Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab

(1)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

STUDI MENENTUKAN DISTRIBUSI TEGANGAN PADA ISOLATOR RANTAI DI SISTEM TRANSMISI TENAGA LISTRIK MENGGUNAKAN

MATLAB

OLEH :

SUKRA ZAINUDDIN

040422008

JURUSAN TEKNIK ELEKTRO

FAKULTAS TEKNIK

PROGRAM PENDIDIKAN SARJANA EKSTENSI

UNIVERSITAS SUMATERA UTARA

MEDAN

2008


(2)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

LEMBAR PENGESAHAN

STUDI MENENTUKAN DISTRIBUSI TEGANGAN PADA ISOLATOR RANTAI DI SISTEM TRANSMISI TENAGA LISTRIK MENGGUNAKAN

MATLAB

Disusun Oleh:

Nama : Sukra Zainuddin

NIM : 040422008

DISETUJUI OLEH:

Pembimbing,

Ir. Zulkarnaen Pane

NIP : 131 288 519

Ketua Departemen Teknik Elektro,

Ir. Nasrul Abdi, MT

NIP : 131 459 554

JURUSAN TEKNIK ELEKTRO

FAKULTAS TEKNIK

PROGRAM PENDIDIKAN SARJANA EKSTENSI

UNIVERSITAS SUMATERA UTARA

MEDAN

2008


(3)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

ABSTRAK

Perkembangan sistem tenaga listrik yang pesat membutuhkan saluran transmisi tegangan tinggi, karena itu komponen – komponen pendukung saluran transmisi tersebut seperti isolator rantai menjadi sangat perlu diperhatikan dikarenakan fungsi dan kemampuannya dalam mengisolasi antara konduktor saluran bertegangan tinggi dengan kawat tanah.

Isolator transmisi yang paling banyak digunakan adalah isolator jenis piring atau jenis clevis. Isolator jenis ini biasanya dipasang dalam jumlah rentengan. Didalam penentuan jumlah piring isolator biasanya tingkat kesulitannya terdapat pada perhitungan distribusi tegangan pada masing – masing piring isolator.

Oleh karena itu, perhitungan distribusi tegangan pada isolator rantai menjadi penting dicermati dengan menerapkan metode perhitungan MATLAB.


(4)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

KATA PENGANTAR

Segala puji dan syukur hanya milik Rabb sekalian alam Allah Subhanahu wa Ta’ala yang mana atas Rahmat dan Hidayah-Nya penulis dapat menyelesaikan tugas akhir ini, dengan judul “Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di sistem Transmisi Tenaga Listrik Dengan Menggunakan Matlab”.

Penulisan tugas akhir ini merupakan salah satu syarat untuk memperoleh gelar sarjana Teknik di Departemen Teknik Elektro, Fakultas Teknik, Universitas Sumatera Utara.

Selama masa kuliah sampai penyelesaian tugas akhir ini, penulis banyak menerima bimbingan dan bantuan dari berbagai pihak.Untuk itu dengan penuh ketulusan hati, penulis mengathurkan terima kasih kepada :

a. Ayahanda Drs.Abdul Kadir dan Ibunda Astuti Ningshi, yang tidak terhitung cinta dan kasih sayangnya, yang tidak pernah bosan-bosannya mengasuh, mendidik dan membimbing penulis semenjak kecil hingga sekarang ini. b. Kakanda Ariyah, Andinda Ismail Hafid dan keponakan (dicky, habib,

fadiyah) yang selalu menjadi tempat berbagi dan bercanda dalam suka maupun duka.

c. Bapak Ir.Zulkarnaen Pane, selaku dosen pembimbing penulis yang telah banyak meluangkan waktu dan memberikan ide-ide cemerlangnya dalam penulis Tugas Akhir ini.


(5)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

d. Bapak Ir.Nasrul Abdi, MT dan Bapak Ir.Rahmat Fauzi, MT, selaku ketua dan sekretaris Departemen Teknik Elektro, Fakultas Teknik, Universitas Sumatera Utara.

e. Bapak Ir. Soeharwinto, MT. selaku dosen wali penulis, yang senantiasa memberikan bimbingannya selama perkuliahan.

f. Teman-teman satu stambuk 2004 Ekstansi. M. Idris Rusli, ST, Nova A. Trg, ST, Purwanto simamora, ST, Veronika, ST, Aditia O.Sitepu, Rahmat Zulfahri, Pranto Panjaitan, ST dan teman-teman yang belum disebut namanya, yang selama ini menjadi teman diskusi, belajar, memberikan semangat dalam penulisan Tugas Akhir ini.

g. Temen-temanku di kost setia budi (Jemingan, Amd, Tambi Loto dan Bang Muliadi Sembiring, ST) yang telah memberikan tumpangan tempat, terima kasih atas tumpangan anda.

h. Seluruh stap pengajar dan pengawai Departemen Teknik Elektro yang telah mendidik dan membantu penulis selama perkuliahan sampai dengan selesai. Penulis menyadari bahwa Tugas Akhir ini belum sempurna, karena masih terdapat kekurangan baik dari segi isi maupun susunan bahasanya.Saran dan kritik dari pembaca dengan tujuan menyempurnakan dan mengembangkan kajian dalam bidang ini sangat penulis harapkan.

Akhir kata kesempuranan hanya milik Allah Subahanahu wa Ta’ala dan kesalahan semata-mata dari penulis.Semoga Tugas Akhir ini berguna dan memberikan ilmu pengetahuan bagi kita semua.

Medan, Maret 2008 Penulis,


(6)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Sukra Zainuddin Nim:04042200

DAFTAR ISI

ABSTRAK...………... i

KATA PENGANTAR...………. ii

DAFTAR ISI………... iv

DAFTAR GAMBAR……… vi

BAB I PENDAHULUAN I.1 Latar Belakang Masalah………. 1

I.2 Tujuan Penulisan……… 2

I.3 Batasan Masalah………. 3

I.4 Metodologi Penulisan………. 3

I.5 Sistematika Penulisan………. 4

BAB II ISOLATOR SALURAN TRANSMISI II.1 Umum………... 6

II.2 Kapasitansi Isolator……….. 6

II.3 Kurva Distribusi Tegangan Pada Isolator Rantai……… 8

II.4 Menghitung Distribusi Tegangan……… 9

II.4.1 Distribusi Tegangan Tanpa Menghitungkan Kapasitansi C2 Dan C3……….10

II.4.2 Distribusi Tegangan Memperhitungkan C2………....11

BAB III PEMOGRAMAN MATLAB III.1 Sekilas Matlab……… 19


(7)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

III.2 Lingkungan Kerja Matlab……….. 20

III.3 Cara Bekerja Dengan Matlab………. 24

III.3.1 Langsung Di Command Window………. 24

III.3.2 Menggunakan File M……… 26

III.4 Manajeman File Dan Direktori……….. 28

BAB IV PERHITUNGAN DISTRIBUSI TEGANGAN PADA ISOLATOR RANTAI DENGAN METODE MATLAB IV.1 Umum……….. 31

IV.2 Perhitungan Secara Manual………. 31

IV.2.1 Perhitungan Distribusi Tegangan Tanpa Kapasitansi C2 Dan C3……… 31

IV.2.2 Memperhitungan Kapasitansi C1 Dan C2………... 32

BAB V KESIMPULAN DAN SARAN V.1 Kesimpulan……… 48

V.2 Saran……….. 48

DAFTAR PUSTAKA………...vii LAMPIRAN A Lampiran Tabel hasil perhitungan dari jumlah lima sampai dua

belas isolator piring.

LAMPIRAN B Lampiran Kurva hubungan jumlah isolator dengan besar tegangan yang dipikul setiap isolator dan Kurva hubungan factor kerataan dengan jumlah isolator.


(8)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

DAFTAR GAMBAR

Gambar 2.1. Ekivalensi suatu isolator piring….……….... 7

Gambar 2.2. Susunan “ konduktor – dielektrik – konduktor “ pada isolator rantai... 8

Gambar 2.3. Distribusi tegangan pada isolator rantai……….... 8

Gambar 2.4. Rangkaian pengganti isolator rantai dengan mengabaikan C2 dan C3. 10 Gambar 2.5. Rangkaian pengganti isolator rantai dengan kapasitansi C2……….... 11

Gambar 3.1. Ikon Matlab pada dekstop window……….. 21

Gambar 3.2. Window utama Matlab………. 21

Gambar 3.3. Launch pad window………. 22

Gambar 3.4. Workspace window……….. 22

Gambar 3.5. Current directory window……… 23

Gambar 3.6. Command history window………... 23

Gambar 3.7. Commang window………... 23

Gambar 3.8. Matlab editor window……….. 24

Gambar 3.9. Menu file……….. 30


(9)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

BAB I

PENDAHULUAN

I.I. LATAR BELAKANG MASALAH

Perkembangan ilmu pengetahuan dan teknologi turut mempengaruhi sistem kelistrikan suatu daerah dan kualitas pelayananya, sehingga keberadaan energi listrik dapat dijadikan sebagai tolak ukur kemajuan suatu daerah.

Listrik merupakan bentuk energi yang paling cocok dan nyaman bagi manusia modern.Tanpa listrik infra-struktur masyarakat sekarang tidak akan menyenangkan.Makin bertambahnya konsumsi listrik per kapita diseluruh dunia menunjukan kenaikan standar kehidupan manusia.Pemanfaatan secara optimum bentuk energi ini oleh masyarakat dapat dibantu dengan sistem distribusi yang efektif.

