BAB 2 LANDASAN TEORI - Analisis Metode Fuzzy Analytic Hierarchy Process (Fahp) Dalam Menentukan Posisi Jabatan

BAB 2 LANDASAN TEORI Landasan teori adalah teori-teori yang relevan dan dapat digunakan untuk

  menjelaskan variabel-variabel penelitian. Landasan teori ini juga berfungsi sebagai dasar untuk memberi jawaban sementara terhadap rumusan yang diajukan serta membantu dalam penyusunan instrument penelitian.

2.1 Definisi Model

  Representasi sistem atau masalah berdasarkan model dapat dilakukan dengan berbagai macam tingkat abstraksi.

  2.1.1 Model iconik (skala)

  Sebuah model iconik, model abstraksi terkecil adalah replika fisik sebuah sistem, biasanya pada suatu skala yang berbeda dari aslinya. Model iconik dapat muncul pada tiga dimensi (miniature maket), sebagaimana pesawat terbang, mobil, jembatan, atau alur produksi. Photografi adalah jenis model skala iconik yang lain, tetapi hanya dalam dua dimensi.

  2.1.2 Model analog

  Sebuah model yang tidak tampak mirip dengan model aslinya, tetapi bersifat seperti sistem aslinya. Model analog lebih abstrak dari model iconik dan merupakan perpresentasi simbolik dari realitas. Model ini biasanya berbentuk bagan atau diagram 2 dimensi, dapat berupa model fisik, tetapi bentuk model berbeda dari bentuk sistem nyata. Berikut beberapa contoh lain :

  1. Bagan organisasi yang menggambarkan hubungan struktur otoritas, dan tanggung jawab.

  2. Sebuah peta dimana warna yang berbeda menunjukkan obyek yang berbeda misalnya sungai atau pegunungan.

  3. Bagan pasar modal yang menunjukkan pergerakan harga saham.

  4. Cetak biru dari sebuah mesin atau rumah.

2.1.3 Model matematik (quantitatif)

  Kompleksitas hubungan pada banyak sistem organisasional tidak dapat disajikan secara model icon atau model analog, atau representasi semacam itu malah dapat menimbulkan kesulitan dan membutuhkan banyak waktu dalam pemakaiannya. Oleh karena itu model yang tepat dideskripsikan dengan model matematis.

  2.2 Konsep pengukuran kinerja

  Pengukuran kinerja adalah tindakan yang dilakukan terhadap aktivitas dalam rantai nilai yang ada pada perusahaan. Hasil pengukuran tersebut kemudian digunakan sebagai umpan balik yang akan memberikan informasi tentang prestasi pelaksana suatu rencana dan titik dimana perusahaan memerlukan penyesuaian atas aktivitas perencanaan dan pengendalian.

  a) Menelusuri kinerja terhadap pelanggan sehingga akan membawa motivasu pegawai.

  b) Membuat suatu tujuan strategis yang biasanya masih kabur menjadi lebih konkret sehingga mempercepat proses jenjang karir pegawai sesuai yang diharapkan.

  2.3 Sistem Pendukung Keputusan

  Sistem Pendukung Keputusan adalah suatu bentuk dari sistem informasi manajemen yang secara khusus dibuat untuk mendukung perencanaan dan stakeholders dalam pengambilan keputusan. Sistem Pendukung Keputusan dapat mencerminkan berbagai konsep dari pengambilan keputusan dan kondisi yang berbeda-beda, dan akan sangat berguna untuk semi-structured atau unstructured problems dimana proses pengambilan keputusan ditingkatkan dengan dialog interaktif antara Sistem Pendukung Keputusan dengan pengguna. Kelebihan utama dari Sistem Pendukung Keputusan adalah kemampuannya untuk memanfaatkan sistem komputer untuk membantu pengambil keputusan dalam mempelajari masalah dan mengambil kebijakan, dan meningkatkan pemahaman mengenai kondisi lingkungan dimana kebijakan tersebut akan diterapkan dengan mengakses data dan model yang bermanfaat untuk pengambilan keputusan tersebut. Sistem Pendukung Keputusan berfungsi untuk mengembangkan dan mengevaluasi beragam alternatif solusi untuk memperoleh pemahaman mengenai permasalahan, trade off antara obyektif-obyektif yang ada, dan mendukung proses pengambilan keputusan.

