siltstones and siderite concretions. These beds of the lower part of the Neruen Formation were
deposited in a transgressive, high energy marine sequence, most likely tidal flat to distal sublitoral,
near the provenance Semikhatov and Sere- brykov, 1983. These beds were enriched in heavy
minerals, especially zircon.
The upper terrigenous unit of the Neruen For- mation in the central Maya sections Fig. 3, sec-
tion 78 contains varigated shales with minor laminae of siltstones, rare sandstones, siderite
lenses, and stromatolitic limestones Semikhatov and Serebrykov, 1983. The mudstones are inter-
preted to have formed in low-energy, partly anoxic, outer shoal environments Semikhatov
and Serebrykov, 1983. The source rock of clay material was probably, as with the lower unit, the
adjacent Aldan Shield.
The Belaya River section is the one that was studied in the Uchur – Maya trough. It is located
in the north-east part of the region, along the Belaya River on the eastern flank of the Gornos-
takh Anticline Figs. 1 and 4. The section sec- tion
52 is
composed of
mostly platform
carbonate rocks up to 82 in the Neruen and 95 – 97 in the Ignikan Formations, and minor
shales and siltstones, and sandstones Semikhatov and Serebrykov, 1983; Podkovyrov and Vino-
graadov, 1996; Semikhatov et al., 1998. The se- quence is divided into seven transgressive –
regressive carbonate – shale units. The limestones and dolomites were formed in a marine shoal in
subtidal and tidal environments. Black thinly lam- inated shales in lower units represent predomi-
nantly low-energy subtidal, distal ramp and open marine
environments, whereas,
multi-colored shales with thin horizontal and low-angle cross-
bedding, small-scale flazer lamination and small symmetrical ripple marks in upper units were
deposited in low-energy tidal, lagoonal and, prob- ably, supratidal settings.
3. Sampling and methods
Representative samples 200 – 400 g were ob- tained from the Maya River and Belaya River at
reference sections 77,78, 51,52; Figs. 3 and 4. The samples were collected at 5 – 15 meter inter-
vals in thin-bedded and more heterogeneous se- quences
and at
30 – 35 meter
intervals in
thick-bedded and more homogenous sequences. Each sample was cut in half. One half was used
for the preparation of thin sections or epoxy- based polished sections for microprobe analysis,
and the other half was used for other chemical analyses. A total of twenty samples were ana-
lyzed. The major elements were analyzed by X-ray fluorescence and partly by standard wet-chemical
methods in the Central Chemical Laboratory, NW Geological Centre, St Petersburg, Russia
along with USGS standard rocks. The total Fe content is reported as FeO. The precision of SiO
2
and Al
2
O
3
are better than 9 5, and that of FeO total, TiO
2
, MgO, CaO, Na
2
O are better than 9
8 – 10; P
2
O
5
and MnO are better than 12 – 15. The concentrations of V, Cr, Co, Ni, Rb, Sr,
Zr, Ba and Pb were analyzed by X-ray fluores- cence in IGGD RAS, St Petersburg using USGS
standards. The precision of most trace elements are better than 8, but that of Co, Ba, Rb and Pb
are 10 – 12. The elements Fe, Na, La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, Co, Sc, Hf, Th, Ba and Rb
were analyzed by neutron activation at Kansas University after Gordon et al., 1968; Jacobs et
al., 1977. The precision of all trace elements but Yb and Lu are better than 5, and the precision
of the Yb and Lu are better than 7. The values of standard rocks are periodically analyzed and
compared with average values e.g. Cullers et al., 1985, 1987.
4. Results
4
.
1
. Mineralogy The B 1 mm fractions were separated from
seven samples 51 – 38, 52 – 9, 52 – 117, 77 – 3, 77 – 6, 77 – 12 and Lh-13 and analyzed by X-ray diffrac-
tion T.L. Turchenko, analyst in order to corre- late the mineralogy and chemistry. The samples
contain mostly illite – muscovite, and remnants of mixed layer illite – smectite, chlorite, kaolinite, py-
rophyllite, quartz, calcite, and feldspars. In the Belaya River section of the Yudoma – Maya
trough, sample 52 – 117 consists mainly of 2M
1
muscovite-type minerals 95 – 97 with minor chlorite, quartz and pyrophyllite, and they reflect
the high degree of diagenetic alteration among the Lakhanda shales. Samples 52 – 9 and 51 – 38 con-
tain progressively decreasing amounts of minerals
Fig. 4. Stratigraphic section along the Belaya River with the main lithologies identified.
R .L
. Cullers
, V
.N .