Pusat pembangkit tenaga listrik umumnya jauh dari pusat beban, karena itu tenaga listrik yang dibangkitkan harus disalurkan melalui kawat – kawat atau saluran transmisi. Ada dua kategori saluran transmisi yaitu saluran transmisi hantaran udara (overhead transmission line ) dan saluran kabel bawah tanah ( underground cable

transmission line ).Pada saluran transmisi hantaran udara, menyalurkan tenaga listrik

melalui kawat – kawat yang digantung pada tiang – tiang transmisi dengan perantaraan isolator – isolator.


(10)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Isolator rantai dijumpai pada jaringan transmisi, jaringan distribusi hantaran udara, gardu induk, panel pembagi daya, terminal ujung kabel dan peralatan tegangan tinggi.Komponen suatu isolator terdiri dari dielektrik, bahan isolasi, jepitan logam dan bahan perekat yang mengikat jepitan dengan dielektrik.Dengan demikian suatu islolator merupakan gabungan dari “konduktor – dielekrik – konduktor” yang analog dengan komposisi suatu kapasitor.Untuk transmisi tegangan tinggi, isolator piring didisain berbentuk rantai, dimana setiap unitnya dianggap sebagai suatu kapasitor.Sehingga suatu isolator rantai dapat dianggap sebagai susunan dari beberapa unit kapasitor yang terhubung seri ataupun paralel.Akibatnya jika isolator diberi tegangan AC, maka distribusi tegangan pada setiap unit tidak sama.Hal ini terjadi karena pada isolator rantai terdapat tiga kelompok kapasitansi yaitu :

1) Kapasitansi sendiri (C1) : yang dibentuk oleh jepitan logam isolator –

dielektrik – jepitan logam dibawahnya.

2) Kapasitansi tegangan rendah (C2) : jepitan logam isolator – udara –

menara.

3) Kapasitansi tegangan tinggi (C3) : jepitan logam isolator – udara –

kawat transmisi.

Banyaknya unit ( piring ) isolator yang digunakan dan kapasitansi C1, C2 dan

C3 akan mempengaruhi distribusi tegangan yang dipikul setiap unit isolator. Semakin

banyak isolator yang digunakan maka distribusi tegangan yang dipikul setiap isolator akan semakin kecil.

Idealnya kurva distribusi tegangan pada isolator rantai adalah berbentuk garis lurus, akan tetapi karena pengaruh ketiga kapasitansi tersebut diatas kurva itu sulit dicapai.Distribusi tegangan yang tidak merata sepanjang isolator – isolator dapat


(11)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

membahayakan satuan – satuan piring isolator yang terutama yang terdekat dengan kawat fasa, karena tegangan yang dipukul dapat melebih tegangan nominal isolator itu.Dalam penulisan ini, penulis melakukan studi tentang : ”Menentukan distribusi tegangan pada isolator rantai di sistem transmisi tenaga listrik dengan Matlab”. I.2. TUJUAN PENULISAN

Adapun tujuan penulisan ini untuk :

1. Untuk mengetahui distribusi tegangan pada isolator rantai di sistem transmisi tenaga listrik.

2. Untuk mengetahui bagaimana cara dan langkah – langkah dalam perhitungan distribusi tegangan pada isolator rantai di sistem transmisi tenaga listrik dengan menggunakan metode Matlab.

I.3. BATASAN MASALAH

Untuk mengarahkan dan membatasi pembahasan maka penulis membuat suatu batasan masalah yakni :

1. Tidak membahas perataan tegangan masing – masing isolator rantai. 2. Membahas menentukan distribusi tegangan pada isolator rantai di

sistem transmisi tenaga listrik yang diasumsikan dalam penulisan ini berjumlah dua belas piring isolator rantai.

3. Dalam pembahasan ini hanya memperhitungkan distribusi tegangan pada isolator rantai dengan mengabaikan C2 dan C3 dan distribusi

tegangan pada isolator rantai dengan memperhitungkan C2.


(12)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Metode yang digunakan dalam penulisan tugas akhir ini adalah sebagai berikut:

1. Studi literature : penulis membaca buku – buku, manual, artikel, bahan kuliah dan buku teks yang mendukung dan berkaitan dengan topik tugas akhir ini.

2. Studi bimbingan : penulis melakukan diskusi/konsultasi dengan dosen pembimbing yang telah ditunjuk oleh pihak Departemen Teknik Elektro USU dan juga sumber – sumber lain yang berkompeten.

I.5. SISTEMATIKA PENULISAN

Tugas akhir ini disusun berdasarkan sistematika pembahasan sebagai berikut : BAB I : PENDAHULUAN

Bab ini berisikan latar belakang, tujuan penulisan, batasan masalah, metode penulisan dan sistematika penulisan sebagai gambaran umum dari pembahasan secara keseluruhan.

BAB II : ISOLATOR SALURAN TRANSMISI

Bab ini berisikan tentang isolator, karakteristik, kapasitansi isolator, kurva distirbusi tegangan pada isolator rantai dan menghitung distribusi tegangan.

BAB III : PEMOGRAMAN MATLAB

Bab ini berisikan tentang sekilas Matlab, lingkungan kerja Matlab, cara bekerja dengan Matlab, manajeman file dan direktori,

BAB IV : PERHITUNGAN DISTRIBUSI TEGANGAN PADA ISOLATOR DENGAN METODE MATLAB


(13)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Bab ini berisikan tentang umum perhitungan distribusi tegangan, prosedur perhitungan dengan Matlab, dan aplikasi Matlab untuk dua belas piring isolator rantai.

BAB V : KESIMPULAN DAN SARAN

Bab ini berisikan penutup berupa kesimpulan yang diambil dari pembahasan bab – bab sebelumnya.dan saran-saran.


(14)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

BAB II

ISOLATOR SALURAN TRANSMISI

II.1. UMUM

Isolator berfungsi untuk mengisolir kawat jaringan yang bertegangan dengan tiang atau menara penyangga kawat jaringan agar arus listrik tidak mengalir dari kawat jaringan tersebut ketanah.Isolator dipasang atau digantung pada travers

(crossarm) struktur pendukung, sedangkan konduktor daya dipasang pada jepit

isolator.Isolator perlu memiliki kekuatan mekanik dan elektrik yang baik.

Isolator terdiri dari bahan isolasi yang diapit oleh elektroda – elektroda.Dengan demikian isolator terdiri dari sejumlah kapasitansi.Karena kapasitansi ini, maka distribusi tegangan pada suatu deretan isolator menjadi tidak seragam.Potensial pada ujung yang terkena langsung dengan kawat konduktor adalah yang terbesar.Menurut penggunaan dan konstruksinya, isolator pasang luar (outdoor

insulator) atau isolator saluran udara (overhead insulator) diklasifikasikan menjadi

isolator pasak (pin type insulator), isolator piring (suspension insulator), isolator batang panjang (long rod insulator), isolator pos saluran (line pos insulator).

II.2. KAPASITANSI ISOLATOR

Isolator piring dipakai pada isolator rantai, konstruksi dari isolator piring dapat dilihat pada Gambar 2.1.a.Isolator piring berupa dua konduktor yang dipisahkan oleh suatu dielektrik atau susunan “konduktor-dielektrik-konduktor“


(15)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

merupakan suatu susunan kapasitor, ekivalensi dari isolator piring ini dapat dilihat pada Gambar 2.1.b. Semua isolator merupakan dua konduktor yang diantarai oleh suatu dielektrik. Pada Gambar 2.1 ditunjukkan contoh suatu isolator, yaitu satu unit isolator piring. Isolator tersebut membentuk suatu susunan “konduktor – dielektrik – konduktor “, oleh karena itu isolator tersebut dapat dianggap sebagai suatu kapasitor.

(a) (b)

Gambar 2.1. Ekivalensi suatu Isolator Piring

Jika beberapa isolator piring dirangkai menjadi isolator rantai seperti pada Gambar 2.2.a. , maka akan dijumpai tiga kelompok susunan “ konduktor-dielektrik-konduktor “ , masing – masing dibentuk oleh :

a. Jepitan logam isolator-dielektrik isolator-jepitan logam dibawahnya. Susunan ini membentuk kapasitansi sendiri isolator ( C1 ).

b. Jepitan logam isolator-udara-menara. Susunan ini membentuk kapasitansi jepitan logam isolator dengan menara yang dibumikan (C2). Kapasitansi ini

disebut kapasitansi tegangan rendah.

c. Jepitan logam isolator-udara-konduktor transmisi. Susunan ini dibentuk oleh konduktor tegangan tinggi, maka disebut kapasitansi tegangan tinggi (C3).