  2.3.1 Tujuan sistem pendukung keputusan

  Tujuan sistem pendukung keputusan yang akan dicapai adalah:

  1. Membantu manajer membuat keputusan untuk memecahkan masalah semiterstruktur.

  2. Mendukung penilaian manajer bukan mencoba menggantikannya

  3. Meningkatkan efektifitas pengambilan keputusan manajer dari pada efisiensinya.

  2.3.2 Karakteristik dan kemampuan sistem pendukung keputusan

  1. Sistem Pendukung Keputusan menyediakan dukungan untuk pengambil keputusan utamanya pada keadaan-keadaan semistruktur dan tidak terstruktur dengan menggabungkan penilaian manusia dan informasi komputerisasi.

  2. Menyedikan dukungan untuk tingkat manajerial mulai dari eksekutif sampai manajer.

  3. Menyedikan dukungan untuk kelompok individu, problem-problem yang kurang terstruktur memerlukan keterlibatan beberapa individu dari departemen-departemen yang lain dalam organisasi.

  4. Sistem pendukung keputusan menyediakan dukungan kepada independen atau keputusan yang berlanjut.

  5. Sistem pendukung keputusan memberikan dukungan kepada semua fase dalam proses pembuatan keputusan intelligence design, choice dan

  impelementasi .

  6. Sistem pendukung keputusan mendukung banyak proses dan gaya pengambilan keputusan.

  7. Sistem pendukung keputusan adaptive terhadap waktu, pembuat keputusn harus reaktif bias menghadapi perubahan-perubahan kondisi secara cepat dan merubah system pendukung keputusan harus fleksibel sehingga pengguna dapat menambah, menghapus, mengkombinasikan, merubah dan mengatur kembali terhadap elemen-elemen dasar.

  8. Sistem pendukung keputusan mudah digunakan. Pengguna merasa berada dirumah saat bekerja dengan sistem, seperti user friendly, fleksibelitas, kemampuan penggunaan grafik yang tinggi dan bahasa untuk berinteraksi dengan mesin seperti menggunakan bahasa inggris maka akan menaikan efektifitas dari sistem pendukung keputusan.

  9. Sistem pendukung keputusan menaikkan efektifitas pembuatan keputusan baik dalam hal ketepatan waktu dan kualitas bukan pada biaya pembuatan keputusan atau biaya pemakaian waktu komputer.

  10. Pembuat keputusan dapat mengontrol terhadap tahapan-tahapan pembuatan keputusan seperti pada tahap intelegence, choice dan implementation dan sistem pendukung keputusan diarahkan untuk mendukung pada pembuat keputusan bukan menggantikan posisinya.

  11. Memungkinkan pengguna akhir dapat membangun sistem sendiri yang sederhana. Sistem yang besar dapat dibangun dengan bantuan dari spesialis sistem informasi.

  12. Sistem pendukung keputusan menggunakan model-model standar atau buatan pengguna untuk menganalisa keadaan-keadaan keputusan. Kemampuan

  modeling memungkinkan bereksperimen dengan strategi yang berbeda-beda dibawah konfigurasi yang berbeda-beda pula.

  13. Sistem pendukung keputusan mendukung akses dari bermacam-macam sumber data, format, dan tipe, jangkauan dari sistem informasi geografi pada orientasi obyek.

  2.4 Pemodelan Sistem Pendukung Keputusan

  Karakteristik utama dari sistem pendukung keputusan adalah memasukkan sedikitnya satu model. Ide dasarnya adalah melakukan analisis sistem pendukung keputusan pada sebuah model realitas, dari pada analisis pada sistem nyata itu sendiri.

