Materi-2 Barisan & Deret Geometri

  Jl. Medan – Banda Aceh, Blang Bladeh Bireuen, Tlp. 0644 22207 Web: stie.ptkb-aceh.ac.id

MATEMATIKA EKONOMI (2-SKS)

Drs. Win Konadi, M.Si

  Materi – 2 :

Barisan dan Deret Geometri serta Contoh Soal

  Barisan Geometri

Barisan Geometri adalah susunan bilangan yang dibentuk menurut urutan tertentu, di mana susunan

bilangan di antara dua suku yang berurutan mempunyai rasio yang tetap (dilambangkan dengan

huruf r). Jika a adalah suku pertama dan r adalah rasio yang tetap, maka suku ke 2 dan seterusnya adalah

  1 a 2 = a 1 r

  2 a = a r = a r

  3

  2

  1

  3 a 4 = a 3 r = a 1 r Sehingga bentuk umum dari barisan geometri untuk suku ke-n adalah n-1 n-1 n 1 n

  1 a = a r atau S = a r Keterangan: a n = S n = suku ke – n a = suku pertama

  1 r = rasio yang tetap n = banyaknya suku

  Contoh-1: Carilah suku ke-8 dari barisan geometri di mana suku pertama adalah 16 dan rasionya adalah 2 Jawab: Diketahui : a = 16 , r = 2, n=8

  1 8-1

  7

  7 Maka : S 8 = a 1 r = a 1 r = 16(2) = 2048 Contoh-2: Tentukan suku ke 10 dari barisan 1/8, 1/4, 1/2, …. Jawab: jika ditanya suku ke 5 atau suku yang masih ke-sekian yang masih kecil mungkin Anda bisa meneruskan barisan geometri tersebut tapi kalau ditanyakan suku ke-10, ke-50, atau ke-100 akan sangat merepotkan dan lebih baik Anda harus menggunakan rumus barisan geometri Dengan : r = 1/4 : 1/8 = 1/4 x 8 = 2 –> rasio a = 1/8, n-1 (10-1) 9 -3

  9

  6 maka Sn = ar = 1/8 2 = 1/8 . 2 = 2 .2 = 2 = 64 Contoh-3:

Carilah suku ke-11 dalam suatu barisan geometri, dimana suku ke-4 adalah 24, suku ke-9 adalah 768

Jawab:

  Jl. Medan – Banda Aceh, Blang Bladeh Bireuen, Tlp. 0644 22207 Web: stie.ptkb-aceh.ac.id Contoh-4:

Sebuah amoeba dapat membelah diri menjadi 2 setiap 6 menit. Pertanyaannya, berapakah jumlah

amoeba setelah satu jam jika pada awalnya terdapat 2 amoeba? Jawab: Diketahui; a = 2 dan r = 2 n = (1 jam/ 6 menit) + 1 = 11 –> menit juga dimasukkan n-1

  Rumus : S n = ar 11-1

  10 Maka: S = 2.2 = 2 = 1024 buah amoeba.

  10 Deret Geometri Dimana : a 1 = suku pertama, r = rasio barisan geometri Rumus Deret Geometri: Contoh-1: Carilah jumlah suku ke-8 yang pertama dari barisan geometri berikut : 3, 6, 12, 24, . . . Jawab:

  Diketahui a 1 = 3, r = 2, dan n = 8 Maka jumlah suku ke-8 (D ) adalah :

8 Contoh-3:

  Tentukan jumlah 6 suku pertama dari barisan 1,3,9,… Jawab: Diketahui a = 1, r = 3 dan n = 6 n

6 Dn = a (1-r )/ (1-r) = 1 (1-3 ) / (1-3) = 1 (1-729) / -2 = -728/-2 = 364

  Jl. Medan – Banda Aceh, Blang Bladeh Bireuen, Tlp. 0644 22207 Web: stie.ptkb-aceh.ac.id Soal-soal :

  1. Carilah jumlah dari 6 suku pertama pada setiap barisan berikut ini: a.

  c. 6, 3, … 2, 10,50, 250, … b.

  d. 16,8, 4, 2, … 3, 9, 27, 81

  2. Carilah enam suku pertama dari barisan geometri berikut a.

  d. a = 6; r = -1/2 a = 2; r =1/2 b.

  e. a = 4; r =1/3 a = 12; r =1/3 c. a = 10 ; r = 1/4

  

3. Carilah nilai dari deret geometri untuk 4 bilangan pertama dari setiap barisan geometri dengan

a dan r diketahui di bawah ini a.

  d. a = 10; r = -2 a = 4; r =1/4 b.