Podko 6
yro 6
Precambrian
Research
104 2000
77 –
93
83 Table 1
Mudstones of the Belaya River and Maya River regions Mudstones from the Belaya River Area — near source
52–11 52–31
52–34 52–44
52–46 52–59
52–80 52–85
52–103 Element
52–1 51–38
52–9 62.1
65.2 SiO
2
57.2 56.0
61.5 57.3
60.2 62.8
59.6 49.3
54.1 57.0
21.3 21.3
18.7 20.4
23.4 18.5
22.3 22.3
20.3 Al
2
O
3
22.6 23.4
18.9 1.27
1.29 1.19
1.3 1.11
1.27 1.45
1.28 1.18
1.14 1.18
1.25 TiO
2
10.5 9.64
6.59 3.86
14.0 3.66
4.94 5.73
2.21 9.27
Total FeO 7.67
14.4 0.01
0.01 0.01
0.01 0.01
0.01 0.01
0.01 0.01
0.01 MnO
0.01 0.07
1.31 1.95
0.56 0.64
1.72 2.2
1.68 2.05
1.48 1.63
1.9 1.59
MgO 0.13
0.75 0.38
0.22 0.31
0.54 0.4
1.11 0.28
0.6 0.2
0.13 CaO
0.28 0.37
0.28 1.13
0.4 0.18
0.38 0.87
Na
2
O 0.44
0.38 1.02
1.11 4.10
3.23 2.17
2.61 2.21
5.54 4.29
6.21 4.28
5.22 K
2
O 4.99
3.54 0.12
0.08 0.02
0.10 0.08
0.07 0.02
0.09 0.12
P
2
O
5
0.02 0.12
0.11 4.26
3.46 4.92
3.87 3.96
3.15 5.59
4.22 4.07
3.79 5.04
5.03 LOI
99.55 99.48
99.62 99.46
99.48 99.5
99.54 99.56
99.57 99.5
99.4 99.8
Sum 155
162 97
184 134
204 220
249 Rb
165 146
223 166
57 70
56 18
74 16
Sr 165
34 25
67 91
78 350
450 242
553 233
443 428
249 352
379 Ba
508 472
254 200
269 300
249 283
370 265
295 195
182 223
Zr 137
60 115
100 93
132 101
86 119
60 192
144 V
16.2 6.5
38.1 11.8
15.7 4.7
20.7 8.2
Co 16.5
9 33
14.2 25
15 Ni
36 20
27 38
17 31
21 29
37 30
28.2 31.0
16.8 16.8
20.5 16.6
28.5 27.4
25.8 23.6
Th 17.3
21.9 9.5
7.4 9.8
15.1 6.8
6.7 8.5
6.5 8.4
8.8 7.5
8.0 Hf
2.5 2.9
1.6 1.9
2.1 1.8
Ta 1.9
2 2.1
2.3 2.2
2.6 127
140 83
72 100
95 153
148 64
Cr 124
140 91
27.5 16.8
18.3 26.2
16.8 14.7
21.8 18.6
31.7 24.7
32.7 27.3
Sc 66.4
56.9 60.2
73.4 42.2
46.7 58.6
32.5 79.2
61.1 84.6
73.4 La
118 151
105 82.8
123 65.7
125 170
156 135
Ce 118
120 53.8
40.6 48.4
– 34.8
29.4 50
24.1 57.6
54 64.6
54.6 Nd
10.1 6.61
10.2 18.7
6.59 4.57
11.0 3.9
8.73 11.0
13.0 11.5
Sm 1.97
2.95 1.37
0.75 1.73
0.59 1.82
0.86 Eu
2.03 2.27
1.98 1.04
1.41 0.96
1.72 2.6
0.92 0.61
1.42 0.53
0.99 1.41
1.56 1.33
Tb 6.66
8.32 4.06
3.47 4.79
2.57 6.73
5.47 4.62
Yb 6.00
6.39 5.98
0.95 0.68
0.9 1.21
0.59 0.52
0.69 0.39
0.81 0.88
1.00 0.88
Lu 0.588
0.491 0.587
0.518 0.659
0.53 0.52
0.50 0.35
0.6 0.59
0.61 EuEu
3.29 2.80
2.51 3.18
2.69 1.75
2.41 2.50
LaSc 2.69
2.59 2.47
3.39 3.72
11.29 1.11
3.96 3.73
6.91 LaCo
9.66 4.01
1.85 9.40
4.45 3.21
0.47 0.52
0.51 0.65
0.59 0.34
0.43 0.54
0.60 0.59
LaCr 0.89
0.67 2.21
2.85 2.41
4.89 1.17
1.73 1.54
1.91 2.55
2.91 2.92
1.98 LaNi
1.04 1.03
1.54 1.18
1.00 1.14
0.94 0.89
0.86 0.89
0.79 0.86
ThSc 1.74
4.77 0.44
1.42 1.31
3.53 1.38
3.34 ThCo
1.43 2.87
0.66 1.22
R .L
. Cullers
, V
.N .
