPB. J.
Tek. Ind. Pert, 18(1) : hal. 41-46.
[73] Azeredo H.M.C, Miranda K.W.E, Rosa M.F dan Nascimento D.M. 2012. ‘’Edible
Films from Alginate-Acerola Puree Reinforced With Cellulose Whiskers’’. LWT
Food Sci Technol, 46 : hal. 294-297.
[74] Cho J, Joshi M.S dan Sun C.T. 2006. ‘’Effect of Inclusion Size on Mechanical
Properties of Polymeric Composites with Micro and Nano Particles’’. Compos.
Sci. Technol, 66 : hal. 1941–1952.
[75] Roohani M, Habibi Y, Belgacern M.N, Ebrahim G, Karimi AN dan Dufresne A.
2008. ‘’Cellulose Whiskers Reinforced Polyvinyl Alcohols Copolymers
Nanocomposites’’. Eur. Polym. J, 44 : hal. 2489–2498.
[76] M. Siagian. 2016. “Pembuatan Bioplastik dari Pati Kulit Singkong (Manihot
esculenta) Berpengisi Mikrokristalin Selulosa AVICEL PH-101 (Wood Pulp)
dengan Plastisizer Sorbitol,” Universitas Sumatera Utara.
[77] Rosa M.F, Chiou B, Medeiros E.S, Wood D.F, Williams T.G, Mattoso L.H.C,
Orts W.J dan Imam S.H. 2009. ‘’Effect of Fiber Treatments on Tensile and
Thermal Properties of Starch / Ethylene Vinyl Alcohol Copolymers / Coir
Biocomposites’’. Bioresource Technology, 100 : hal. 5196-5202.
[78] Ma H, Zhou B, Li H.S, Li Y.Q dan Ou S.Y. 2011. ‘’Green Composite Films
Composed of Nanocrystalline Cellulose and a Cellulose Matrix Regenerated from
Functionalized Ionic Liquid Solution’’. Carbohydrate Polymers, 84 : hal. 383389.

64

Universitas Sumatera Utara

[79] Chang P.R, Jian R, Zheng P, Yu J dan Ma X. 2010. ‘’Preparation and Properties
of Glycerol Plasticized-Starch (Gps) / Cellulose Nanoparticle (Cn) Composites’’.
Carbohydrate Polymers, 79 : hal. 301-305.
[80] Paul, 2012. ‘’Enzymatic Digestion of Polysaccharides’’. USA : Vermont.
[81] Müller C.M.O, Laurindo J.B dan Yamashita F. 2009a. ‘’Effect of Cellulose Fibers
Addition on The Mechanical Properties and Water Vapor Barrier of Starch-Based
Films’’. Food Hydrocolloid, 23 : hal. 1328-1333.
[82] Müller C.M.O, Laurindo J.B dan Yamashita F. 2009b. ‘’Effect of Cellulose Fibers
on The Crystallinity And Mechanical Properties of Starch-Based Films at
Different Relative Humidity Values’’. Carbohydrate Polymers, 77 : hal. 293-299.
[83] Kaushik A, Singh M dan Verma G. 2010. ‘’Green Nanocomposites Based on
Thermoplastic Starch and Steam Exploded Cellulose Nanofibrils from Wheat
Straw’’. Carbohydrate Polymers, 82 : hal. 337-345.
[84] Zainuddin, Ahmad I dan Kargarzadeh H. 2014. ‘’Cassava Starch Biocomposites
Reinforced with Cellulose Nanocrystals from Kenaf Fibers’’. Composite
Interfaces, 3 : hal. 189-199.
[85] Dagang L, Tuhua Z, Peter R, Chang b, Kaifu L dan Qinglin W. 2010. ‘’Starch
Composites Reinforced by Bamboo Cellulosic Crystals’’. Bioresource
Technology, 101 : hal. 2529–2536.
[86] Yongshang L, Lihui W dan Xiaodong C. 2006. ‘’Morphological, Thermal and
Mechanical Properties of Ramie Crystallites Reinforced Plasticized Starch
Biocomposites’’. Carbohydrate Polymers, 63 : hal. 198–204.
[87] Nur A B, Khaswar S dan Akhiruddin Maddu. 2014. ‘’Influence of Cellulsoe
Acetate Fibers Size and Diethylen Glikol (DEG) Addition on Physical and
Mechanical Properties of Bioplastics’’. Jurnal Teknologi Industri Pertanian, 3 :
hal. 226-234.
[88] Devi B.E, Nurul H.R, Asep B.D.N dan Ahmad M. 2015. ‘’Sintesis
Nanoselulosa’’. Jurnal Integrasi Proses, 5 : hal. 61-74.
[89] Fasihuddin B.A, Peter A.W, Jean L.D, Sylvie D dan Alain B. 1999. ‘’ Physicochemical characterisation of sago starch’’. Carbohydrate Polymers, 38 : hal. 361370.
[90] Gomand S.V, Lamberts L, Derde L.J, Goesaert H, Vandeputte G.E, Goderis B,
Visser R.G.F, Delcour J.A. 2010. ‘’Structural properties and gelatinisation
characteristics of potato and cassava starches and mutants thereof’’. Food
Hydrocolloids, 24 : hal. 307–317.
[91] Tomasz O, Agnieszka W, Leszek M, Andrzej R, Maciej C, Marcin M. 2014.
‘’Characteristics of Selected Rheological Properties of Water Suspension of
Potato TPS Biocomposite’’. Teka Commission of Motorization and Energetics
and Agricultures, 14 : hal. 125-130.
[92] Luis C.H.A. 2015. ‘’ Cellulose solutions: Dissolution, regeneration, solution,
structure and molecular interactions’’. Doctoral Thesis. Universidade de Coimbra,
Portugal.