  2.5 Multi Criteria Decision Making (MCDM)

  Menurut Nachtnebel oleh Ziller, et al (2008:1), MCDM bertujuan memilih alternative terbaik dari suatu set alternative yang harus memenuhi beberapa tujuan yang telah memilki beberapa kriteria. Serta sebagaimana yang dikemukakan Howard oleh Ziller, at al (2008:1), MCDM sebagai prosedur sistematis untuk mengubah suatu keputusan masalah yang kompleks dengan urutan langkah langkah tertentu yang dapat membantu pengambil keputusan dalam sebuah keputusan yang rasional.

  MCDM memiliki beberapa langkah proses. Menurut Jung oleh Ziller, et al (2008:1), mengusulkan proses sebagai berikut:

  1. Membangun model untuk menjelaskan sistem testruktur, komponen, dan interaksi antar kriteria.

  2. Definisi tujuan.

  3. Spesifikasi kriteria yang relevan untuk mengidentifikasi tujuan diinginkan dan tidak diinginkan.

  4. Menciptakan dan mengidentifikasi alternative yang mungkin.

  5. Mencoba alternative pilihan yang ada, apakah sudah mampu memenuhi tujuan yang akan dicapai.

  6. Menganalisa dampak alternative pilihan yang ada.

  7. Menimbang dan mengurutkan dari alternative pilihan sesuai dengan preferensi pengambil keputusan.

2.6 Pengertian AHP ( Analitycal Hierarchy Process )

  Menurut Saaty metode AHP atau Proses Hirarki Analitik merupakan salah satu metode pengambilan keputusan dimana faktor-faktor logika, intuisi, pengalaman, pengetahuan, emosi, dan rasa dicoba untuk dioptimasikan dalam suatu proses yang sistematis. Metode AHP ini mulai dikembangkan oleh Thomas L. Saaty, seorang ahli matematika University Of Pittsburgh di Amerika Serikat, pada awal tahun 1970 – an. AHP yang dikembangkan oleh Saaty ini memecahkan yang kompleks dimana aspek atau kriteria yang diambil cukup banyak, kompleksitas ini disebabkan oleh banyak hal diantaranya struktur masalah yang belum jelas, ketidakpastian persepsi pengambilan keputusan serta ketidakpastian tersedia data statistic yang akurat atau bahkan tidak ada sama sekali. Adakalanya timbul masalah keputusan yang dirasakan dan diamati perlu diambil secepatnya, tetapi variasinya rumit sehingga datanya tidak dapat dicatat secara numeric (kuantitatif), namun secara kualitatif, yaitu berdasarkan persepsi pengalaman dan intuisi. Namun, tidak menutup kemungkinan, bahwa model- model lainnya ikut dipertimbangkan pada saat proses pengambilan keputusan dengan pendeketan AHP, khususnya dalam memahami para kepututsan individual pada saat proses penerapan pendekatan ini.

2.6.1 Prinsip-Prinsip AHP

  Menurut Hartono, et al (2013)

  1. Decomposition, setelah persoalan didefinisikan, dilakukan dekomposisi yaitu memecahkan persoalan yang utuh menjadi unsur-unsur. Karena alasan ini, maka proses analisis ini dinamakan hierarki.

  2. Comparative Judgement, membuat penilaian tentang kepentingan relatif dua elemen pada suatu tingkat tertentu dalam kaitannya dengan tingkat diatasnya.

  Hasil penilaian akan lebih baik jika disajikan dalam bentuk matriks yang dinamakan matriks pairwise comparison.

  3. Synthesis of Priority, dari setiap matriks pairwise comparison kemudian dicari

  eigen vector -nya untuk mendapatkan local priority. Karena matriks pairwise

  terdapat pada setiap tingkat, maka untuk mendapatkan global priority

  comparison harus dilakukan sintesa diantara local priority.

