Directory UMM :Journals:Journal_of_mathematics:VMJ:

‚« ¤¨ª ¢ª §áª¨© ¬ â¥¬ â¨ç¥áª¨© ¦ãà­ «
€¯à¥«ì{¨î­ì, 2002, ’®¬ 4, ‚ë¯ã᪠2

“„Š 517.5

ˆ’…ƒ€‹œ›… …€‚…‘’‚€
‚ €ˆ‡Ž’Ž›• Ž‘’€‘’‚€• ‘ށދ…‚€

Œ. ‘. €«¡®à®¢ 

®«ã祭ë ä㭪樮­ «ì­®-£¥®¬¥âà¨ç¥áª¨¥ ãá«®¢¨ï ­  ®¡« áâì, ®¡¥á¯¥ç¨¢ î騥 á¯à ¢¥¤«¨¢®áâì
­¥ª®â®àëå ¨­â¥£à «ì­ëå ­¥à ¢¥­á⢠¨ ⥮६ ¢«®¦¥­¨ï ¤«ï  ­¨§®âய­ëå ä㭪樮­ «ì­ëå
¯à®áâà ­áâ¢.

ãáâì

li > 0:

Rn

x = (x1 ; :::; xn ); ~l = (l1 ; :::; ln )


| ¥¢ª«¨¤®¢® ¯à®áâà ­á⢮ â®ç¥ª

 áᬮâਬ ®¤­®¯ à ¬¥âà¨ç¥áªãî £à㯯㠯८¡à §®¢ ­¨©

 l

l

Ht (x) = t l1 x1 ; :::; t ln xn
£¤¥

1

l

= n1

n
P

i=1

Rn

t 2 R+ ;

,



1

li , ¨ £« ¤ªãî Ht -®¤­®à®¤­ãî ¬¥âਪã, ®¯à¥¤¥«ï¥¬ãî ¢¥ªâ®à®¬

­¥¯à¥à뢭ãî ­ 

~l 2 N n ; r : Rn nf0g ! R+ ; r(Ht (x)) = tr(x); x 2 Rn ;
Rn :

˜ à®¬ á æ¥­â஬ ¢ â®çª¥


ãáâì



| ¬ã«ì⨨­¤¥ªá,


 Rn

x

à ¤¨ãá 



­ §ë¢ ¥âáï ¬­®¦¥á⢮

B (x) = fy 2 Rn : r(x; y) < g:


| ®âªàë⮥ ¯®¤¬­®¦¥á⢮,

p>1

.

ã¤¥¬ £®¢®à¨âì, çâ® äã­ªæ¨ï

~l
¯à¨­ ¤«¥¦¨â ª« ááã L (
), ¥á«¨ ®­  ¨¬¥¥â ®¡®¡é¥­­ë¥ ¯à®¨§¢®¤­ë¥
p

2 Lp(
); j : lj = 1:
= ( 1 ; :::; n ) j : lj = l + ::: + lnn
kf kL~lp(
) = X kD f kLp(
):


f

2 Lp(
)

D f

‡¤¥áì



f
D f = @x 1@:::@x
n
n
1

,

®¯à¥¤¥«¨¬ ¯®«ã­®à¬ã:


1
1

¨

.

„«ï â ª¨å ä㭪権

j :lj=1



à®áâà ­á⢮¬

L~lp (
)

­ §®¢¥¬ § ¬ëª ­¨¥ ¢ ­®à¬¥


kf kL~lp(
) =


¬­®¦¥á⢠


c

C01(
)

X
j :lj=1

kD f kLp(
)

| ¡¥áª®­¥ç­® ¤¨ää¥à¥­æ¨à㥬ëå ä㭪権 á ­®á¨â¥«ï¬¨ ¢


2002 €«¡®à®¢  Œ. ‘.




.

2{12

Œ. ‘. €«¡®à®¢ 

‚¢¥¤¥¬ ¯à®áâà ­á⢮

Vp~l =

á­ ¡¦¥­­®¥ ­®à¬®©

kf kVp~l =


\

jk:lj61
X

j :lj61

Lkp (
);

kD f kL(
) :

‚¢¥¤¥­­ë¥ ¢ëè¥ ¯à®áâà á⢠ ¨§ãç «¨áì ¢ à ¡®â å ‚®¤®¯ìï­®¢  ‘.Š. [1{5].
ãáâì

e 2 Rn | § ¬ª­ã⮥ ¬­®¦¥á⢮. …¬ª®áâìî ¬­®¦¥á⢠ e ­ §®¢¥¬ ¢¥«¨ç¨­ã
 ~
l




Cap e; Lp (
) = inf

M(e;
) = fu 2 C01(
) : u = 1



kukp ~l (
)
Lp



: u 2 M(e;
) ;


eg (á¬. [6]).