Podko 6
yro 6
Precambrian
Research
104 2000
77 –
93
Table 1 Continued Mudstones from the Belaya River Area — near source
52–11 52–31
52–34 52–44
52–46 52–59
52–80 52–85
52–103 52–1
Element 52–9
51–38 0.19
0.19 0.22
0.22 0.20
0.23 0.21
0.17 0.19
ThCr 0.24
0.27 0.18
1.13 2.07
0.47 0.62
0.54 0.98
0.95 0.88
ThNi 0.64
0.89 1.04
0.87 0.95
0.95 0.95
0.88 0.94
CIW 0.89
0.86 0.92
0.87 0.96
0.96 0.96
0.86 0.85
0.85 0.70
0.80 0.67
0.84 0.77
0.83 0.81
CIA 0.70
0.70 0.72
1.08 0.52
0.46 1.02
0.91 0.67
1.07 0.60
1.02 0.91
0.81 ICV
0.11 K
2
OAl
2
O
3
0.13 0.28
0.13 0.29
0.20 0.36
0.21 0.29
0.16 0.20
0.16 Mudstones from the Maya River area — platform mudstones
Lh-8 77–12
77–10 77–8
52–119 77–7
78–3 77–6
77–3 Element
78–2 78–1
Lh-13 56.8
60.8 57.0
44.3 41.2
54.9 55.1
57.9 63.7
SiO
2
52.6 43.7
58.7 27.3
20.9 23.4
22.3 25.6
22.2 20.6
26.3 26.0
24.4 19.1
23.7 Al
2
O
3
1.48 1.38
1.40 1.46
1.74 1.50
1.34 1.89
1.50 1.81
1.33 1.62
TiO
2
4.55 2.21
2.23 19.3
23.2 2.36
2.58 2.79
Total FeO 9.67
20.1 2.77
2.08 0.04
0.01 0.02
0.02 0.04
0.02 MnO
0.02 0.01
0.01 0.18
0.03 0.01
0.99 0.92
0.47 0.42
0.41 0.55
0.72 0.89
1.15 0.72
MgO 1.75
0.59 0.21
0.19 0.21
0.28 0.41
0.41 0.28
0.28 0.14
0.34 0.38
0.3 CaO
0.14 0.28
0.11 0.1
0.08 0.08
0.09 0.55
0.08 0.23
0.41 0.17
Na
2
O 4.75
4.67 2.21
2.01 2.00
2.69 2.98
4.08 K
2
O 2.92
3.00 3.10
5.54 P
2
O
5
0.09 0.10
0.07 0.04
0.02 0.04
0.03 0.06
0.05 0.02
0.06 0.07
7.13 7.19
9.36 10.3
10.4 10.7
8.91 5.70
10.2 7.72
LOI 3.66
7.54 99.5
99.59 99.5
100 99.2
101 99.6
100 99.2
99.54 99.6
99.5 Sum
151 172
193 172
110 85
105 119
163 141
128 136
Rb 167
123 91
47 45
83 110
144 Sr
52 42
53 64
245 324
225 161
144 207
Ba 370
492 439
324 352
329 300
306 388
260 236
409 300
308 200
200 Zr
310 300
100 95
80 143
202 162
142 217
182 150
100 100
V 8.8
9.4 10.9
13.4 5.2
21.1 25.9
3.6 8.1
18.4 32.9
25.0 Co
20 32
29 17
4 24
15 40
Ni 15
10 15
42 19.9
21.6 24.4
22.3 21.9
16.2 21.4
21.1 20.4
25.8 17.0
24.1 Th
7.8 7.5
9.9 6.4
6.8 10.1
7.5 8.5
8.8 Hf
10.1 7.2
12.4 2.1
1.6 1.6
2.2 2.3
2.1 1.8
2.5 2.1
2.2 1.7
1.9 Ta
114 85
121 106
115 87
95 121
103 103
76 96
Cr 25.4
22.6 22.9
22.2 21.7
21.7 22.2
26.1 Sc
26.4 21.8
25.4 22.9
49.4 52.6
67.8 62.1
62.4 42.6
46.1 57.5
53.6 63.5
45.2 67.6
La 161
121 123
81.9 89.1
114 96.4
108 138
Ce 114
127 92.5
64.7 49.7
50.7 31.9
35.3 42.9
Nd 45.6
40.8 45.6
38.7 47.3
38.0 12.8
9.19 8.71
5.78 6.48
7.39 7.68
8.79 Sm
8.39 7.39
8.00 6.48
R .L
. Cullers
, V
.N .