(16)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

memperhitung-kan C3

memperhitung-kan C2 dan C3

memperhitung-kan C2

100 % n/N

Vn/V

G

C2 dan C3 tdk diperhitungkan

1 3

2 4

Oleh karena itu, isolator rantai dapat dianggap sebagai susunan dari beberapa unit kapasitor yang terhubung seperti pada Gambar 2.2.b

Gambar 2.2. Susunan “Konduktor – Dielektrik – Konduktor “ pada isolator rantai

II.3. KURVA DISTRIBUSI TEGANGAN PADA ISOLATOR RANTAI

Idealnya kurva distribusi tegangan pada isolator rantai adalah linear, akan tetapi hal ini sulit dicapai disebabkan adanya pengaruh kapasitansi sendiri isolator (C1), kapasitansi tegangan rendah (C2) dan kapasitansi tegangan tinggi (C3). Dan

pada Gambar 2.3 diperlihatkan kurva distribusi tegangan pada isolator rantai akibat pengaruh ketiga kapasitansi ini.


(17)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Gambar 2.3. Distribusi Tegangan pada Isolator Rantai

Kurva distribusi tegangan yang ideal adalah linier (Kurva 1), yaitu jika kapasitansi ke menara (C2) dan kapasitansi tegangan tinggi (C3) tidak ada. Jika

kapasitansi ke menara (C2) diperhitungkan sedangkan kapasitansi tegangan tinggi

(C3) diabaikan, maka kurva distribusi tegangan adalah seperti kurva 2 dan jika ada

kapasitansi tegangan tinggi sedangkan kapasitansi tegangan rendah (C2) diabaikan,

maka kurva distribusi tegangan menjadi seperti kurva 3. Jika semua kapasitansi (C1,

C2 dan C3 ) diperhitungkan, maka kurva distribusi tegangan merupakan resultan

kurva 2 dan kurva 3.Dengan superposisi kedua kurva tersebut diperoleh distribusi tegangan seperti kurva 4.

II.4. MENGHITUNG DISTRIBUSI TEGANGAN

Untuk menghitung distribusi tegangan disepanjang isolator rantai perlu kita pahamkan bahwa sebagaimana yang diperlihatkan pada Gambar 2.2.Setiap pengaruh kapasitansi yang terdapat disepanjang isolator rantai tersebut dianggap sebagai elemen kapasitansi, dan kapasitansi ini sangat mempengaruhi distribusi tegangan pada isolator rantai.Perhitungan distribusi tegangan pada isolator rantai dapat dilakukan dengan beberapa cara :

a. Distribusi tegangan pada isolator rantai dengan mengabaikan kapasitansi jepitan logam isolator dengan menara (C2) dan kapasitansi tegangan tinggi

(C3).


(18)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

c. Distribusi tegangan dengan memperhitungkan kapasitansi C2 dan C3.

d. Distribusi tegangan pada isolator rantai dengan memperhitungkan semua kapasitansi.

Agar perhitungan distribusi tegangan pada isolator rantai lebih mudah, maka kita membutuhkan beberapa asumsi, yaitu :

a. Semua piring isolator memiliki karakteristik yang sama. b. Jarak menara ke isolator sama.

c. Isolator adalah ideal, artinya tiap konduktor dapat dianggap sebagai kapasitansi murni.

II.4.1. Distribusi tegangan tanpa menghitungkan kapasitansi C2 dan C3

Jika kapasitansi antara penghubung isolator rantai dengan menara (C2) dan

kapasitansi antara penghubung isolator rantai dengan konduktor tegangan tinggi (C3)

diabaikan, maka rangkaian ekivalen kapasitansi isolator rantai ini terlihat seperti pada Gambar 2.4. Jika diberi tegangan sebesar V yaitu tegangan antara konduktor phasa dengan menara maka tegangan pada setiap unit isolator adalah :

V1

V2

V3

I

I

I

I C

C

C

C I

C

Vn

Konduktor phasa

1

2

3

n


(19)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Gambar 2.4. Rangkaian pengganti isolator rantai dengan mengabaikan C2 dan C3

V1 = I1Z1 ; V2 = I2 Z2 ; Vn = In Zn

Karena kapasitansi-kapasitansi unit isolator sama, maka

Z1 = Z2 = Zn………...(2.1)

Dengan demikian

V1 = V2 = ………. = Vn ………....(2.2)

atau

N V

Vn = ………....(2.3)

Dimana : Vn = Tegangan pada unit ke-n dari isolator rantai yang ditinjau V = Tegangan konduktor ke menara

N = Jumlah unit pada suatu isolator rantai.

II.4.2. Distribusi Tegangan memperhitungkan C2

Jika kapasitansi antara penghubung isolator rantai dengan konduktor tegangan tinggi (C3) diabaikan, maka hanya kapasitansi sendiri (C1) dan kapasitansi

antara penghubung isolator dengan menara (C2) yang mempengaruhi distribusi

tegangan. Rangkaian ekivalen isolator menjadi seperti Gambar 2.5. Jika diberi tegangan sebesar V yaitu tegangan antara konduktor phasa dengan tanah maka tegangan pada setiap unit isolator tidak terdistribusi secara merata, karena adanya arus bocor yang mengalir kearah struktur menara.


(20)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009 A

V

C1

C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1

C2 C2 C2 C2 C2 C2

C2 C2

C2

C2

C2

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12

B C D E F G H I J K

Ia Ib Ic Id Ie If Ig Ih Ii Ij Ik

K’ J’ I’ H’ G’ F’ E’ D’ C’ B’ A’

V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

V1

Gambar 2.5. Rangkaian pengganti isolator rantai dengan kapasitansi C2

Dan misalkan :

bersama si kapasi ah ke si kapasi m tan tan tan = Atau 1 2 C C m=

Diperoleh C2 =mC1

Jatuh tegangan tiap unit isolator adalah V1, V2, V3, V4, V5, V6, V7, V8, V9, V10,

V11, V12,….Vn, di mana penomoran dimulai dari isolator paling atas.

V=V1+V2+V3+V4+V5+V6+V7+V8+V9+V10+V11+V12….+Vn…………...(2.4)

Besarnya arus listrik yang mengalir pada tiap unit isolator dapat ditentukan. Pada titik A, persamaan arusnya adalah:

I2 = I1 +Ia …………...………...(2.5)

I1 = Arus yang mengalir pada isolator 1

I2 = Arus yang mengalir pada isolator 2

I2 = j C1V2

I1 = j C1V1

Ia = j C2V1 = j mC1V1

Persamaan 2.25 dapat dituliskan menjadi

j C1V2 = j C1V1+ j mC1V1


(21)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Pada titik B, persamaan arus adalah:

I3 = I2 + Ib...(2.7)

I3 = adalah arus yang mengalir pada isolator 3.

I3 = j C1V3

I2 = j C1V2

Ib = j C2 (V1 + V2) = j mC1 (V1 + V2)

Maka: Persamaan 2.7 menjadi :

j C1V3 = j C1V2 + j mC1 (V1 + V2)

V3=V2 + m (V1 + V2) ...(2.8)

Maka dengan mensubtitusikan Persamaan 2.6 ke dalam Persamaan 2.8 : V3 = V1 (1 + m) + m{V1 + V1 (1 + m)}

= V1 + mV1 + m(V1 + mV1 + V1)

= V1 + mV1 + mV1 + m2V1 + mV1

= V1 + 3 mV1 + m2V1

V3= V1(1 + 3m + m2) ...(2.9)

Pada titik C, persamaan arusnya adalah :

I4=I3 + Ic ...(2.10)

I4 = adalah arus yang mengalir pada isolator 4

I4= j C1V4

I3= j C1V3

Ic= j C2(V1 + V2 + V3) = j mC1(V1 + V2 + V3)

Maka dengan demikian Persamaan 2.10 menjadi,

j C1V4= j C1V3+ j mC1(V1 + V2 + V3)


(22)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Dan dengan mensubstitusikan Persamaan 2.6 dan 2.9 ke Persamaan 2.11 : V4 = V1(1 + 3m + m2) + m { V1 + (V1 (1 + m)) + V1(1 + 3m + m2)}

= V1 + 3mV1 + m2 V1 + m { V1 + 3mV1 + m2 V1 + V1 + mV1 + V1)

= V1 + 3mV1 + m2 V1 + 3m2V1 + m3V1 + mV1 + m2 V1 + mV1

= V1 + 6 mV1 + 5m2V1 + m3V1

V4 = V1 (1 + 6m + 5m2+ m3) ...(2.12)

Pada titik D, akan kita lihat persamaan arusnya,

I5 =I4 +Id ...(2.13)

I5 = merupakan arus yang mengalir pada isolator 5.

I5= j C1V5

I4= j C1V4

Id= j C2 (V1 + V2 + V3 + V4) = j mC1(V1 + V2 + V3 + V4)

Maka: Persamaan 2.13 menjadi,

j C1V5= j C1V4+ j mC1(V1 + V2 + V3 + V4)

V5 = V1 (1 + 6m + 5m2 + m3) + m{V1 + V1 (1 + m) + V1(1 + 3m + m2) +

V1(1 + 6m + 5m2 + m3)}

V5 = V1 + 6mV1 + 5m2V1 + m3V1 + m(V1 + V1 + mV1 + V1 + 3mV1 +

m2V1 + V1 + 6mV1 + 5m2V1 + m3V1)

= V1 + 6mV1 + 5m2V1 + m3V1 + mV1 + mV1 + m2V1 + mV1 + 3m2V1

+ m3V1 + mV1 + 6 m2V1 + 5 m3V1 + m4V1

V5 = V1 (1+10m + 15m2 + 7m3 + m4) ...(2.14)

Pada titik E, akan kita lihat persamaan arusnya,

I6 = I5 + Ie ...(2.15)


(23)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

I6= j C1V6

I5= j C1V5

Ie= j C2 (V1 + V2 + V3 + V4 + V5) = j mC1(V1 + V2 + V3 + V4 +V5)

Maka: Persamaan 2.15 menjadi,

j C1V6 = j C1V5+ j mC1(V1 + V2 + V3 + V4+V5)

V6 = V5 + m (V1+V2+V3+V4+V5)

V6 =V1 (1 + 15m +35m2 + 28m3 + 9m4 + m5 )...(2.16)

Pada titik F, akan kita lihat persamaan arusnya,

I7 = I6 +If ...(2.17)

I7 = merupakan arus yang mengalir pada isolator 7.