ãáâì e | ª®¬¯ ªâ­®¥ ¯®¤¬­®¦¥á⢮ è à  B : ã¤¥¬ £®¢®à¨âì, çâ® e | (p; l )-­¥áãé¥á⢥­­®¥
¯®¤¬­®¦¥á⢮ B , ¥á«¨

Cap (e; L~lp (B )) 6
n,pl ;
n > pl ; p > 1 ¨«¨ n > l ; p = 1; £¤¥
| ¤®áâ â®ç­® ¬ « ï ª®­áâ ­â , § ¢¨áïé ï ⮫쪮 ®â n,
p, ~l.

‘®¢®ªã¯­®áâì ¢á¥å (p; l )-­¥áãé¥á⢥­­ëå ¯®¤¬­®¦¥á⢠è à  B ®¡®§­ ç¨¬ ç¥à¥§ N (B ). €
R
ç¥à¥§ u
B | á।­¥¥ §­ ç¥­¨¥ ä㭪樨 u ­  è à¥ B , â. ¥. uB = [mn (B )],1 udx.
£¤¥

¢ ®ªà¥áâ­®áâ¨

B

‚¢¥¤¥¬ ¥é¥ ¯®«ã­®à¬ã

jujp;l ;B =
£¤¥

= ( 1 ; :::; n ) 2 N n :
â ª¨å, çâ®

0 0

’¥®à¥¬  1. ãáâì

u 2 C 1(B )

X

| § ¬ª­ã⮥ ¯®¤¬­®¦¥á⢮ è à 

B :

„«ï ¢á¥å ä㭪権

¢¥à­® ­¥à ¢¥­á⢮

kukLq (B ) 6 C jujp;l ;B ;


X
n
1
1
1 6 1:
1 6 p 6 q 6 1;  = p , q
i=1 li

£¤¥

à¨

(1)

 = 1 (1 6 p = q < 1)

, ª®­áâ ­â 

C

¤®¯ã᪠¥â ®æ¥­ªã

 



C ,p > , q c1 Cap e; L~lp (B ) :
np

„®ª § â¥«ìá⢮ â¥®à¥¬ë ®á­®¢ë¢ ¥âáï ­  á«¥¤ãîé¨å १ã«ìâ â å.
à¥¤«®¦¥­¨¥ 1.
A : L~kp (B ) ! L~kp (B2 )
‘ãé¥áâ¢ã¥â ®¯¥à â®à ¯à®¤®«¦¥­¨ï

ª®©, çâ®

(2)

â -

2{13

ˆ­â¥£à «ì­ë¥ ­¥à ¢¥­á⢠ ¢  ­¨§®âய­ëå ¯à®áâà ­áâ¢ å ‘®¡®«¥¢ 

(1)

Av = v

(2)

¥á«¨

­ 

B

;

dist (supp v; e) > 0, e ª®¬¯ ªâ ¢ B , â® dist (supp (Av ); e) > 0;
k
(3) kD (Av )kLp (B2 ) 6 ckD k ukLp (B ) ; £¤¥ jk : lj 6 1, 1 6 p 6 1.
C „®ª § â¥«ìá⢮ á«¥¤ã¥â ¨§ १ã«ìâ â®¢ à ¡®â [7{11] B
‹¥¬¬  1. ãáâì e | ª®¬¯ ªâ ¢ B1 . ‘ãé¥áâ¢ã¥â â ª ï ¯®áâ®ï­­ ï c > 1,




çâ®



c,1 Cap e; L~lp (B2 ) 6 inf fk1 , ukpVp~l(B1 ) : u 2 C01(B1 );

dist (supp u; e) > 0g 6 c Cap







e; L~lp (B2 ) :

(3)

C ãáâì v = A(1 , u): Ž¡®§­ ç¨¬ ç¥à¥§  äã­ªæ¨î ¨§ C 1(B ), à ¢­ãî ¥¤¨­¨æ¥ ¢
®ªà¥áâ­®á⨠è à  B : ’®£¤ 
0

2

1

Cap (e; B2 ) < c

Z

X

B2 j :lj=1

(â ª ª ª

jD (v)jpdx = c

Z



X


:l =1 =0
X

B2 j j

p






C D vD ,  dx 6

(4)

 2 C01(B2 ), â® íâ  äã­ªæ¨ï ¢¬¥á⥠ᮠ᢮¨¬¨ ¯à®¨§¢®¤­ë¬¨ ®£à ­¨ç¥­ )

6c

B2

6c



X


:l =1 =0

Z

X

j j

p






D v dx 6 ckvkpVp~l(B2 )