  4. Logical Consistency, konsistensi memiliki dua makna :

  a) Pertama adalah bahwa obyek-obyek yang serupa dapat dikelompokan sesuai dengan ke seragaman dan relevansi.

  b) kedua adalah tingkat hubungan antara obyek didasarkan pada criteria tertentu. Metode AHP adalah metode yang paling efisien untuk pilihan optimal logistik system. Metode ini memungkinkan mengatur alternatif trasportasi dalam urutan efisiensi dan menunjukkan perbedaan dalam himpunan kriteria. Eugene (2012).

  

Tabel 2. 1 Kriteria Pembobotan Metode AHP Saaty (1990)

Inten Keterangan Penjelasan

  Dua elemen mempunyai pengaruh yang

  1 Kedua elemen sama pentingnya sama besar terhadap tujuan Elemen yang satu sedikit lebih Pengalaman dan penilaian sedikit

  3 penting dari pada Elemen yang menyokong satu elemen dibandingkan lainnya elemen lainnya Elemen yang satu lebih penting Pengalaman dan penilaian sangat kuat

  5 dari pada elemen lainnya menyokong satu elemen dibandingkan elemen lainnya

  Satu elemen jelas lebih mutlak Pengalaman dan penilaian sangat kuat

  7 penting dari pada elemen lainnya disokong dan dominan terlihat dalam praktek

  Satu elemen mutlak penting dari Bukti yang mendukung elemen yang

  9 pada elemen lainnya satu terhadap elemen yang lain memiliki tingkat penegasan tertinggi yang mungkin menguatkan

  Nilai-nilai antara dua nilai Nilai-nilai ini diberikan bila ada dua 2,4,6,8 pertimbangan yang berdekatan kompromi di antara dua pilihan

2.6.2 Kelebihan dan Kelemahan AHP Metode AHP telah banyak penggunaannya dalam berbagai skala bidang kehidupan.

  Kelebihan metode AHP ini dibandingkan dengan pengambilan keputusan criteria majemuk lainnya adalah :

  1. Struktur yang berhirarki, sebagai konsekuensi dari kriteria yang dipilih, sampai pada sub

  • – sub kriteria yang palling dalam.

  2. Memperhitungkan validitas sampai dengan batas toleransi inkosistensi berbagai criteria dan alternative yang dipilih oleh para pengambil keputusan.

  3. Memperhitungkan daya tahan atau ketahanan output analisis sensitivitas pengambilan keputusan.

  4. Metode AHP memiliki keunggulan dari segi proses pengambilan keputusan dan akomodasi untuk atribu

  • – atribut baik kuantitatif maupun kualitatif.
  • – metode lainnya.
  • – kelemahan penggunaan metode AHP yaitu :

  5. Metode AHP juga mampu menghasilkan hasil yang lebih konsisten dibandingkan dengan metode

  6. Metode pengambilan keputusan AHP memiliki system yang mudah dipahami dan digunakan.

  Kelemahan

  1. Responden yang dilibatkan harus memiliki pengetahuan yang cukup dalam (expert) mengenai permasalahan dan tentang AHP itu sendiri.

  2. AHP tidak dapat diterapkan pada suatu perbedaan sudut pandang yang sangat tajam atau ekstrim dikalangan responden.

2.6.3 Langkah – langkah Metode AHP

  Adapun langkah yang dipergunakan dalam metode AHP, yaitu : 1. Mendefinisikan masalah dan menentukan solusi yang diinginkan.

  2. Membuat struktur hirarki yang diawali dengan tujuan umum, dilanjutkan dengan sub tujuan

  • – tujuan, criteria dan kemungkinan alternatif – alternatif pada tingkatan criteria yang paling bawah.
  • – masing tujuan atau criteria yang setingkat di atasnya. Perbandingan dilakukan berdasarkan judgement dari pengambilan keputusan dengan menilai tingkat kepentingan suatu elemen dibandingkan elemen lainnya.

  3. Membuat matriks perbandingan berpasangan yang menggambarkan kontribusi relative atau pengaruh setiap elemen terhadap masing

  4. Melakukan perbandingan berpasangan sehingga diperoleh judgement seluruh sebanyak n x [(n-1)/2] buah, dengan n adalah banyaknya elemen yang dibandingkan.