I7 = j C1V7

I6 = j C1V6

If = j C2 (V1 + V2 + V3 + V4 + V5 +V6) = j mC1(V1 + V2 + V3 + V4 +V5+V6)

Maka: Persamaan 2.17 menjadi,

j C1V7 = j C1V6+ j mC1(V1 + V2 + V3 + V4+V5 +V6)

V7 = V6 + m (V1+V2+V3+V4+V5+V6)

V7= V1 (1+2m+70m2+84m3+45m4+11m5+m6)...(2.18)

Pada titik G, akan kita lihat persamaan arusnya,

I8= I7 +Ig ...(2.19)

I8 = merupakan arus yang mengalir pada isolator 8.

I8= j C1V8

I7= j C1V7

Ig= j C2 (V1+ V2 + V3 + V4 + V5 +V6+V7) = j mC1(V1 + V2 + V3 + V4 +V5


(24)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Maka: Persamaan 2.19 menjadi,

j C1V8= j C1V7+ j mC1(V1 + V2 + V3 + V4+V5 +V6+V7)

V8 = V7 + m (V1+V2+V3+V4+V5+V6+V7)

V8= V1 (1+28m+116m2+220m3+175m4+66m5+13m6+m7)...(2.20)

Pada titik H, akan kita lihat persamaan arusnya,

I9= I8 + Ih...(2.21)

I9 = merupakan arus yang mengalir pada isolator 9.

I9= j C1V9

I8= j C1V8

Ih=j C2(V1+V2+V3+V4+V5+V6+V7+V8) = j mC1(V1+V2+V3+V4+V5+V6+V7

+V8)

Maka: Persamaan 2.21 menjadi,

j C1V9= j C1V8+ j mC1(V1 + V2 + V3 + V4+V5 +V6+V7+V8)

V9 = V8 + m (V1+V2+V3+V4+V5+V6+V7+V8)

V9=V1 (1+36m+200m2+462m3+515m4+290m5+91m6+14m7+m8)...(2.22)

Pada titik I, akan kita lihat persamaan arusnya,

I10= I9 + Ii...(2.23)

I10 = merupakan arus yang mengalir pada isolator 10.

I10= j C1V10

I9 = j C1V9

Ii = j C2(V1+V2+V3+V4+V5+V6+V7+V8+V9)=j C1(V1+V2+V3+V4+V5+V6+

V7+V8+V9)

Maka: Persamaan 2.23 menjadi,


(25)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

V10 = V9 + m (V1+V2+V3+V4+V5+V6+V7+V8+V9)

V10 =V1(1+45m+320m2+904m3+1317m4+1035m5+459m6+119m7+16m8+m9)

...(2.24) Pada titik J, akan kita lihat persamaan arusnya,

I11= I10 + Ij...(2.25)

I11 = merupakan arus yang mengalir pada isolator 11.

I11= j C1V11

I10 = j C1V10

Ij= j C2(V1+V2+V3+V4+V5+V6+V7+V8+V9+V10)=j C1(V1+V2+V3+V4+V5+

V6+ V7+V8+V9+V10)

Maka: Persamaan 2.25 menjadi,

j C1V11= j C1V10+ j mC1(V1 + V2 + V3 + V4+V5 +V6+V7+V8+V9+V10)

V11 = V10 + m (V1+V2+V3+V4+V5+V6+V7+V8+V9+V10)

V11=V1(1+55m+485m2+1666m3+3023m4+3096m5+1862m6+683m7+150m8+

18m9+m10)...(2.26) Pada titik K, akan kita lihat persamaan arusnya,

I12 = I11 + Ik...(2.27)

I12 = merupakan arus yang mengalir pada isolator 12.

I12= j C1V12

I11 = j C1V11

Ik=j C2(V1+V2+V3+V4+V5+V6+V7+V8+V9)=j C1(V1+V2+V3+V4+V5+V6+

V7+V8+V9+V10+V11)

Maka: Persamaan 2.27 menjadi,


(26)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

V12 = V11 + m (V1+V2+V3+V4+V5+V6+V7+V8+V9+V10+V11)

V12=V1(1+66m+705m2+2913m3+6395m4+8181m5+6361m6+3109m7+967m8

+185m9+20m10+m11)...(2.28) Sesuai Persamaan 2.1, maka untuk isolator gantung berjumlah 12 unit berlaku Persamaan,

V=V1+V2+V3+V4+V5+V6+V7+V8+V9+V10+V11+V12...(2.29)

Maka dengan memasukan Persamaan (2.6) (2.9) (2.12) (2.14) (2.16) (2.18) (2.20) (2.22) (2.24) (2.26) dan (2.28) kedalam Persamaan (2.29), maka :

V=V1+V1(1+m)+V1(1+3m+m2)+V1(1+6m+5m2+m3)+V1(1+10m+15m2+7m3

+m4)+V1(1+15m+35m2+28m3+9m4+m5)+V1(1+21m+70m2+84m3+45m4+11m5+m6)

+V1(1+28m+116m2+220m3+175m4+66m5+13m6+m7)+V1(1+36m+200m2+462m3+5

15m4+290m5+91m6+14m7+m8)+V1(1+45m+320m2+904m3+1317m4+1035m5+459m 6

+119m7+16m8+m9)+V1(1+55m+485m2+1666m3+3023m4+3096m5+1862m6+683m7

+150m8+18m9+m10)+V1(1+66m+705m2+2913m3+6395m4+8181m5+6361m6+3109m 7

+967m8+185m9+20m10+m11)

=12(V1+286mV1+1942m2V1+6285m3V1+6980m4V1+11748m5V1+8679m6V1

+3926m7V1+1134m8V1+204m9V1+21m10V1+m11V1)...(2.30)

V=V1(12+286m+1942m2+6285m3+6980m4+11748m5+8679m6+3926m7+1134m8+2

04m9+21m10+m11)...(2.31)

V1=

) m 21m 204m 1134m 3926m

8679m 8

1174 m 6980 6285m 1942m

286m

(12+ + 2+ 3+ 4+ m5+ 6+ 7+ 8+ 9 10+ 11

V


(27)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

BAB III

PEMOGRAMAN MATLAB

III.1. SEKILAS MATLAB

Bahasa pemrograman sebagai media untuk berinteraksi antara manusia dengan computer dewasa ini dibuat agar semakin mudah dan cepat.Matlab muncul didunia bahasa pemrograman yang cenderung di kuasai oleh bahasa yang telah mapan.Logikanya, sebagai pemain baru tentu saja Matlab akan sukar mendapat hati dari pemakai (programmer).Namun Matlab hadir tidak dengan fungsi dan karakteristik yang ditawarkan bahasa pemrograman lain (yang biasanya hampir seragam).Matlab dikembangkan sebagai bahasa pemrograman sekaligus alat visualisasi, yang menawarkan banyak kemampuan untuk menyelesaikan berbagai kasus yang berhubungan langsung dengan disiplin keilmuan matematika, seperti bidang rekayasa teknik, fisika, statistika, komputasi dan modeling.Matlab dibangun dari bahasa induknya yaitu bahasa C, namun tidak dapat dikatakan sebagai varian dari C, karena dalam sintak maupun cara kerjanya sama sekali berbeda dengan C.Namun dengan hubungan langsungnya terhadap bahasa c, matlab memiliki


(28)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

kelebihan-kelebihan bahasa C bahkan mampu berjalan pada semua platform system operasi tanpa mengalami perubahan sintal sama sekali.

Matlab adalah bahasa pemrograman level tinggi (ingat dalam dunia pemrograman semakin tinggi level bahasa semakin mudah cara menggunakannya) yang dikhususkan untuk komputasi teknis.Bahasa ini mengintegrasikan kemampuan komputasi, visualisasi dan pemrograman dalam sebuah lingkungan yang tunggal dan mudah digunakan.Matlab memberikan sistem interaktif yang menggunakan konsep array/matrik sebagai standar variabel elemennya tanpa membutuhkan pendeklarasian array seperti pada bahasa lainnya.Matlab dikembangkan oleh MathWorks, yang pada awalnya dibuat untuk memberikan kemudahan mengakses data matrik pada proyek

LINPACK dan EISPACK.Selanjutnya menjadi sebuah aplikasi untuk komputasi

matrik.Dari sejak awal dipergunakan, matlab memperoleh masukan ribuan pemakai.Dalam lingkungan pendidikan ilmiah menjadi alat pemrograman standar bidang matematika, rekayasa dan keilmuan terkait.Dan dalam lingkungan industri dapat menjadi pilihan paling produktif untuk riset, pengembangan dan analisa.