65

Universitas Sumatera Utara

Dokumen yang terkait

Pengaruh Penambahan Selulosa Nanokristal Dari Kulit Rotan Dengan Plasticizer Gliserol dan Co-Plasticizer Asam Sitrat Dalam Pembuatan Biokomposit Berbahan Dasar Pati Sagu (Metroxylon Sp)

0 1 22

Pengaruh Penambahan Selulosa Nanokristal Dari Kulit Rotan Dengan Plasticizer Gliserol dan Co-Plasticizer Asam Sitrat Dalam Pembuatan Biokomposit Berbahan Dasar Pati Sagu (Metroxylon Sp)

0 0 2

Pengaruh Penambahan Selulosa Nanokristal Dari Kulit Rotan Dengan Plasticizer Gliserol dan Co-Plasticizer Asam Sitrat Dalam Pembuatan Biokomposit Berbahan Dasar Pati Sagu (Metroxylon Sp)

0 0 6

Pengaruh Penambahan Selulosa Nanokristal Dari Kulit Rotan Dengan Plasticizer Gliserol dan Co-Plasticizer Asam Sitrat Dalam Pembuatan Biokomposit Berbahan Dasar Pati Sagu (Metroxylon Sp)

1 4 17

Pengaruh Penambahan Selulosa Nanokristal Dari Kulit Rotan Dengan Plasticizer Gliserol dan Co-Plasticizer Asam Sitrat Dalam Pembuatan Biokomposit Berbahan Dasar Pati Sagu (Metroxylon Sp)

0 0 8

Pengaruh Penambahan Selulosa Nanokristal Dari Kulit Rotan Dengan Plasticizer Gliserol dan CO-Plasticizer Asam Asetat Dalam Pembuatan Biokomposit Berbahan Dasar Pati Sagu (Metroxylon sp)

0 0 21

Pengaruh Penambahan Selulosa Nanokristal Dari Kulit Rotan Dengan Plasticizer Gliserol dan CO-Plasticizer Asam Asetat Dalam Pembuatan Biokomposit Berbahan Dasar Pati Sagu (Metroxylon sp)

0 0 2

Pengaruh Penambahan Selulosa Nanokristal Dari Kulit Rotan Dengan Plasticizer Gliserol dan CO-Plasticizer Asam Asetat Dalam Pembuatan Biokomposit Berbahan Dasar Pati Sagu (Metroxylon sp)

0 0 6

Pengaruh Penambahan Selulosa Nanokristal Dari Kulit Rotan Dengan Plasticizer Gliserol dan CO-Plasticizer Asam Asetat Dalam Pembuatan Biokomposit Berbahan Dasar Pati Sagu (Metroxylon sp)

0 0 16

Pengaruh Penambahan Selulosa Nanokristal Dari Kulit Rotan Dengan Plasticizer Gliserol dan CO-Plasticizer Asam Asetat Dalam Pembuatan Biokomposit Berbahan Dasar Pati Sagu (Metroxylon sp)

0 0 18