Raster Datasets Vector Datasets

106 © 2016 Open Geospatial Consortium req coretiled-data Target type Operations Dependency Various XML schema Requirement 64 req corevector-dataset-limit Requirement 65 reqcore latitude-directory-name Requirement 66 reqcore longitude-directory-name Requirement 67 reqcoreuref-directory-name

3.6.1 Tiled Dataset Types

There are three principal types of tiled datasets: 1. Raster Datasets 2. Vector Datasets 3. Model Datasets

3.6.1.1 Raster Datasets

Data elements within a tile are organized into a regular grid where data elements are evenly positioned at every XUnit LOD and YUnit LOD as described in Section 2.1.2, Tile Levels-of-Detail Tile-LODs. This type of organization is referred to as a Raster Dataset. Raster Datasets always have a fixed number of elements corresponding to the number of units shown in Table 2- 4: CDB LOD versus Tile and Grid Size. An example of a raster dataset is terrain imagery. Note: Partially-filled Tile-LODs are not permitted in a compliant the CDB data store. In the case where data at the Tile-LOD’s resolution does not fully cover the Tile-LOD’s geographic footprint, the modeler or the tools should fill the remainder area of the Tile-LOD with the “best available” data. There are two cases to consider: Case I: In the case where coarser LODm data exists for the remainder area of the Tile- LODn, the LODm data should be interpolated to LODn. Case II: In the case where coarser LODm does not exist for the remainder area of the Tile- LODn, then the remainder area of Tile-LODn should be filled with the default value for this dataset.

3.6.1.2 Vector Datasets

The point features, the lineal features, and the polygon features of the CDB are organized into several Vector Datasets and into levels of details. The level-of-detail organization of the Vector Datasets mimics the concept of map scaling commonly found in cartography for example a 1:50,000 map. If we pursue the analogy with 107 © 2016 Open Geospatial Consortium cartography, increasing the LOD number increasingly finer detail of a dataset is equivalent to decreasing the map’s scaling 1:n map scaling where n is decreasing. As is the case with cartography, the Tile-LOD number provides a clear indication of both the positional accuracy and of the density of features. Consequently, the CDB specifies an average value for the density of features for each LOD of the Vector Dataset hierarchy. Table 3-27 below defines these values. For each CDB LOD, the table provides the maximum number of points allowed per Tile- LOD and the resulting average Feature Density. Table 3-27: CDB LOD versus Feature Density CDB LOD Maximum Number of Points per Tile Approximate Tile Edge Size meters Average Point Density pointsm 2 -10 1 1.11319 × 10 +05 8.06977 × 10 -11 -9 1 1.11319 × 10 +05 8.06977 × 10 -11 -8 1 1.11319 × 10 +05 8.06977 × 10 -11 -7 1 1.11319 × 10 +05 8.06977 × 10 -11 -6 4 1.11319 × 10 +05 3.22791 × 10 -10 -5 16 1.11319 × 10 +05 1.29116 × 10 -09 -4 64 1.11319 × 10 +05 5.16466 × 10 -09 -3 256 1.11319 × 10 +05 2.06586 × 10 -08 -2 1024 1.11319 × 10 +05 8.26345 × 10 -08 -1 4096 1.11319 × 10 +05 3.30538 × 10 -07 16384 1.11319 × 10 +05 1.32215 × 10 -06 1 16384 5.56595 × 10 +04 5.28861 × 10 -06 2 16384 2.78298 × 10 +04 2.11544 × 10 -05 3 16384 1.39149 × 10 +04 8.46177 × 10 -05 4 16384 6.95744 × 10 +03 3.38471 × 10 -04 5 16384 3.47872 × 10 +03 1.35388 × 10 -03 6 16384 1.73936 × 10 +03 5.41553 × 10 -03 7 16384 8.69680 × 10 +02 2.16621 × 10 -02 8 16384 4.34840 × 10 +02 8.66485 × 10 -02 9 16384 2.17420 × 10 +02 3.46594 × 10 -01 10 16384 1.08710 × 10 +02 1.38638 × 10 +00 11 16384 5.43550 × 10 +01 5.54551 × 10 +00 12 16384 2.71775 × 10 +01 2.21820 × 10 +01 13 16384 1.35887 × 10 +01 8.87281 × 10 +01 14 16384 6.79437 × 10 +00 3.54912 × 10 +02 15 16384 3.39719 × 10 +00 1.41965 × 10 +03 16 16384 1.69859 × 10 +00 5.67860 × 10 +03 17 16384 8.49297 × 10 -01 2.27144 × 10 +04 18 16384 4.24648 × 10 -01 9.08576 × 10 +04 19 16384 2.12324 × 10 -01 3.63430 × 10 +05 20 16384 1.06162 × 10 -01 1.45372 × 10 +06 21 16384 5.30810 × 10 -02 5.81489 × 10 +06 22 16384 2.65405 × 10 -02 2.32595 × 10 +07 108 © 2016 Open Geospatial Consortium 23 16384 1.32703 × 10 -02 9.30382 × 10 +07 Requirement 64 http:www.opengis.netspeccdb1.0corevector-dataset-limit For positive LODs, each Tile-LOD of the vector datasets SHALL have no more than 16,384 points to describe the features, whether the file contains point, lineal, or polygon features. For negative LODs, this limit SHALL be recursively divided by 4 until it reaches the value 1.

3.6.1.3 Model Datasets