III.2. LINGKUNGAN KERJA MATLAB

Sebagaimana bahasa pemrograman lainnya, matlab juga menyediakan lingkungan kerja terpadu yang sangat mendukung dalam pembangunan aplikasi.Pada setiap versi MATLAB yang terbaru, lingkungan terpadunya akan semakin dilengkapi.Lingkungan terpadu ini terdiri atas beberapa from/window yang memiliki kegunaan masing-masing.Untuk memulai aplikasi Matlab, anda hanya perlu mengklik ikon Matlab pada Dekstop Window, atau bisa juga dengan menu start seperti pada aplikasi-aplikasi lainnya.


(29)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Setiap pertama kali mulai membuka aplikasi Matlab, anda akan memperoleh beberapa from/window, yang sebenarnya menurut penulis hanya membuat Dekstop anda kelihatan penuh, anda dapat menutup semua Window tersebut kecuali Command Window yang menjadi Window utama Matlab.Matlab akan menyimpan

mode/setting terakhir lingkungan kerja yang anda gunakan sebagai mode/setting

lingkungan kerja pada saat anda membuka aplikasi Matlab diwaktu berikutnya.

Gambar.3.1.Ikon Matlab pada dekstop window

Window ini adalah window induk yang melingkupi seluruh lingkungan kerja

Matlab.Pada versi-versi pendahulu, window ini secara khusus belum ada namun terintegrasi dengan Command Window.Tidak ada fungsi utama yang ditawarkan oleh window ini selain sebagai tempat dock-ing bagi from yang lain.


(30)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Window ini mulai diperkenalkan pada versi 6, berfungsi sebagai penuntun

bagi pemakai dalam memilih opsi dari fungsi dan toolbox yang ditawarkan oleh Matlab.

Gambar.3.3.launch pad window

Window ini juga baru diperkenalkan pada versi 6, berfungsi sebagai navigator

bagi pemakai dalam penyediaan informasi mengenai variabel yang sedang aktif dalam Workspace adalah suatu lingkungan abstrak yang menyimpan seluruh variabel dan perintah yang pernah digunakan selama penggunaan Matlab berlangsung.

Gambar.3.4.Workspace window

Window ini juga fasilitas yang diperkenalkan pada versi 6.Berfungsi sebagai Browser direktori aktif, yang hampir sama dengan Window Explorer.


(31)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Gambar.3.5.Current directory window

Window ini berfungsi sebagai penyimpan perintah-perintah yang pernah

dikerjakan pada suatu Workspace.Juga baru ada pada Matlab versi 6 keatas.

Gambar.3.6.Command history window

Window ini berfungsi sebagai penerima perintah dari pemakai untuk

menjalakan seluruh fungsi-fungsi yang disediakan oleh Matlab.Pada dasarnya

Window inilah inti dari pemrograman Matlab yang menjadi media utama

satu-satunya bagi kita untuk berinteraksi dengan Matlab.


(32)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Window ini berfungsi untuk membuat skrip program Matlab.Walaupun skrip

program dapat dibuat dengan menggunakan berbagai program editor seperti

Notepad, Wordpad, Word dan lain-lain.Namun sangat dianjurkan untuk

menggunakan Matlab Editor ini karena kemampuannya dalam mendeteksi kesalahan pengetikan sintak oleh Programmer. Ketika Window utama Matlab muncul, window Matlab Editor tidak akan muncul dengan sendirinya, anda harus memanggilnya dengan cara mengetikan edit pada Prompt Matlab, Atau dengan cara mengklik pada ikon Create New.

Gambar.3.8.Matlab editor window

III.3. CARA BEKERJA DENGAN MATLAB

Dalam melakukan pekerjaan pemrograman menggunakan bahasa Matlab, anda dapat menggunakan salah satu cara yaitu :

III.3.1. LANGSUNG DI COMMAND WINDOW

Cara ini adalah yang paling sering dilakukan oleh pemula, namun akan sulit bagi anda untuk mengevaluasi perintah secara keseluruhan karena biasanya perintah hanya dilakukan baris perbaris.Untuk membuat program, anda hanya perlu mengetikkan perintah pada Prompt Matlab dalam Command Window, misalnya :


(33)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

>> pjg = 5 ;

Tekan tombol enter, lalu ketikan : >> lbr = 10 ;

Tekan enter, lalu ketikan : >> luas = pjg * lbr

Untuk skrip terakhir sengaja tidak diberikan tanda (;) tititk koma, sehingga anda bisa langsung melihat hasil akhir dilayar Command Window.

Hasil akhirnya yaitu : >> luas =

50

Program anda telah selesai.

Dan untuk mengganti nilai salah satu atau lebih variabel, misalnya anda ingin mengganti nilai pjg dengan 10, maka anda tinggal mengetikkan sebagai berikut: >> pjg = 10 ;

Tekan enter, lalu tekan tanda panah () atau ( ) sehingga pada Prompt Matlab

muncul:

>> luas = pjg * lbr

Tekan enter lagi, sehingga anda akan melihat hasil akhir berubah sebagai berikut : >> luas =


(34)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Artinya Matlab secara otomatis akan menggunakan nilai terakhir yang digunakan oleh variabel.Namun cara ini memilki kelemahan, terutama untuk membuat perhitungan dengan rumus yang cukup panjang.Dapat anda bayangkan jika dalam satu tahap perhitungan anda harus melakukan perubahan nilai pada beberapa variabel sekaligus.

III.3.2. MENGGUNAKAN FILE M

Cara ini biasanya akan dipilih untuk digunakan oleh Programmer yang lebih mahir (jangan khawatir dalam beberapa menit kedepan, andapun akan menjadi salah satu dari kelompok ini).Kelebihan cara ini adalah kemudahan untuk mengevaluasi perintah secara keseluruhan.Terutama untuk program yang membutuhkan waktu pengerjaan yang cukup lama serta skrip yang cukup panjang.Untuk contoh dapat kita gunakan program yang sebelumnya anda kerjakan dengan cara pertama, dengan tahapan sebagai berikut :

1. Pada Command Window, ketikan : >> edit

2. Tekan enter, selanjutnya muncul Matlab Editor dan anda ketiklah program dibawah berikut :

% - - - - - - - - % Program latihan 1

% Matlab Programing % oleh : gunay

% - - - Clear all;


(35)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Clc;

disp ( - - - ) ; disp ( Program Latihan 1 ) ; disp ( - - - ) ; pjg = 10 ;

lbr = 10 ;

luas = pjg * Lbr ;

disp ( [ Luas  ‘num2str (Luas) ] );

3. Setelah selesai mengetik program diatas, anda simpan didirektori c:/Latihanku, dengan nama latihan 01.m.

4. Anda kembali ke Command Window.Agar Matlab dapat mengenali lokasi tempat file anda tersimpan, pada Prompt Matlab ketiklah direktori c:?latihanku pada Prompt Matlab :

>>cd c : \ Latihanku

5. Tekan enter, lalu ketiklah nama file latihan 01 tanpa ekstensi : >>Latihan 01

6. Tekan enter, selanjutnya program akan dijalankan dan menghasilkan sebagai berikut :

- - - Program Latihan 1 - - - Luas - > 100


(36)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Jika tahap enam telah anda capai, maka program pertama telah sukses anda kerjakan.Selamat datang dan bergabung sebagai Programmer Matlab.Untuk penulisan skrip yang digunakan ini anda akan menemukan kedua cara pemrograman yang dijelaskan diatas.Agar tidak bingung, perhatikan jika ditulis :

>> pjg = 10 ; >> lbr = 10 ; >> luas = pjg * lbr ;

>> disp ( [‘luas - > ‘ num2str (luas) ] ) ;

Maka artinya anda harus menuliskan skrip tersebut pada Command Prompt Matlab.Dan jika ditulis :

pjg = 10 ; lbr = 10 ; luas = pjg * lbr ;

disp ( [‘luas -> ‘ num2str (luas) ] );

Tanpa tanda >>, maka anda menuliskannya pada Editor Matlab dan menyimpannya sebagai file M.

III.4. MANAJEMAN FILE DAN DIREKTORI

Matlab menggunakan metode Path Searching (pencarian direktori) untuk menemukan File dengan ekstensi M yang mengandung skrip dan fungsi.File M Matlab terorganisir dengan rapi pada beberapa Folder/direktori.Urutan pencarian Matlab dalam menjalankan perintah pada Command Window secara bertahap adalah sebagai berikut, misalnya ketika diberi perintah ‘kubus’ :


(37)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

• Matlab mencoba untuk mengenali apakah ‘kubus’ adalah variabel, jika ya, selesai.Jika tidak, maka Matlab berasumsi bahwa ‘kubus’ adalah sebuah nama

File dengan ekstensi M, lanjut ketahap berikutnya.

• Matlab mencoba untuk mengenali apakah ‘kubus’ merupakan fungsi bawaan standar, jika ya, eksekusi.Jika tidak , lanjut ketahap berikutnya.

Matlab akan mencari File M yang bernama kubus.m pada direktori aktif (Curent Directory), jika ditemukan , ekskusi.Jika tidak, lanjut ketahap berikutnya.

