Gambar 1 Ilustrasi geomentri metode
!
!"
!"
$! %
xi +1 = xi -
! "&
!"
f ′( xi ) =
! "
(
α
!
!
-
)
'"
'" #
"
#
*
,
"
#
f ( xi ) − f ( xi −1 )
xi − xi −1
)
!
f(xi )
′ i)
f (x
+
xi +1 = xi −
f ( xi )( xi − xi −1 )
f ( xi ) − f ( xi −1 )
'
!
*
/
#
*
#+
!"
$! %
(
! "&
0
!"
.
(
'
AB DC
=
AE DE
#
/
+
f ( xi )
f ( xi −1 )
=
xi − xi +1 xi −1 − xi +1
! "
#
!2 !
,
!
!
/
#
(
+
xi +1 = xi −
f ( xi )( xi − xi −1 )
f ( xi ) − f ( xi −1 )
*
1
3
" #
#
$
"#
"
xi +1 = xi −
'
%&
f ( xi )( xi − xi −1 )
f ( xi ) − f ( xi −1 )
"
#
(
∈a =
xi +1- xi
× 100
xi +1
4
" #
)
*
+ε +
#
ε,
◦◦-
.
.
)
*
#
*
#
#
/ "
" #
" ,
#
,
5
)
#
/
1
4
0 #
/
;
1
)
"
/ "
ν
,
x
, 5=55%
2= 9x
* " 0
/ "
""
2 3 # ""
,
# 562
,
7
# 5,889
: "
#:%< ? ,8988=%
, 2= 0 ?
2x
, 8820%
=
x & ,
9 2%
5
x
)
"
5
!
""
$
#
-
#
# "
,
"
,
"#
"
@ #
( #
"
# ,
7
)
# :)
,<
0.02
0.015
Fungsi f(x)
Fu
0.01
0.005
0
0
5
10
15
20
25
30
-0.005
-0.01
-0.015
-0.02
x (m)
f(x)
A ( (
" (:%
!"
!"
$! %
xi +1 = xi -
! "&
!"
f ′( xi ) =
! "
(
α
!
!
-
)
'"
'" #
"
#
*
,
"
#
f ( xi ) − f ( xi −1 )
xi − xi −1
)
!
f(xi )
′ i)
f (x
+
xi +1 = xi −
f ( xi )( xi − xi −1 )
f ( xi ) − f ( xi −1 )
'
!
*
/
#
*
#+
!"
$! %
(
! "&
0
!"
.
(
'
AB DC
=
AE DE
#
/
+
f ( xi )
f ( xi −1 )
=
xi − xi +1 xi −1 − xi +1
! "
#
!2 !
,
!
!
/
#
(
+
xi +1 = xi −
f ( xi )( xi − xi −1 )
f ( xi ) − f ( xi −1 )
*
1
3
" #
#
$
"#
"
xi +1 = xi −
'
%&
f ( xi )( xi − xi −1 )
f ( xi ) − f ( xi −1 )
"
#
(
∈a =
xi +1- xi
× 100
xi +1
4
" #
)
*
+ε +
#
ε,
◦◦-
.
.
)
*
#
*
#
#
/ "
" #
" ,
#
,
5
)
#
/
1
4
0 #
/
;
1
)
"
/ "
ν
,
x
, 5=55%
2= 9x
* " 0
/ "
""
2 3 # ""
,
# 562
,
7
# 5,889
: "
#:%< ? ,8988=%
, 2= 0 ?
2x
, 8820%
=
x & ,
9 2%
5
x
)
"
5
!
""
$
#
-
#
# "
,
"
,
"#
"
@ #
( #
"
# ,
7
)
# :)
,<
0.02
0.015
Fungsi f(x)
Fu
0.01
0.005
0
0
5
10
15
20
25
30
-0.005
-0.01
-0.015
-0.02
x (m)
f(x)
A ( (
" (:%