  e. a = 15; r =1/3 a = 4; r =1/4 c. a = 8 ; r = 3/2

  Sisipan Pada Barisan Geometri

Dalam barisan geometri dikenal adanya sisipan. Misalkan di antara p dan q Anda sisipkan k buah

bilangan dan terdjadi barisan geometri, maka rasio barisan geometri adalah Suku Tengah Barisan Geometri Jika a , a , a , . . . a merupakan barisan geometri dengan n ganjil maka suku tengah barisan

  1

  1 1 n geometri tersebut adalah:

  S t = S 1 - S n

  Jl. Medan – Banda Aceh, Blang Bladeh Bireuen, Tlp. 0644 22207 Web: stie.ptkb-aceh.ac.id

Penerapan

Barisan dan Deret

  Bunga Sederhana dan Potongan Sederhana  Bunga merupakan suatu balas jasa yang dibayarkan bilamana kita menggunakan uang.

   Jika kita meminjam uang dari bank maka kita membayar bunga kepada pihak bank tersebut Jika kita menginvestasikan uang berupa tabungan atau deposito di bank maka bank membayar bunga kepada kita.  Jumlah uang yang dipinjamkan atau diinvestasikan di bank disebut modal awal atau pinjaman pokok(principal)  Bunga dilihat dari satu pihak merupakan pendapatan tetapi di lain pihak merupakan biaya.  Di pihak yang meminjamkan merupakan pendapatan, sedang di pihak yang meminjam merupakan biaya  Misalkan kita berinvestasi p rupiah dengan suku bunga tahunan i, maka pendapatan bunga pada akhir tahun pertama adalah Pi  Sehingga nilai akumulasi tahun pertama adalah P + Pi Pada akhir tahun kedua adalah P+P(2i) Pada akhir tahun ketiga adalah P + P(3i) Demikian seterusnya sampai pada akhir tahun ke n nilai akumulasinya adalah P+P(ni) Jadi pendapatan hanya didapatkan dari modal awal saja setiap akhir tahun Nilai dari pendapatan bunga ini tetap setiap tahunnya. Pendapatan bunga menurut metode ini dinamakan bunga sederhana dan dapat dinyatakan dengan rumus berikut: I = Pin

  Dengan I = Jumlah pendapatan bunga P = Pinjaman pokok atau jumlah investasi i = tingkat bunga tahunan n = jumlah tahun

  n ) adalah jumlah dari modal awal P

   Nilai dari modal awal pada akhir periode ke n (F ditambah pendapatan bunga selama periode waktu ke

  • –n

  n

  F = P + Pin Contoh: Hitunglah pendapatan bunga sederhana dan berapa nilai yang terakumulasi di masa datang dari jumlah uang sebesar Rp. 12.000.000 yang diinvestasikan di Bank selama 4 tahun dengan bunga 15% per tahun

  Jawab:

  Diketahui : P = Rp. 12.000.000; n = 4; I = 0.15 I = Pin  I = Rp. 12.000.000 (4)(0.15) = Rp. 7.200.000 Nilai yang terakumulasi di masa datang pada tahun ke-4 adalah

  Jl. Medan – Banda Aceh, Blang Bladeh Bireuen, Tlp. 0644 22207 Web: stie.ptkb-aceh.ac.id Potongan Sederhana (Simple discount)

  Proses yang digunakan untuk memperoleh perhitungan nilai sekarang dari suatu nilai masa datang tertentu. Bila nilai dari masa datang (F n ), tingkat bunga (i) dan jumlah tahun (n) telah diketahui, maka rumus untuk memperoleh nilai sekarang (P) adalah sebagai berikut: atau

  ( )

( )

  Dimana : P= Nilai Sekarang F n = Nilai masa datang tahun ke

  • – n I = Tingkat bunga N = jumlah tahun

  Contoh: Anisa ingin mengetahui berapa banyak nilai uang yang harus diinvestasikan di Bank saat ini, jika tingkat bunga di Bank per tahun 15 persen (bukan bunga majemuk) agar supaya pada akhir tahun kelima nilai uangnya menjadi Rp. 20.000.000

  Jawab:

5 Diketahui : F = Rp. 20.000.000; I = 0.15 pertahun; n = 5

  = =

  ( ) ( ( )) Bunga Majemuk

   Misalkan suatu investasi dari P rupiah pada tingkat bunga I per tahun, maka pendapatan bunga pada tahun pertama adalah Pi, 

  Selanjutnya nila investasi ini pada akhir tahun pertama akan menjadi P + Pi = P (1 + i)