  5. Menghitung nilai eigen dan menguji konsistensinya, jika tidak konsisten maka pengambilan data diulangi.

  6. Mengulangi langkah 3, 4, dan 5 untuk seluruh tingkat hirarki.

  7. Mengikuti vector eigen di setiap matriks perbandingan berpasangan. Nilai vector eigen merupakan bobot setiap elemen. Langkah ini untuk mesintesis judgement dalam penentuan prioritas elemem

  • – elemen pada tingkat hirarki terendah sampai pencapaian tujuan.

  8. Memeriksa konsistensi hirarki. Jika nilainya lebih dari 10% maka penilaian data judgement harus diperbaiki.

  Secara naluriah manusia dapat mengestimasi besaran sederhana melalui inderanya. Proses paling mudah adalah membandingkan dua hal dengan keakuratan perbandingan yang dapat dipertanggungjawabkan, untuk itu Saaty menetapkan skala kuantitatif 1 sampai 9 untuk menilai secara perbandingan tingkat kepentingan suatu elemen dengan elemen lain.

2.6.4 Struktur Hirarki

  Hirarki adalah gambaran dari permasalahan yang kompleks dalam struktur banyak tingkat dimana tingkat paling atas adalah tujuan dan diikuti tingkat kriteria, subkriteria dan seterusnya ke bawah sampai pada tingkat yang paling bawah adalah tingkat alternatif. Hirarki menggambarkan secara grafis saling ketergantungan elemen-elemen yang relevan, memperlihatkan hubungan antar elemen yang homogen dan hubungan dengan sistem sehingga menjadi satu kesatuan yang utuh. Satty (1994)

  Tujuan Kritetia 1 Kriteria 2 Kriteria 3 Kriteria 4 Kriteria 5 Kriteria 6

  Alternatif 1 Alternatif 2 Gambar 2. 1 Struktur Hirarki Model AHP Pada dasarnya formulasi matematis pada model AHP, dilakukan dengan menggunakan matriks. Misalkan, dalam suatu subsistem operasi terdapat n elemen operasi, yaitu elemen-elemen operasi A

  1 ,A 2 n , maka hasil perbandingan secara

  , …, A berpasangan elemen-elemen operasi tersebut akan membentuk matriks perbandingan seperti pada tabel 2.2 berikut:

  

Tabel 2. 2 Matriks Perbandingan Berpasangan

  A

1 A

  2 A n

  … A a a a

  1

  11 12 … 1n

  A

  2 a 21 a 22 a 2n

  … : : : : :

  A n a n1 a n2 nn … \a

  Matriks A (nxn) merupakan matriks resiprokal dan diasumsikan terdapat n elemen yaitu w

  1 , w 2 n yang akan dinilai secara perbandingan. Nilai (judgement)

  , …, w perbandingan secara berpasangan antara (w i , w j ) dapat dipresentasikan seperti matriks tersebut, lihat persamaan dibawah ini: w i = a (i, j)

  ; I, j = 1, 2, …, n .................................... (2.1) w j Matriks A merupakan matris perbandingan dengan unsur-unsur adalah a , dengan I, j

  ij

  = 1, 2, …, n. Unsur-unsur matriks tersebut diperoleh dengan membandingkan satu elemen operasi terhadap elemen operasi lainnya tingkat hirarki yang sama. Matriks itu dikenal juga dengan sebutan Pairwise Comparison Judgement Matrices (PCJM). Vektor pembobotan elemen-elemen operasi dinyatakan sebagai vector w, dengan w (w

  1 , w 2, n ), sehingga nilai intensitas kepentingan elemen operasi A 1 terhadap A

  2

  …, w yakni w

  1 /w 2 sama dengan a

12 , lihat table 2.3 dibawah ini:

  