Podko 6
yro 6
Precambrian
Research
104 2000
77 –
93
85 Table 1 Continued
Mudstones from the Maya River area — platform mudstones 78–1
Lh-13 Lh-8
77–12 77–10
77–8 77–7
77–6 77–3
78–3 Element
78–2 52–119
1.66 1.14
2.48 1.55
1.50 1.06
1.22 1.35
1.47 Eu
1.35 0.65
1.79 1.64
1.21 1.28
0.92 1.07
1.19 0.83
1.14 Tb
1.53 1.61
1.49 0.70
5.89 5.34
5.90 Yb
3.88 3.85
4.47 5.56
4.71 7.5
7.18 7.17
4.09 0.87
0.81 0.91
0.6 0.68
0.84 0.65
0.71 1.14
1.08 Lu
0.59 1.12
0.52 0.356
0.66 0.56
0.55 0.56
0.58 0.56
0.56 0.511
0.67 0.60
EuEu 2.23
2.30 2.67
2.75 2.72
1.92 2.12
2.65 2.05
2.50 2.07
2.56 LaSc
6.22 4.63
12.0 2.02
1.78 16.0
5.61 6.62
LaCo 2.7
1.37 3.451
5.60 0.56
0.59 0.54
0.49 LaCr
0.49 0.62
0.48 0.52
0.617 0.59
0.7 0.43
3.39 1.94
2.15 2.51
11.5 2.4
3.29 1.34
1.25 LaNi
4.51 4.52
4.233 0.90
0.94 0.96
0.99 0.96
0.73 0.99
0.97 0.78
1.016 0.78
0.91 ThSc
2.26 2.30
2.24 1.66
4.21 0.77
0.83 5.86
2.52 1.40
0.52 0.96
ThCo 0.20
0.21 0.19
0.19 0.23
0.17 0.17
0.20 ThCr
0.25 0.22
0.25 0.25
1.22 0.70
0.76 0.95
5.35 0.88
0.51 ThNi
0.51 1.72
1.7 1.61
1.33 0.98
0.97 0.97
0.96 0.97
0.95 0.98
0.99 0.93
0.97 CIW
0.96 0.961
0.88 0.75
0.80 0.80
0.89 0.88
0.88 0.86
0.84 0.849
0.81 0.86
CIA ICV
0.57 0.69
0.51 0.32
0.88 1.06
0.37 0.42
0.41 1.24
0.62 0.34
0.22 0.23
0.09 0.10
0.11 0.11
0.17 0.12
K
2
OAl
2
O
3
0.29 0.14
0.13 0.17
Table 2 A comparison of the elemental concentrations of the Belaya
and Maya Formations Belaya element or
Element Maya element or
ratio ratio
53.1 9 6.5 SiO
2
58.9 9 4.4 23.7 9 2.4
21.1 9 1.7 Al
2
O
3
TiO
2
1.253 9 0.095 1.54 9 0.19
8.29 9 8.0 7.27 9 4.09
Total FeO 0.035 9 0.047
MnO 0.015 9 0.017
0.76 9 0.28 1.57 9 0.49
MgO 0.40 9 0.28
CaO 0.28 9 0.09
0.18 9 0.15 0.55 9 0.35
Na
2
O 4.1 9 1.3
K
2
O 3.2 9 1.0
P
2
O
5
0.081 9 0.038 0.053 9 0.023
8.54 9 1.65 4.23 9 0.71
LOI 140 9 33
Rb 175 9 42
89 9 43 63 9 39
Sr 396 9 106
Ba 284 9 89
288 9 65 261 9 53
Zr 110 9 36
V 142 9 44
15.2 9 9.3 Co
15.7 9 10 21.3 9 10.8
28.3 9 8.5 Ni
21.1 9 2.9 Th
22.8 9 5.1 8.4 9 1.8
8.6 9 2.2 Hf
2.1 9 0.4 Ta
2.0 9 0.3 102 9 14
109 9 31 Cr
23.1 9 5.8 Sc
23.4 9 1.8 La
55.3 9 9.3 60.6 9 15
113 9 23 122 9 28
Ce 45 9 9
Nd 46 9 12
8.3 9 1.8 9.4 9 4.0
Sm 1.51 9 0.37
Eu 1.54 9 0.73
1.25 9 0.27 1.24 9 0.56
Tb 5.5 9 1.3
Yb 5.3 9 1.6
0.84 9 0.19 0.78 9 0.22
Lu 0.531 9 0.094
EuEu 0.575 9 0.048
2.36 9 0.31 2.66 9 0.44
LaSc 5.60 9 4.36
LaCo 5.30 9 3.1
0.54 9 0.07 0.57 9 0.13
LaCr 2.3 9 1.0
LaNi 3.6 9 2.7
.90 9 0.10 1.0 9 0.2
ThSc 2.0 9 1.3
ThCo 2.1 9 1.6
0.21 9 0.03 ThCr
0.21 9 0.03 1.44 9 1.31
0.89 9 0.41 ThNi
contain progressively decreasing amounts of min- erals as follows: illite with 5 – 10 of expanded
I – S phase, I = 0.45 – 1.5 \ kaolinite \ chlorite \ quartz \ feldspar 9 pyrophyllite, glauconite and
hematite.