Matlab akan mencari File M yang bernama kubus.m diseluruh direktori yang terdaftar pada daftar pencariannya, jika ditemukan, eksekusi.Jika tidak, matlab akan menyampaikan pesan sebagai berikut :

>> kubus

??? Undefined function or variabel ‘kubus’

Jika pesan diatas muncul kehadapan anda, maka kesimpulannya hanya ada dua, yaitu :

1. Anda salah menulis nama File, atau

2. File anda tidak berada dalam direktori yand diketahui oleh Matlab.

Jika anda yakin nama File yang anda ketikan benar, maka yang harus anda lakuka n juga ada dua pilihan, yaitu :

1. Memindahkan dierktori aktif ke direktori tempat File anda berada.

Misalkan direktori tempat anda menyimpan File adalah c;/latihanku.Maka caranya adalah dengan perintah berikut :

>>cd c: / latihanku


(38)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

2. Menambahkan direktori anda kedalam daftar pencarian direktori Matlab.

Untuk membuka Tool yang mengatur pencarian path ini dapat dilakukan dengan cara mengklik Set Path pada menu File sebagai berikut :

Gambar.3.9.Menu file

Selanjutnya akan muncul dialog Set Path sebagai berikut :

Gambar.3.10.Dialog set path

Setelah melakukan pemilihan Folder yang diinginkan dengan cara mengklik tombol Add Folder, lalu dilanjutkan dengan mengklik tombol Save dan diakhiri dengan tombol Close.Maka direktori anda telah tersimpan didaftar pencarian direktori Matlab.Jika anda memilih menggunakan cara pertama, maka setiap anda membuka aplikasi Matlab anda harus melakukannya lagi.Tetapi jika anda memilih cara kedua, maka anda tidak perlu melakukannya lagi pada kesempatan lainnya, kecuali jika nama direktori and telah berubah.


(39)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

BAB IV

PERHITUNGAN DISTRIBUSI TEGANGAN PADA ISOLATOR

RANTAI DENGAN METODE MATLAB

IV.1. UMUM

Dalam perhitungan distribusi tegangan pada isolator rantai ini, mengacu pada beberapa hal, yaitu :

1) Perhitungan distribusi tegangan pada isolator rantai yang berjumlah 12 unit berdasarkan rumus di bab 2.

2) Langkah – langkah aplikasi Matlab seperti di bab 3.

3) Rumus – rumus penentuan perhitungan untuk pemrograman dalam Matlab. Untuk membuktikan kebenaran hasil perhitungan ini, maka kita akan membandingkan hasil perhitungan dengan cara manual dan dengan metode Matlab.Bila hasil perhitungannya sama, maka kita dapat menentukan distribusi tegangan pada isolator rantai di sistem transmisi tenaga listrik dengan menggunakan metode Matlab.

IV.2. PERHITUNGAN SECARA MANUAL (KALKULATOR) IV.2.1. Perhitungan Distribusi Tegangan tanpa Kapasitansi C2 dan C3

Dalam perhitungan ini menggunakan isolator rantai yang terdiri dari atas dua belas unit isolator piring yang sama, dimana perbandingan kapasitansi kemenara (C2)


(40)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

dengan kapasitansi sendiri (C1) adalah 0,1.Dan tegangan transmisi ke konduktor

yang digunakan adalah 150 kV/50 Hz.

Rangkaian ekivalennya adalah seperti ditunjukan pada Gambar 2.4

Menurut Rumus 2.1, maka tegangan pada setiap unit isolator piring adalah

kV N

V

Vn L N 12,5 12 150

= =

= −

V1 = V2 = V3 = V4 = V5 = V6 = V7 = V8 = V9 = V10 = V11 = V12 = 12,5 kV

Dari hasil perhitungan diperoleh tegangan pada setiap unit isolator sama.Berdasarkan persamaan 2.1, faktor kerataannya adalah (AF) = 12,5 – 12,5 = 0.Dalam hal ini tegangan pada setiap unit isolator piring terdistribusi merata.

IV.2.2. Memperhitungkan Kapasitansi C1 dan C2

Rangkaian ekivalen isolator rantai dengan memperhitungkan kapasitansi C2,

adalah seperti yang terlihat pada Gambar 2.5.Untuk distribusi tegangan dengan memperhitungkan C2, sedang kapasitansi (C3) diabaikan, yang ada hanya kapasitansi

sendiri (C1) dan kapasitansi tegangan rendah (C2).

Kasus : jika tegangan yang ditentukan pada pengujian sebesar 150 kV, faktor pengali m = 0,1 , maka :

 Untuk 5 (lima) piring isolator rantai :

Vt = V1+V2+V3+V4+V5

=V1+V1+mV1+V1+3mV1+m2V1+V1+6mV1+5m2V1+m3V1+V1+10mV1+15m2V1+

7m3V1+m4V1

= 5V1+20mV1+21m2V1+8m3V1+m4V1


(41)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

V1 =

) 8

21 20 5

( m m2 m3 m4

V + + + + = ) 8 21 20 5 ( 150 4 3 2 m m m m kV + + + + = 20,781 kV

Tegangan pada V2 , berdasarkan Persamaan 2.6, maka V2 adalah :

V2 = V1(1+m)

= 20,781 (1+0,1) = 22,859 kV

Tegangan pada V3, berdasarkan Persamaan 2.9, maka V3 adalah :

V3 = V1(1+3m+m2)

= 20,781 (1+3(0,1)+(0,1)2) = 27,223 kV

Tegangan pada V4, berdasarkan Persamaan 2.12, maka V4 adalah :

V4 = V1(1+6m+5m2+m3)

= 20,781(1+6(0,1)+5(0,1)2+(0,1)3) = 34,309 kV

Tegangan pada V5, berdasarkan Persamaan 2.14, maka V5 adalah :

V5 = V1(1+10m+15m2+7m3+m4)

= 20,781(1+10(0,1)+15(0,1)2+7(0,1)3+(0,1)4) = 44,826 kV

Dari hasil perhitungan, faktor kerataannya adalah : AF = 44,826 kV – 20,781 kV = 24,045 kV

 Untuk 6 (enam) piring isolator rantai : Vt = V1+V2+V3+V4+V5+V6


(42)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

=5V1+20mV1+21m2V1+8m3V1+m4V1+V1+15mV1+35m2V1+28m3V1+9m4V1+m5

V1

= 6V1+35mV1+46m2V1+36m3V1+10m4V1+m5V1

Vt = V1(6+35m+46m2+36m3+10m4+m5)

V1 =

) 10 36 46 35 6

( m m2 m3 m4 m5

V + + + + +

V1 = 2 3 4 5

) 1 , 0 ( ) 1 , 0 ( 10 ) 1 , 0 ( 36 ) 1 , 0 ( 46 ) 1 , 0 ( 35 5 ( 150 + + + + + kV

V1 = 15,004 kV

Tegangan pada V2 , berdasarkan Persamaan 2.6, maka V2 adalah :

V2 = V1(1+m)

V2 = 15,004(1+0,1)

V2 = 16,504 kV

Tegangan pada V3, berdasarkan Persamaan 2.9, maka V3 adalah :

V3 = V1(1+3m+m2)

V3 = 15,004(1+3(0,1)+(0,1)2)

V3 = 19,655 kV

Tegangan pada V4, berdasarkan Persamaan 2.12, maka V4 adalah :

V4 = V1(1+6m+5m2+m3)

V4 = 15,004(1+6(0,1)+5(0,1)2+(0,1)3)

V4 = 24,772 kV

Tegangan pada V5, berdasarkan Persamaan 2.14, maka V5 adalah :

V5 = V1(1+10m+15m2+7m3+m4)

V5 = 15,004(1+10(0,1)+15(0,1)2+7(0,1)3+(0,1)4)


(43)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Tegangan pada V6, berdasarkan Persamaan 2.16, maka V6 adalah :

V6 = V1(1+12m+35m2+28m3+9m4+m5)

V6 = 15,004(1+12(0,1)+35(0,1)2+28(0,1)3+9(0,1)4+(0,1)5)

V6 = 43,196 kV

Dari hasil perhitungan, faktor kerataannya adalah : AF = 43,196 kV – 15,004 kV = 28,192 kV

 Untuk 7 (tujuh) piring isolator rantai : Vt = V1+V2+V3+V4+V5+V6+V7

=6V1+35mV1+46m2V1+36m3V1+10m4V1+m5V1+V1+21mV1+70m2V1+84m3V1+

45m4V1+11m5V1+m6V1.