1 
inf k1 , ukp ~l
Vp (B1 ) : u 2 C0 (B1 ); dist (supp u; e) > 0

;

¨ «¥¢ ï ç áâì (3) ¤®ª § ­ . „®ª ¦¥¬ ¯à ¢ãî ç áâì ®æ¥­ª¨ (3). ãáâì
’®£¤ 
X
X
kD wkLp (B2 ) 6 c
kD wkLp (B2 ) :
kwkpVp~l(B1 ) 6 c
j :lj61
j :lj=1
Œ¨­¨¬¨§¨àãï ¯®á«¥¤­îî ­®à¬ã ­  ¬­®¦¥á⢥


(5)

w 2 M(e; B2 ).
(6)

M(e; B ) ¯®«ã稬
2





kwkVp~l B2 6 c Cap e; L~lp (B ) :
(

)

2

Œ¨­¨¬¨§¨àãï «¥¢ãî ç áâì, § ª ­ç¨¢ ¥¬ ¤®ª § â¥«ìá⢮.
’¥¯¥àì ¤®ª ¦¥¬ ⥮६ã 1.

B

C

„®áâ â®ç­® ¤®ª § âì ⥮६㠯ਠ = 1.
€ § â¥¬ ¢®á¯®«ì§®¢ âìáï
Ht -®¤­®à®¤­ë¬ ¯à¥®¡à §®¢ ­¨¥¬. ãáâì N = kukLp (B1 ). ’ ª ª ª dist (supp u; e) > 0;
â® ¯® «¥¬¬¥ 1

~
,1 p
,p p
Cap (e; Llp (B2 )) 6 ck1 , N ,1 ukp ~l
Vp (B1 ) = cN jujp;l ;B1 + C k1 , N ukLp (B1 ) ;
â. ¥.



N p Cap (e; L~lp (B2 )) 6 C jujpp;l ;B1 + kN , ukpLp (B1 ) :

(7)

2{14

Œ. ‘. €«¡®à®¢ 

> 0: ’®£¤ 

¥§ ®£à ­¨ç¥­¨ï ®¡é­®á⨠¬®¦­® ¯à¥¤¯®«®¦¨âì, çâ® u
B1




jN , uB1 j = kukLp B1 , kuB1 kLp B1 6 ku , uB1 kLp B1 :
(

)

(

)

(

)

‘«¥¤®¢ â¥«ì­®,

kN , ukLp B1 6 kN , uB1 kLp B1
(

)

(

)

+ ku , u
B1 kLp (B1 )

6 2ku , uB1 kLp B1 :
(

(8)

)

‚ ᨫã (7), (8) ¨ ­¥à ¢¥­á⢠ ã ­ª à¥ ¤«ï  ­¨§®âய­ëå ¯à®áâà ­áâ¢

ku , uB1 kLp B1 6 c
(

á¯à ¢¥¤«¨¢  ®æ¥­ª 

)

X

j :lj=1

kD ukLp B1 ;
(

~
Cap (e; Llp (B2 )) kukpLp (B1 )

)

6 jujpp;l ;B1 :

ˆ§ ⥮६ ¢«®¦¥­¨ï ¤«ï  ­¨§®âய­ëå ¯à®áâà ­á⢠(á¬. [13]) ¨ ¯®á«¥¤­¥£® ­¥à ¢¥­á⢠ ¯®«ãç ¥¬



kukpLq B1 6 c (jujpp;l ;B1 + kukpLp B1 ) 6 f1 + [Cap (e; L~lp (B ))], gjujpp;l ;B1 :
(

)

(

1

2

)

“⢥ত¥­¨¥ ⥮६ë 1 ¤®ª § ­®. B
Žâ¬¥â¨¬, çâ® ¢ ¨§®âய­®¬ á«ãç ¥ ⥮६  1 ¤®ª § ­  ¢ à ¡®â¥ Œ §ì¨ [12] ¨ ¯à¨
¯®¬®é¨ ¤à㣮£® ¬¥â®¤  ¯à¨ p > 1 •¥¤¡¥à£®¬ [13].
’¥®à¥¬  2. ãáâì

(0; 1).

e

| § ¬ª­ã⮥ ¯®¤¬­®¦¥á⢮


B

¨



| ç¨á«® ¨§ ¨­â¥à¢ « 

’®£¤  ¤«ï ¢á¥å ä㭪権 ¨§ ¬­®¦¥á⢠

n

u

2 C 1(B) :

u
 B

> 0;

u(x)

