Fungsi Gamma Fungsi Beta Penerapan fungs

!
"

!

#
% &

#

#

$

#

$

#

$


&
'

#

'

(

#

!!

41
n
1,00
1,10
1,20
1,30

1,40
1,50
1,60
1,70
1,80
1,90
2,00

Γ (n)
1,0000
0,9514
0,9182
0,8975
0,8873
0,8862
0,8935
0,9086
0,9314
0,9618
1,0000


41

!!

41
Γ(n)
b



Γ (n ) =

x

n −1

−x

e dx = lim


0

konvergen untuk n>0

b→ ∞

x
0

n −1

−x

e dx

!!

41



Γ (1) =

x

1 −1

−x

e dx

0
b

= lim

b→ ∞

x


e dx

−x

e dx
0

[

= lim − e
b→ ∞

−x

0
b

= lim

b→ ∞


1 −1

]

−x b
0

[

= lim − e
b→ ∞

−b

+e

0

]= 1


!!

41


Γ (2) =

x

2 −1

−x

e dx

0
b
1


= lim

b→ ∞

−x

x e dx
0

= ..........

!!

41

Γ(n+1) = n Γ (n)
dimana Γ(1) = 1

1. Γ(2) = Γ(1+1) = 1 Γ(1) = 1.
2. Γ(3) = Γ(2+1) = 2 Γ(2) = 2.

3. Γ(3/2) = Γ( ½ +1) = ½ Γ(½).

!!

41

Γ(n+1) = n!
dimana Γ(1) = 1

1. Γ(2) = Γ(1+1) = 1" = 1.
2. Γ(3) = Γ(2+1) = 2" = 2.
3. Γ(4) = Γ(3+1) = 3" = 6.

!!

41
#$ % &
4. Γ(6)
5. Γ(5)/Γ(3)
6. Γ(6)/'Γ(3)


41

!!
!

Γ(n) = (n-1) . (n-2) . … α Γ(α
α)
dimana 0 < α < 1

1. Γ(3/2) = (1/2) Γ (1/2)
2. Γ(7/2) = (5/2)(3/2)(1/2)Γ(1/2)
3. Γ(5/3) = (2/3)Γ(2/3).

41

!!
!
Γ ( n + 1)
Γ (n ) =
n

$
Γ (n + m )
Γ (n ) =
n ( n − 1)...

! (%

41

!!

3
1
Γ − +1
Γ −
3
2
2
Γ −
=
=
3
3
2


2
2
1
1
Γ
Γ
2
2
=
=
3
1
3


2
2
4

1
Γ − +1
2
=
3
1


2
2

41
5
Γ −
2

!!
5
3
Γ −
+1
Γ −
Γ
2
2
=
=
=
5
5



2
2
1
1
Γ −
Γ −
+
2
2
=
=
5
3
5
3




2
2
2
2
1
1
Γ
Γ
2
2
=
=
15
5
3
1




8
2
2
2

3

+1
2
5
3

2
2
1
1

2

!!

41
Γ ( 12) =

π

Γ ( n ) = ( n − 1)!
Γ ( n + 1)
Γ (n ) =
n
π
Γ ( n ) Γ (1 − n ) =
sin n π

!!

41

( 2)

1.

Γ 5

2.

Γ − 1

(

)
2

)
2
Γ (1 )
2

3.

( 2)
Γ (1 )
2

4.

Γ (3 )Γ (2 , 5 )
Γ (5 , 5 )

Γ 5

(

Γ − 1
3.

( 3)
5 Γ (2 )
3

6Γ 8
5.

!!

41
"

6

1 . Hitung

−2x

x e

dx

0

J awab :
Misalkan

2x = y → dx = 1 2 dy
bila x = 0, maka y = 0
bila x = ∞ , maka y = ∞




6

x e

−2x

dx =



(

1

6

2

y) e

−y

1

2

dy =

0

0

(

1

=(
=(

) y e

2

−y

dy

2

)

7


6

y e

−y

dy = (

1

2

)

7

0
1

6

0


1

7

0

) Γ (7) = 6!
7

2

y

2

7

= 45

8

7 -1

e

−y

dy

!!

41


2 . Hitung

y e

−y

3

dy

3

dengan substitusi

y =x

0
3

J awab :



y e
0

−y

2

Misalkan
y = x → dx = 3y dy
bila x = 0, maka y = 0
bila x = ∞ , maka y = ∞


3

1

dy =

x

3

e

-x

1

0

1
=
3
1
=
3

3 x


x
0


x
0

1 −2
6
3

1 −1
2

e



1

e

-x

-x

2

dx =

3

1
dx =
3

1

x

6

e

-x

3x

0


x

− 12

1

e

-x

dx

0

1
1
1
dx = Γ ( 2 ) =
3
3

π

2

dx
3

!!

41
1

3 . Hitung

dx
- ln x

dengan substitusi

− ln x = u

0

J awab :
-u
-u
Misalkan
− ln x = u → x = e
→ d x = - e du
Bila x = 0, maka u = ∞ dan bila x = 1, maka u = 0
1

0

dx
- ln x

0

=



-u

- e du
u
u

=
0

− 12

e

-u

0

u

=

− 12

(− e

-u

) du



du = Γ ( 1 2 ) =

π

#

4%2%
#

$
1

B(m , n ) =

x

m −1

(1 − x )

0

konvergen untuk m > 0 dan n > 0.
Sifat: B(m,n) = B(n,m)

Bukti: … … …

n −1

dx

42

$
1

B(m , n ) =

x

m −1

(1 − x )

n −1

dx

0
1

(1 − y )

=

m −1

n −1

dx

m −1

dx

(y)

0
1

(y)

=

n −1

(1 − y )

0

= B(n , m )
∴ Terbukti

42

$

&

Γ (m ) Γ (n )
B(m , n ) =
Γ (m + n )

42

$

1 #$
B(3,5)
) * (+
Γ (3) Γ (5 ) Γ (3) Γ (5 )
B ( 3,5 ) =
=
= ......
Γ (3 + 5)
Γ (8 )

42

$

' #$
B(5 , 2).
) * (+
, #$
B(3/2 , 2).
) * (+
#$
B(1/3 , 2/3).
) * (+

$

42
"
1
4

1 . Hitung

3

x (1 − x ) dx
0

Jawab :
1

1
4

3

x (1 − x ) dx =
0

x

5 -1

(1 − x )

4 −1

dx

0

= B (5,4 )
Γ (5) Γ (4)
4! 3!
=
=
Γ (5 + 4)
8!
1
=
280

$

42
2

2

x dx
2−x

2 . Hitung
0

Jawab : Misalkan
2

0

2

x dx
=
2−x

1

x = 2u
2

1

dx = 2 du


2

( 2 u ) 2 du
8 u du
=
2 − 2u
2 1− u
0
0
2
1
1
− 12
8
u du
2
=
= 4 2
u (1 − u )
du
2 0 1− u
0
= 4 2 B (3, 1 2 ) = ...

$

42
"
a

3 . Hitung

y
0

4

2

a −y

2

dy

LATIHAN
1 . Hitung

Γ (3) Γ ( 3 2 )
b).
Γ (9 2)

Γ (7 )
a).
2 Γ ( 4 ) Γ (3)

4

2 . Hitung

x e

−x

dx

0


4

3 . Hitung

x e

− x

dx

0

4 . Hitung

a). B ( 3 2 , 2)

b). B ( 1 3 , 2 3 )

1
2

5 . Hitung

3

x (1 − x ) dx
0
4

6 . Hitung

u
0

3/2

( 4 - u)

5/2

du