4
.
2
. Geochemistry The elemental concentrations and averages of
the Lakhanda shales are given in Tables 1 and 2, respectively, and the average elemental concentra-
tions are compared with the average of post- Archean shales Taylor and McLennan, 1985 in
Fig. 5. The average of the Lakhanda shales are significantly higher in Al
2
O
3
, TiO
2
, Zr, Th, Hf, Sc, and the REE concentrations and lower in SiO
2
, MgO, CaO, Na
2
O, P
2
O
5
, Sr, Ba, and Ni concen- trations than corresponding elemental concentra-
tions in the PAAS. The Lakhanda shales and the PAAS have similar concentrations of FeO total,
MnO, K
2
O, LOI, Rb, V, Co, Ta, and Cr. The enrichment of immobile elements like
Al
2
O
3
and depletion in mobile elements like MgO, CaO, Na
2
O, and Sr results in fairly high chemical
Fig. 5. Selected elemental concentrations of the average of all samples are compared with those of the PAAS post Archean
average shale values from Taylor and McLennan, 1985. Ex- cept for the REE the ratios are plotted in increasing concen-
tration relative to the PAAS. Only selected REE are plotted in order of decreasing atomic number some of the REE like Ce
and Lu plot similarly to adjacent REE. Error bars are esti- mates based on one standard deviation of the Lakhanda
values for each element as no standard deviation is reported for the PAAS.
as follows: dioctahedral illite – muscovite with a low index of crystallinity I = 0.20 – 0.36 \ \
Mg – Fe chlorite \ quartz : feldspars. The sam- ples from the Maya River section have a lesser
degree of diagenetic transformation of primary clay minerals than do those from the Belaya
River. Samples 77 – 3, 77 – 6, 77 – 12 and Lh-13
Fig. 6. The SiO
2
versus Al
2
O
3
concentrations of shales from the Belaya River open triangle and Maya River closed
triangle are plotted relative to the idealized composition of the observed minerals. Much of the variation in composition
may be accounted for by variation in quartz and clay miner- als-muscovite. The three samples with high FeO total and low
SiO
2
are skewed in the direction of hematite, opaque minerals and Fe-rich chlorite compositions. The FeO total vs. Al
2
O
3
concentrations of shales from the Belaya and Maya Rivers are plotted relative to the composition of the observed minerals
same symbols as in Fig. 6a. Again much of the variation in composition may be accounted for by variation in quartz and
clay minerals-muscovite. The Fe-rich samples are again skewed toward the hematite, magnetite, and Fe-rich chlorite
compositions.
primary and recycled clay material Cabanis and Lecolle, 1989; Cullers, 1994b, 1995. Ancient
weathering profiles are observed in some parts of the Lakhanda sequence. These profiles contain
mostly kaolinite with lesser hematite and chlorite Semikhatov and Serebrykov, 1983. The B 2 mm
fractions of samples in this study, however, were mainly illite – muscovite with smaller amounts of
kaolinite and chlorite. Elemental plots are also consistent with these phases, but the whole rock
samples have variations in major element compo- sitions that suggests a significant amount of
quartz and iron oxides may be present e.g. Fig. 6.
Also the high concentrations of Zr, Th, REE, Hf, and Th relative to the PAAS in the Lakhanda
shales could be due to the concentration of certain accessory minerals zircon, monazite, ilmenite, ru-
tile. For example, the observed correlations be- tween Zr, Hf, and TiO
2
tends to support this possibility. The correlation of Sc and Cr with
Al
2
O
3
and lesser correlation of Th and the REE with Al
2
O
3
suggests these elements may also be included in the clay minerals of the Lakhanda.
There are poor or no trends in the elemental compositions with time. The best of these correla-
tions is a slow increase in Na
2
O in both the Maya River and Belaya River samples with time.
5. Discussion