6 , np kukLp B
(

) ¯à¨ ¢á¥å

x

2e

o

á¯à ¢¥¤«¨¢® ­¥à ¢¥­á⢮:

kukLq B 6 C jujp;l ;B ;
(

)

£¤¥

C ,p

> c (1 , ), npq Cap
1



~



e; Llp (B2 ) :

C ®¢â®àïï ¤®ª § â¥«ìá⢮ «¥¬¬ë 1, ¯®«ãç ¥¬

 ~l
p
,
1
c Cap (e; L (B2 )) 6 inf k1 , uk ~

p

Vpl (B1 )



1 ); u 6 0 ­  e
: u 2 C 1 (B

6 cCap
„ «¥¥ ¨§ ­¥à ¢¥­á⢠ 1 , N ,1 u > 1 ,  ­  e ¢ë⥪ ¥â ®æ¥­ª 

~
(1 ,  )p Cap e; Llp (B2 )




6 ck1 , N , ukpVpl B1 ;

¨ ®áâ ¥âáï ¯®¢â®à¨âì ¤®ª § â¥«ìá⢮ ⥮६ë 1.

1

B

(

)



~



e; Llp (B2 ) :

ˆ­â¥£à «ì­ë¥ ­¥à ¢¥­á⢠ ¢  ­¨§®âய­ëå ¯à®áâà ­áâ¢ å ‘®¡®«¥¢ 

’¥®à¥¬  3. ãáâì

n = l p; p > 1. B

2{15

| è à, ¤«ï ª®â®à®£®


Cap (B n
; L~lp (
)) > 0:
’®£¤  ¤«ï ¢á¥å ä㭪権

u 2 D(
)

kukpLq (B ) 6 C
£¤¥

C

X

j :lj=1

kD ukpLp (
) ;

h

(9)



i,1

~

i,1

6 cdnp=q Cap (B n
; L~lp (B2 ))

:

C ‘®£« á­® ⥮६¥ 1 ¨¬¥¥¬
h

kukpLp (B ) 6 cdnp=q Cap
®áª®«ìªã ¯à¨

j : lj 6 1 ¨



B n
; Llp (B2 )

q

á¯à ¢¥¤«¨¢ë ­¥à ¢¥­á⢠

kukp;l ;B2 6 c

(10)

= n , pl (1pn, j : lj)

kD ukLp(B2 ) 6 cl (1,j :lj) kD ukLq
6 cl (1,j :lj) 
â®

 jujp;l ;B :

X

j :lj=1

X

j :lj=1

kD ukLp (
) ;

kD ukLp (
) :

(11)

¥à ¢¥­á⢠ (10) ¨ (11) ¤ î⠮業ªã (9). B

‹¨â¥à âãà 
1.

‚®¤®¯ìï­®¢ ‘. Š.

ƒ¥®¬¥âà¨ç¥áª¨¥ ᢮©á⢠ ®¡« á⥩, 㤮¢«¥â¢®àïîé¨å ãá«®¢¨î ¯à®¤®«¦¥­¨ï

¤«ï ¯à®áâà ­á⢠¤¨ää¥à¥­æ¨à㥬ëå ä㭪権 // ¥ª®â®àë¥ ¯à¨«®¦¥­¨ï ä㭪樮­ «ì­®£®  ­ «¨§  ª § ¤ ç ¬ ¬ â¥¬ â¨ç¥áª®© 䨧¨ª¨ (’à. ᥬ¨­ à  ‘. ‹. ‘®¡®«¥¢ ).|®¢®á¨¡¨àáª.|1984,
ü 2.|‘. 65{95.
2.

‚®¤®¯ìï­®¢ ‘. Š.

Ž ¯à¨­æ¨¯¥ ¬ ªá¨¬ã¬  ¢ ⥮ਨ ¯®â¥­æ¨ «  // ’¥§¨áë ¤®ª«. XI ‚á¥á®î§­®©

誮«ë ¯® ⥮ਨ ®¯¥à â®à®¢ ¢ ä㭪樮­ «ì­ëå ¯à®áâà ­á⢠å. —. 1|—¥«ï¡¨­áª, 1986.|‘. 29.
3.

‚®¤®¯ìï­®¢ ‘. Š.

€­¨§®âய­ë¥ ¯à®áâà ­á⢠ ¤¨ää¥à¥­æ¨à㥬ëå ä㭪権 ¨ ª¢ §¨ª®­ä®à¬-

­ë¥ ®â®¡à ¦¥­¨ï // ’¥§¨áë ¤®ª«. XI ‚á¥á®î§­®© 誮«ë ¯® ⥮ਨ ®¯¥à â®à®¢ ¢ ä㭪樮­ «ì­ëå ¯à®áâà ­á⢠å. — 2.|—¥«ï¡¨­áª, 1986.|‘. 23.
4.