Tabel 2. 3 Matriks perbandingan dengan nilai intensitas

  A

1 A

  2 A n

  … A

  1 w 1 /w 1 w

1 /w

2 w 1 /w n

  … A w /w w /w w /w

  2

  2

  1

  2

  2 2 n

  … : : : : : A n w n /w

  1 w n /w 2 w n /w n

  … Nilai-nilai w i , w j , dengan I

  , j = 1, 2, …, n, diperoleh partisipan yang dipilih, yaitu orang-orang yang berkompeten dalam permasalahan yang dianalisis. Bila matriks ini dikalikan dengan vector kolom w = w

  1 , w 2 n , maka A dengan nilai eigen n.

  , …, w Persamaan tersebut akan dilihat seperti gambar berikut: w w w

  1

  1

  1

  … w w w w w

  1 2 n

  1

  1

  w

  2 w 2 w 2 x w 2 = n x w 2 (2.2)

  …

  …………

  w

  1 w 2 w n

  …

  …

  w n w n w n w n w n … w w w

  1 2 n Gambar 2. 2 Persamaan Matriks

  Variabel n pada gambar dapat digantikan secara umum dengan sebuah vector λ dalam persamaan berikut :

  Aw = λw

  Dimana , ) ............................. (2.3)

  

1

2 n

  λ = (λ λ , …, λ Setiap n yang memenuhi persamaan diatas disebut sebagai eigen value, sedangkan

  λ vector w yang memenuhi persamaan diatas tersebut dinamakan eigen vector.

  Matriks A adalah suatu matriks resiprokal dengan nilai a = 1 untuk semua I,

  ii

  sehingga memenuhi persamaan berikut : n = n i 1 i …..……………………… (2.4)

  Apabila matriks A adalah matriks yang konsisten maka semua eigen value bernilai 0 kecuali satu yang bernilai sama dengan n. Bila matriks A adalah matriks yang tak konsisten, variasi kecil atas a ij akan membuat eigen value paling besar, max tetap λ dekat dengan n, dan eigen value lainnya mendekati nol. Nilai dapat dicari dengan

  max

  λ persamaan berikut :

  max w atau [ A max I ] = 0

  Aw = λ – λ ……………….. (2.5) Dimana I adalah matriks identitas.

  Nilai vector bobot w dapat dicari dengan mensubtitusikan nilai max ke dalam λ persamaan Aw = max w.

  λ Pada prakteknya, kondisi yang konsisten akan sulit didapat. Nilai a akan

  ij

  menyimpang dari rasio w i / w j sehingga dengan demikian persamaan Aw = nw tidak akan terpenuhi. Deviasi max dari n merupakan suatu parameter Consistency Index (CI) λ yang dirumuskan sebagai berikut :

  CI = .................................................... (2.6) Nilai CI tidak akan berarti bila tidak terdapat acuan untuk menyatakan apakah CI menunjukkan suatu matriks yang konsisten. Saaty memberikan acuan dengan melakukan perbandingan acak terhadap 500 buah sample. Saaty berpendapat bahwa suatu matriks yang dihasilkan dari perbandingan yang dilakukan secara acak merupakan suatu matriks yang mutlak tak konsisten. Pada matriks acak tersebut diperoleh nilai CI, yang disebut dengan Random Index ( RI ), sehingga dengan membandingkan CI dengan RI akan didapatkan acuan untuk menentukan tingkat konsistensi suatu matriks, yang disebut dengan Consistency Ratio ( CR ), melalui persamaan berikut : CR =

  ………………………………. (2.7) Thomas L. Saaty mendapatkan nilai rata

  • – rata RI dari 500 buah sample matriks acak dengan skala perbandingan 1
  • – 9, untuk beberapa orde matriks yang dapat diliat pada

tabel 2.4 berikut:

  13

  0.90

  1.51

  1.49

  15 RI

  14

  1.57

  12

  11

  10

  1.45 Orde Matrik s

  1.41

  1.32

  1.24

  1.12

  0.58

  1.56

  0.00

  0.00

  9 RI

  8

  7

  6

  5

  4

  3

  2

  1

  Orde Matrik s

  