   Hasil dari P(1+i) dianggap sebagai modal awal pada permulaan tahun kedua dan pendapatan bunga yang diperoleh adalah

  P(1+i)I 

  Sehingga hasil nilai investasi pada akhir tahun kedua adalah P(1+i) + P(1+i)I = P+Pi+Pi+Pii

  2

  2

  = P(1+2+i ) = P(1+i)

  2

   Selanjutnya hasil dari P(1+i) dianggap sebagai modal awal pada permulaan tahun ketiga dan pendapatan bunga yang diperoleh

2 P(1+i) i,

   Sehingga total investasi tahun ketiga adalah

  2

  2

  2

3 P(1+i) + P(1+i) i = P(1+i) (1+i) =P(1+i)

   Demikian seterusnya sampai n sehingga rumusnya adalah

  n n

  F = P(1+i)

  n

  dimana F = Nilai masa datang P = Nilai sekarang i = bunga per tahun n = jumlah tahun

  Jl. Medan – Banda Aceh, Blang Bladeh Bireuen, Tlp. 0644 22207 Web: stie.ptkb-aceh.ac.id

  Contoh: Jika Bapak Ridho mendepositokan uangnya di Bank sebesar Rp. 5.000.000 dengan tingkat bunga yang belaku 12 presen per tahun dimajemukkan, berapa nilai total deposito Bapak Ridho pada akhir tahun ketiga? Berapa banyak pula pendapatan bunganya

  Jawab:

  Diketahui ; P = Rp. 5.000.000; i = 0.12 per tahun, n=3

  n

  F n = P(1+i)

  3

  3 F 3 = Rp. 5.000.000 (1+0.12) = Rp 5.000.000(1,12) = Rp. 7.024.640

  Jika pembayaran bunga lebih dari satu kali dalam setahun melainkan m kali, maka nilai masa datangnya adalah

  ( )( )

  ( )

  Dimana F n = Nilai masa datang P = Nilai sekarang i = bunga per tahun m = frekuensi pembayaran per tahun n = jumlah tahun

  Contoh: Nona Uswatun ingin menabung uangnya Rp. 1.500.000 di bank dengan tingkat suku bunga yang berlaku 15% per tahun . Berapakah nilai uangnya dimasa datang setelah 10 tahun kemudian, jika dibunga-majemukkan secara : a.

  c. Bulanan Semesteran

  b. Kuartalan

  d. Harian

  Jawab:

  Diketahui: P= Rp. 1.500.000; I =0,15 pertahun; n=10

  a. Pembayaran bunga majemuk semesteran (m=2)

  ( )( )

  =Rp. 6.371776,65 ( ) ( )

  b. Pembayaran bunga majemuk kuartalan (m=4)

  ( )( )

  = Rp. 6.540.568,14 ( ) ( )

  c. Pembayaran bunga majemuk bulanan (m=12)

  ( )( )

  =Rp. 6.660319,85 ( ) ( )

  d. Pembayaran bunga majemuk harian (m=364)

  ( )( )

  = Rp. 6.720.458,94 ( ) ( )

  Jl. Medan – Banda Aceh, Blang Bladeh Bireuen, Tlp. 0644 22207 Web: stie.ptkb-aceh.ac.id Nilai Sekarang dengan Bunga Majemuk Nilai sekarang dengan bunga majemuk dari suatu nilai masa datang adalah [ ]

  ( ) ( ) Di mana P = Nilai sekarang F = Nilai masa datang n i = bunga per tahun n = jumlah tahun

  

Jika frekuensi pembayaran bunga dalam setahun adalah m kali, maka rumus untuk menghitung nilai

sekarang adalah [ ]

  ( )( ) ( )( )

  • * + ( )

    Contoh: Pak Tengku AB, merencanakan uang tabungannya di Bank pada tahun ketiga akan berjumlah Rp. 30.000.000. Tingkat bunga yang berlaku 15% per tahun. Berapakah jumlah uang tabungan Tengku AB saat ini

  Jawab: Diketahui: F = 30.000.000; i=0,15;n=3

  3 ( ) ( ) = Rp. 19.725.486,97

  Contoh: Bapak Vecky seorang pengusaha berharap lima tahun kemudian akan mendapatkan laba dari

usahanya sebanyak Rp. 25.000.000. Jika tingkat bunga yang berlaku saat ini 12 persen per tahun dan

dibayarkan secara kuartal, berapakah jumlah laba Bapak vecky saat ini? Jawab: Diketahui F 5 = Rp. 25.000.000; i=0,12 pertahun; m=4; n=5

  ( )( )

  • * +

    =Rp. 13.841.903,32

  ( )( ) [ ]