‚®¤®¯ìï­®¢ ‘. Š.

ƒ¥®¬¥âà¨ç¥áª¨¥ ᢮©á⢠ ®â®¡à ¦¥­¨© ¨ ®¡« á⥩. Žæ¥­ª  á­¨§ã ­®à¬ë ®¯¥-

à â®à  ¯à®¤®«¦¥­¨ï // ˆáá«¥¤®¢ ­¨ï ¯® £¥®¬¥âਨ ¨ ¬ â¥¬ â¨ç¥áª®¬ã  ­ «¨§ã.|®¢®á¨¡¨àáª:
 ãª , 1987.|‘. 70{101.
5.

‚®¤®¯ìï­®¢ ‘. Š.

‘à ¢­¥­¨¥ ¬¥âà¨ç¥áª¨å ¨ ¥¬ª®áâ­ëå å à ªâ¥à¨á⨪ ¢ ⥮ਨ ¯®â¥­æ¨ «  //

˜ª®«  ¯® ª®¬¯«¥ªá­®¬ã  ­ «¨§ã ¨ ¬ â¥¬ â¨ç¥áª®© 䨧¨ª¥.
¤®ª« ¤®¢.|Šà á­®ïàáª, 1987.|C. 21.

„¨¢­®£®àáª, ¨î­ì 1987:

’¥§.

2{16

6.
7.
8.
9.
10.
11.
12.
13.

Œ. ‘. €«¡®à®¢ 

“áâà ­¨¬ë¥ ®á®¡¥­­®á⨠¤«ï à¥è¥­¨ï ª¢ §¨«¨­¥©­ëå ª¢ §¨í««¨¯â¨ç¥áª¨å ãà ¢­¥­¨© // ‘¨¡. ¬ â. ¦ãà­.|1992.|’. 34, ü 4, ‘. 3{14.
à®¤®«¦¥­¨¥ ä㭪権 ¨§ Llp ¨ Wpl // ’à. Œˆ€ ‘‘‘.|1967.|’. 89.|‘. 5{17.
…áâ¥á⢥­­®¥ à áè¨à¥­¨¥ ª« áá  ®¡« á⥩ ¢ ⥮६ å ¢«®¦¥­¨ï // Œ â.
ᡮ୨ª.|1968.|’. 75 (117), ¢ë¯. 4.|‘. 483{495.
ˆ­â¥£à «ì­ë¥ ¯à¥¤áâ ¢«¥­¨ï ¤¨ää¥à¥­æ¨à㥬ëå ä㭪権 ¨ ¨å ¯à¨¬¥­¥­¨ï ¢
¢®¯à®á å ¯à®¤®«¦¥­¨ï ä㭪権 ª« áᮢ Wpl (g) // ‘¨¡. ¬ â. ¦ãà­.|1967.|ü 7.|‘. 573{583.
’¥®à¥¬ë ¢«®¦¥­¨ï ¨ ¯à¨«®¦¥­¨ï ª ¤¨ää¥à¥­æ¨ «ì­ë¬ ãà ¢­¥­¨ï¬.|®¢®á¨¡¨àáª:  ãª , 1984.|‘. 224.
ˆ­â¥£à «ì­ë¥ ¯à¥¤áâ ¢«¥­¨ï ä㭪権 ¨ ⥮६ë
¢«®¦¥­¨ï.|Œ.:  ãª , 1975.
à®áâà ­á⢠ ‘. ‹. ‘®¡®«¥¢ .|‹.: ˆ§¤-¢® ‹ƒ“, 1985.|416 c.
Two appoximation problems in function spaces // Ark. Mat.|1978.|V. 16, No. 1.|
. 51{81.
€«¡®à®¢  Œ. ‘., ‚®¤®¯ìï­®¢ ‘. Š.

¥á®¢ Ž. ‚.

¥á®¢ Ž. ‚., ˆ«ì¨­ ‚. .

ˆ«ì¨­ ‚. .

“ᯥ­áª¨© ‘. ‚., „¥¬¨¤¥­ª® ƒ. ‚., ¥à¥¯¥«ª¨­ ‚. ƒ.

¥á®¢ Ž. ‚., ˆ«ì¨­ ‚. ., ¨ª®«ì᪨© C. Œ.

Œ §ìï ‚. ƒ.

Hedberg L.

‚« ¤¨ª ¢ª §

‘â âìï ¯®áâ㯨«  15  ¯à¥«ï 2002 £.