Tabel 2. 4 Nilai Random Index

  1.59 Saaty menerapkan bahwa suatu matriks perbandingan adalah konsistensi bila nilai CR tidak lebih dari 0.1 ( 10% ).

  1.48

2.6.5 Analisis Bobot Metode AHP

  2

  1 Nilai perbandingan K

  Dalam pencarian bobot metode AHP dilakukan langkah-langkah tersebut: a. Membuat struktur hirarki dengan kriteria-kriteria.

  b. Perhitungan bobot kriteria dengan cara :

  1. Membuat matriks perbandingan berpasangan yang menggambarkan kontibusi relatif atau pengaruh setiap elemen terhadap masing-masing kriteria dengan kriteria lainnya.

  2. Menghitung Total Prioritas Value untuk mendapatkan bobot kriteria dengan cara seperti yang terlihat pada tabel 2.5 dan tabel 2.6 berikut :

  

Tabel 2. 5 Penjumlahan Kolom

  K

  

1 K

  11

  … K n

  K

  • … … +… K

  2 Nilai perbandingan K

  12

  • … … +… K

  3 Nilai perbandingan K

  13

  • … … +… : : : : : K n Nilai perbandingan K 1n
  • … … +… Σkolom

  Tabel 2. 6 Penjumlahan Baris

  K

1 K

  2 K n TPV

  … K Nilai perbandingan K

  1 11 / Σ kolom +… … +… Σ baris1n/n

  K Nilai perbandingan K

  2 12 kolom baris2n/n

  / Σ +… … +… Σ K

  3 Nilai perbandingan K 13 kolom baris3n/n

  / Σ +… … +… Σ : : : : : : K n Nilai perbandingan K 1n kolom barisnn/n

  / Σ +… … +… Σ Keterangan : K = Kriteria n = Banyaknya kriteria TPV = Total Priority Value 3. Nilai TPV yang didapat merupakan nilai bobot untuk setiap kriteria.

  c. Memeriksa konsistensi matriks perbandingan suatu kriteria.

  Adapun langkah-langkah dalam memeriksa konsistensi adalah sebagai berikut :

  1. Pertama bobot yang didapat dari nilai TPV dikalikan dengan nilai-nilai elemen matriks perbandingan yang telah diubah menjadi bentuk desimal, dan dilanjutkan dengan menjumlahkan entri-entri pada setiap baris, dapat dilihat pada tabel 2.7 dibawah ini :

  Tabel 2. 7 Perkalian TPV dengan elemen matriks

  K TPV K

1 TPV K

  2 TPV K n

  K

  1 Nilai perbandingan K 11 x TPV K

  1 Nilai perbandingan K 1n x TPV K n

  … K

  2

  … … … K

  3

  … … … : : : : K Nilai perbandingan K x TPV K Nilai perbandingan K x TPV K

  

n n1 n nn nn

  …

  2. Kemudian jumlah setiap barisnya, dapat dilihat pada tabel 2.8 berikut :

  

Tabel 2. 8 Penjumlahan Baris Setelah Perkalian

  K TPV K

1 TPV K

  2 TPV K n baris

  … Σ K

  1 Nilai perbandingan K 11 * TPV K 1 barisk1

  • … … +… Σ K

  2

  … +… … +… … K

  3

  … +… … +… … : : : : : : K n Nilai perbandingan K n1 * TPV K n bariskn

  • … … +… Σ 3. , pertama-tama mencari nilai rata-rata setiap kriteria

  maks

  Kemudian mencari λ

  baris dibagi

  atau subkriteria yaitu jumlah hasil pada langkah no.2 diatas yaitu Σ dengan TPV dari setiap kriteria.