= 7V1+56mV1+116m2V1+119m3V1+55m4V1+12m5V1+m6V1

Vt = V1(7+56m+116m2+119m3+55m4+12m5+m6)

V1 =

) 12 55 119 116 56 7

( m m2 m3 m4 m5 m6

V + + + + + +

V1 = 2 3 4 5 6

) 1 , 0 ( ) 1 , 0 ( 12 ) 1 , 0 ( 55 ) 1 , 0 ( 119 ) 1 , 0 ( 116 ) 1 , 0 ( 56 7 ( 150 + + + + + + kV

V1 = 10,803 kV

Tegangan pada V2 , berdasarkan Persamaan 2.6, maka V2 adalah :

V2 = V1(1+m)

V2 = 10,803(1+0,1)

V2 = 11,883 kV

Tegangan pada V3, berdasarkan Persamaan 2.9, maka V3 adalah :

V3 = V1(1+3m+m2)

V3 = 10,803(1+3(0,1)+(0,1)2)


(44)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Tegangan pada V4, berdasarkan Persamaan 2.12, maka V4 adalah :

V4 = V1(1+6m+5m2+m3)

V4 = 10,803(1+6(0,1)+5(0,1)2+(0,1)3)

V4 = 17,836 kV

Tegangan pada V5, berdasarkan Persamaan 2.14, maka V5 adalah :

V5 = V1(1+10m+15m2+7m3+m4)

V5 = 10,803(1+10(0,1)+15(0,1)2+7(0,1)3+(0,1)4)

V5 = 23,303 kV

Tegangan pada V6, berdasarkan Persamaan 2.16, maka V6 adalah :

V6 = V1(1+12m+35m2+28m3+9m4+m5)

V6 = 10,803(1+12(0,1)+35(0,1)2+28(0,1)3+9(0,1)4+(0,1)5)

V6 = 31,101 kV

Tegangan pada V7, berdasarkan Persamaan 2.18, maka V7 adalah :

V7 = V1(1+21m+70m2+84m3+45m4+11m5+m6)

V7 = 10,803(1+21(0,1)+70(0,1)2+84(0,1)3+45(0,1)4+11(0,1)5+(0,1)6

V7 = 42,009 kV

Dari hasil perhitungan, faktor kerataannya adalah : AF = 42,009 kV – 10,803 kV = 31,206 kV

 Untuk 8 (delapan) piring isolator rantai : Vt = V1+V2+V3+V4+V5+V6+V7+V8

=6V1+35mV1+46m2V1+36m3V1+10m4V1+m5V1+V1+21mV1+70m2V1+84m3V1+

45m4V1+11m5V1+m6V1+V1+28mV1+116m2V1+220m3V1+175m4V1+66m5V1+

13m6V1+m7V1.


(45)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Vt = V1(8+84m+232m2+340m3+230m4+78m5+14m6+m7)

) 14 78 230 340 232 84 8

( 2 3 4 5 6 7

1 m m m m m m m V V + + + + + + + =

V1 = 2 3 4 5 6 7

) 1 , 0 ( ) 1 , 0 ( 14 ) 1 , 0 ( 78 ) 1 , 0 ( 230 ) 1 , 0 ( 340 ) 1 , 0 ( 232 ) 1 , 0 ( 84 8 ( 150 + + + + + + + m kV

V1 = 7,860 kV

Tegangan pada V2 , berdasarkan Persamaan 2.6, maka V2 adalah :

V2 = V1(1+m)

V2 = 7,860(1+0,1)

V2 = 8,646 kV

Tegangan pada V3, berdasarkan Persamaan 2.9, maka V3 adalah :

V3 = V1(1+3m+m2)

V3 = 7,860(1+3(0,1)+(0,1)2)

V3 = 10,296 kV

Tegangan pada V4, berdasarkan Persamaan 2.12, maka V4 adalah :

V4 = V1(1+6m+5m2+m3)

V4 = 7,860(1+6(0,1)+5(0,1)2+(0,1)3)

V4 = 12,976 kV

Tegangan pada V5, berdasarkan Persamaan 2.14, maka V5 adalah :

V5 = V1(1+10m+15m2+7m3+m4)

V5 = 7,860(1+10(0,1)+15(0,1)2+7(0,1)3+(0,1)4)

V5 = 16,954 kV

Tegangan pada V6, berdasarkan Persamaan 2.16, maka V6 adalah :

V6 = V1(1+12m+35m2+28m3+9m4+m5)


(46)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

V6 = 22,628 kV

Tegangan pada V7, berdasarkan Persamaan 2.18, maka V7 adalah :

V7 = V1(7+56m+116m2+119m3+55m4+12m5+m6)

V7 = 7,860(7+56(0,1)+116(0,1)2+119(0,1)3+55(0,1)4+12(0,1)5+(0,1)6

V7 = 30,564 kV

Tegangan pada V8, berdasarkan Persamaan 2.20, maka V8 adalah :

V8 = V1(1+28m+116m2+220m3+175m4+66m5+13m6+m7)

V8 = 7,860(1+28(0,1)+116(0,1)2+220(0,1)3+175(0,1)4+66(0,1)5+13(0,1)6+(0,1)7)

V8 = 40,858 kV

Dari hasil perhitungan, faktor kerataannya adalah : AF = 40,858 kV – 7,860 kV = 32,997 kV

 Untuk 9 (sembilan) piring isolator rantai : Vt = V1+V2+V3+V4+V5+V6+V7+V8+V9

Vt = 8V1+84mV1+232m2V1+340m3V1+230m4V1+78m5V1+14m6V1+m7V1+V1+36m

V1+200m2V1+462m3V1+515m4V1+290m5V1+91m6V1+14m7V1+m8V1

Vt = 9V1+120mV1+432m2V1+802m3V1+745m4V1+368m5V1+105m6V1+15m7V1+m8

V1

Vt = V1(9+120m+432m2+802m3+745m4+368m5+105m6+15m7+ m8)

V1 =

) 15 105 368 745 802 432 120

9 2 3 4 5 6 7 8

m m m m m m m m V + + + + + + + +

V1=

) ) 1 , 0 ( ) 1 , 0 ( 15 ) 1 , 0 ( 105 ) 1 , 0 ( 368 ) 1 , 0 ( 745 ) 1 , 0 ( 802 ) 1 , 0 ( 432 ) 1 , 0 ( 120 9 150 8 7 6 5 4 3

2+ + + + + +

+ +

kV

V1 = 5,725 kV

Tegangan pada V2 , berdasarkan Persamaan 2.6, maka V2 adalah :


(47)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

V2 = 5,725(1+0,1)

V2 = 6,297 kV

Tegangan pada V3, berdasarkan Persamaan 2.9, maka V3 adalah

V3 = V1(1+3m+m2)

V3 = 5,725(1+3(0,1)+(0,1)2)

V3 = 7,499 kV

Tegangan pada V4, berdasarkan Persamaan 2.12, maka V4 adalah :

V4 = V1(1+6m+5m2+m3)

V4 = 5,725(1+6(0,1)+5(0,1)2+(0,1)3)

V4 = 9,452 kV

Tegangan pada V5, berdasarkan Persamaan 2.14, maka V5 adalah :

V5 = V1(1+10m+15m2+7m3+m4)

V5 = 5,725(1+10(0,1)+15(0,1)2+7(0,1)3+(0,1)4)

V5 = 12,349 kV

Tegangan pada V6, berdasarkan Persamaan 2.16, maka V6 adalah :

V6 = V1(1+12m+35m2+28m3+9m4+m5)

V6 = 5,725(1+12(0,1)+35(0,1)2+28(0,1)3+9(0,1)4+(0,1)5)

V6 = 16,482 kV

Tegangan pada V7, berdasarkan Persamaan 2.18, maka V7 adalah :

V7 = V1(7+56m+116m2+119m3+55m4+12m5+m6)

V7 = 5,725(7+56(0,1)+116(0,1)2+119(0,1)3+55(0,1)4+12(0,1)5+(0,1)6

V7 = 22,262 kV

Tegangan pada V8, berdasarkan Persamaan 2.20, maka V8 adalah :


(48)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

V8 = 5,725(1+28(0,1)+116(0,1)2+220(0,1)3+175(0,1)4+66(0,1)5+13(0,1)6+(0,1)7)

V8 = 29,760 kV

Tegangan pada V9, berdasarkan Persamaan 2.22, maka V9 adalah :

V9 = V1(1+36m+200m2+462m3+515m4+290m5+91m6+14m7+m8)

V9= 5,725(1+36(0,1)+200(0,1)2+462(0,1)3+515(0,1)4+290(0,1)5+91(0,1)6+14(0,1)7+

(0,1)8 V9 = 40,742 kV

Dari hasil perhitungan, faktor kerataannya adalah : AF = 40,742 kV – 5,725 kV = 35,017 kV

 Untuk 10 (sepuluh) piring isolator rantai : Vt = V1+V2+V3+V4+V5+V6+V7+V8+V9+V10

Vt = 9V1+120mV1+432m2V1+802m3V1+745m4V1+368m5V1+105m6V1+15m7V1+m8

V1+V1+ 45mV1+320m2V1+904m3V1+1317m4V1+103m5V1+459m6V1+119m7

V1+16m8V1+m9V1.

Vt =10V1+165mV1+752m2V1+1706m3V1+2026m4V1+471m5V1+564m6V1+134m7V1

+17m8V1+m9V1.