  K TPV K K Σ baris

  1 1 λ maks

  

1

  ÷ = … … …

  baris K n TPV K n maks K n

  Σ λ …………………………… (2.8) Kemudian akan diperoleh maks dengan cara sebagai berikut :

  λ K K ÷ n

  maks maks 1 maks n

  λ = λ + … + … + λ ………………………….... (2.9) Keterangan :

  maks = nilai rata

  λ – rata dari keseluruhan kriteria n = jumlah matriks perbandingan suatu kriteria

  4. Setelah maks , kemudian mencari Consistency Index ( CI ), yaitu mendapatkan λ dengan persamaan :

  CI = ……………………………. (2.10)

  5. Kemudian mencari Consistency Ratio ( CR ) dengan mengacu pada Nilai Indeks Random atau Random Index ( RI ) yang dapat dilihat pada tabel 2.2, yaitu dengan persamaan :

  CR = ………………………… (2.11) 6.

  Matriks perbandingan dapat diterima jika Nilai Rasio Konsistensi ≤ 0.1, jika nilai CR > 0.1 maka pertimbangan yang dibuat perlu diperbaiki.

  2.7 Fuzzy Analytical Hierarcy Process (FAHP)

  Terdapat banyak literatur yang menyebutkan ketidaktepatan keputusan dalam penggunaan perbandingan rasio. Secara umum kebanyakan manusia tidak dapat membuat perkiraan kuantitatf. Ketidakjelasan keputusan pilihan membuatn ketidakkonsistenan dalam menetapkan keputusan.

  Fuzzy AHP adalah metode analisis yang dikembangkan dari AHP tradisional.

  Walaupun AHP biasa digunakan dalam menangani kriteria kualitatif dan kuantitatif pada MCDM namun fuzzy AHP dianggap lebih baik dalam mendeskripsikan keputusan yang samar-samar daripada AHP tradisional. (Boender et all, 1989; Buckley, 1985/a, 1985/b, Chang, 1996; Laarhoven dan Pedrycz, 1983; Lootsma, 1997; Ribeiro, 1996).

  Dalam system yang lebih kompleks, pengalaman dan penilaian manusia sering digambarkan dalam bentuk linguistic dan pola yang tidak jelas. Oleh karena itu, gambaran yang lebih baik dapat dikembangkan ke dalam bentuk data kuantitatif dengan menggunakan teori fuzzy. Di sisi lain, metode AHP sering digunakan pada aplikasi yang bersifat crisp. AHP tradisional masih tidak dapat mewakili penilaian manusia. Untuk menghindari risiko tersebut, fuzzy AHP dikembangkan untuk memecahkan masalah fuzzy berhirarki. Witjaksono (2009)

  2.8 Triangular Fuzzy Number (TFN)

  Bilangan triangular fuzzy number (TFN) merupakan teori himpunan fuzzy membantu dalam pengukuran yang berhubungan dengan penilaian subjektif manusia memakai bahasa atau linguistik. Inti dari fuzzy AHP terletak pada perbandingan berpasangan yang digambarkan dengan skala rasio yang berhubungan dengan skala fuzzy. Bilangan triangular fuzzy disimbolkan dan berikut ketentuan fungsi keanggotaan untuk 5 skala variabel linguistik, lihat tabel 2.9 (Shega et all 2012).

  

Tabel 2. 9 Skala perbandingan tingkat kepentingan fuzzy

Tingkat Invers NO

  Definisi Variable Linguistik Skala Fuzzy Skala Fuzzy

  1 (1,1,1) (1,1,1) Perbandingan dua kriteria yang sama 2 1= (1/2,1,3/2) (2/3,1,2) Dua elemen mempunyai kepentingan yang sama 3 3 = (1,3/2,2) (1/2,2/3,1) Satu elemen sedikit lebih penting dari yang lain 4 5 = (3/2,2,5/2) (2/5,1/2,2/3) Satu elemen lebih penting dari yang lain 5 7 = (2,5/2,3) (1/3,2/5,1/2) Satu elemen sangat lebih penting dari yang lain 6 9 = (5/2,3,7/2) (2/7,1/3,2/5) Satu elemen mutlak lebih penting dari yang lain