Vt = V1(10+165m+752m2+1706m3+2026m4+471m5+564m6+134m7+17m8+m9)

V1 =

) 16 134 564 471 2026 1706 752 165

10 m m2 m3 m4 m5 m6 m7 m8 m9

V + + + + + + + + +

V1 =

) ) 1 , 0 ( ) 1 , 0 ( 16 ) 1 , 0 ( 134 ) 1 , 0 ( 564 ) 1 , 0 ( 471 ) 1 , 0 ( 2026 ) 1 , 0 ( 1706 ) 1 , 0 ( 752 ) 1 , 0 ( 165 10 150 9 8 7 6 5 4 3

2+ + + + + + +

+ +

kV

V1 = 4,173 kV

Tegangan pada V2 , berdasarkan Persamaan 2.6, maka V2 adalah :

V2 = V1(1+m)


(49)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

V2 = 4,591 kV

Tegangan pada V3, berdasarkan Persamaan 2.9, maka V3 adalah

V3 = V1(1+3m+m2)

V3 = 4,173(1+3(0,1)+(0,1)2)

V3 = 5,467 kV

Tegangan pada V4, berdasarkan Persamaan 2.12, maka V4 adalah :

V4 = V1(1+6m+5m2+m3)

V4 = 4,173(1+6(0,1)+5(0,1)2+(0,1)3)

V4 = 6,891 kV

Tegangan pada V5, berdasarkan Persamaan 2.14, maka V5 adalah :

V5 = V1(1+10m+15m2+7m3+m4)

V5 = 4,173(1+10(0,1)+15(0,1)2+7(0,1)3+(0,1)4)

V5 = 9,003 kV

Tegangan pada V6, berdasarkan Persamaan 2.16, maka V6 adalah :

V6 = V1(1+12m+35m2+28m3+9m4+m5)

V6 = 4,173(1+12(0,1)+35(0,1)2+28(0,1)3+9(0,1)4+(0,1)5)

V6 = 12,016 kV

Tegangan pada V7, berdasarkan Persamaan 2.18, maka V7 adalah :

V7 = V1(7+56m+116m2+119m3+55m4+12m5+m6)

V7 = 4,173(7+56(0,1)+116(0,1)2+119(0,1)3+55(0,1)4+12(0,1)5+(0,1)6

V7 = 16,230 kV

Tegangan pada V8, berdasarkan Persamaan 2.20, maka V8 adalah :

V8 = V1(1+28m+116m2+220m3+175m4+66m5+13m6+m7)


(50)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

V8 = 21,696 kV

Tegangan pada V9, berdasarkan Persamaan 2.22, maka V9 adalah :

V9 = V1(1+36m+200m2+462m3+515m4+290m5+91m6+14m7+m8)

V9= 4,173(1+36(0,1)+200(0,1)2+462(0,1)3+515(0,1)4+290(0,1)5+91(0,1)6+14(0,1)7+

(0,1)8 V9 = 29,703 kV

Tegangan pada V10, berdasarkan Persamaan 2.24, maka V10 adalah :

V10 = V1(1+45m+320m2+904m3+1317m4+1035m5+459m6+119m7+15m8+m9)

V10 = 4,173(1+45(0,1)+320(0,1)2+904(0,1)3+1317(0,1)4+1035(0,1)5+459(0,1)6+119

(0,1)7+15(0,1)8+(0,1)9) V10 = 40,681 kV

Dari hasil perhitungan, faktor kerataannya adalah : AF = 40,681 kV – 4,173 kV = 36,507 kV.

 Untuk 11 (sebelas) piring isolator rantai : Vt = V1+V2+V3+V4+V5+V6+V7+V8+V9+V10+V11

Vt = V1(10+165m+752m2+1706m3+2026m4+471m5+564m6+134m7+17m8+m9)+V1

(1+55m+485m2+1666m3+3023m4+3096m5+1862m6+683m7+150m8+18m9+m10) Vt=10V1+165mV1+752m2V1+1706m3V1+2026m4V1+471m5V1+564m6V1+134m7V1

+17m8V1+m9V1+V1+55mV1+485m2V1+1666m3V1+3023m4V1+3096m5V1+

1862m6V1+683m7V1+150m8V1+18m9V1+m10V1.

Vt = 11V1+220mV1+1237m2V1+3372m3V1+5085m4V1+3567m5V1+2318m6V1+817

m7V1+167m8V1+19m9V1+m10V1.

Vt = V1(11+220m+1237m2+3372m3+5085m4+3567m5+2318m6+817m7+167m8+


(51)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

) 19 167 817 2318 3567 5085 3372 1237 220

11 2 3 4 5 6 7 8 9 10

1 m m m m m m m m m m V V + + + + + + + + + + = ) ) 1 , 0 ( ) 1 , 0 ( 19 ) 1 , 0 ( 167 ) 1 , 0 ( 817 ) 1 , 0 ( 2318 ) 1 , 0 ( 3567 ) 1 , 0 ( 5085 ) 1 , 0 ( 3372 ) 1 , 0 ( 1237 ) 1 , 0 ( 220 11 150 10 9 8 7 6 5 4 3 2 1 + + + + + + + + + + = kV V

V1 = 3,043 kV

Tegangan pada V2 , berdasarkan Persamaan 2.6, maka V2 adalah :

V2 = V1(1+m)

V2 = 3,043(1+0,1)

V2 = 3,347 kV

Tegangan pada V3, berdasarkan Persamaan 2.9, maka V3 adalah

V3 = V1(1+3m+m2)

V3 = 3,043(1+3(0,1)+(0,1)2)

V3 = 3,986 kV

Tegangan pada V4, berdasarkan Persamaan 2.12, maka V4 adalah :

V4 = V1(1+6m+5m2+m3)

V4 = 3,043(1+6(0,1)+5(0,1)2+(0,1)3)

V4 = 5,024 kV

Tegangan pada V5, berdasarkan Persamaan 2.14, maka V5 adalah :

V5 = V1(1+10m+15m2+7m3+m4)

V5 = 3,043(1+10(0,1)+15(0,1)2+7(0,1)3+(0,1)4)

V5 = 6,564 kV

Tegangan pada V6, berdasarkan Persamaan 2.16, maka V6 adalah :

V6 = V1(1+12m+35m2+28m3+9m4+m5)

V6 = 3,043(1+12(0,1)+35(0,1)2+28(0,1)3+9(0,1)4+(0,1)5)


(52)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Tegangan pada V7, berdasarkan Persamaan 2.18, maka V7 adalah :

V7 = V1(7+56m+116m2+119m3+55m4+12m5+m6)

V7 = 3,043(7+56(0,1)+116(0,1)2+119(0,1)3+55(0,1)4+12(0,1)5+(0,1)6

V7 = 11,834 kV

Tegangan pada V8, berdasarkan Persamaan 2.20, maka V8 adalah :

V8 = V1(1+28m+116m2+220m3+175m4+66m5+13m6+m7)

V8 = 3,043(1+28(0,1)+116(0,1)2+220(0,1)3+175(0,1)4+66(0,1)5+13(0,1)6+(0,1)7)

V8 = 15,819 kV

Tegangan pada V9, berdasarkan Persamaan 2.22, maka V9 adalah :

V9 = V1(1+36m+200m2+462m3+515m4+290m5+91m6+14m7+m8)

V9= 3,043(1+36(0,1)+200(0,1)2+462(0,1)3+515(0,1)4+290(0,1)5+91(0,1)6+14(0,1)7+

(0,1)8 V9 = 21,657 kV

Tegangan pada V10, berdasarkan Persamaan 2.24, maka V10 adalah :

V10 = V1(1+45m+320m2+904m3+1317m4+1035m5+459m6+119m7+15m8+m9)

V10 = 3,043(1+45(0,1)+320(0,1)2+904(0,1)3+1317(0,1)4+1035(0,1)5+459(0,1)6+119

(0,1)7+15(0,1)8+(0,1)9) V10 = 29,661 kV

Tegangan pada V11, berdasarkan Persamaan 2.26, maka V11 adalah :

V11= V1( 1+55m+485m2+1666m3+3023m4+3096m5+1862m6+683m7+150m8+18m9

+m10).

V11= 3,043(1+55(0,1)+485(0,1)2+1666(0,1)3+3023(0,1)4+3096(0,1)5+1862(0,1)6+


(53)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

V11 = 40,631 kV

Dari hasil perhitungan, faktor kerataannya adalah : AF = 40,631kV – 3,043 kV = 37,588 kV.

 Untuk 12 (dua belas) piring isolator rantai : Vt = V1+V2+V3+V4+V5+V6+V7+V8+V9+V10+V11+V12

Vt = V1(11+220m+1237m2+3372m3+5085m4+3567m5+2318m6+817m7+167m8+

19m9+ m10)+V1(1+66m+705m2+2913m3+6395m4+8181m5+6361m6+3109m7+

967m8+185m9+20m10+m11)

Vt = 11V1+220mV1+1237m2V1+3372m3V1+5085m4V1+3567m5V1+2318m6V1+817

m7V1+167m8V1+19m9V1+m10V1+V1+66mV1+705m2V1+2913m3V1+6395m4V1

+8181m5V1+6361m6V1+3109m7V1967m8V1+185m9V1+20m10V1+m11V1.

Vt = 12V1+286mV1+1942m2V1+6285m3V1+6980m4V1+11748m5V1+8679m6V1+

3926m7V1+1134m8V1+204m9V1+21m10V1+m11V1.

Vt = V1(12+286m+1942m2+6285m3+6980m4+11748m5+8679m6+3926m7+1134m8+

204m9+21m10+m11) V1=

) 21 204 1134 3926 8679 1174 6980 6285 1942 286

12 m m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 V + + + + + + + + + + +

V1 =

) ) 1 , 0 ( ) 1 , 0 ( 21 ) 1 , 0 ( 204 ) 1 , 0 ( 1134 ) 1 , 0 ( 3926 ) 1 , 0 ( 8679 ) 1 , 0 ( 1174 ) 1 , 0 ( 6980 ) 1 , 0 ( 6285 ) 1 , 0 ( 1942 ) 1 , 0 ( 286 12 150 11 10 9 8 7 6 5 4 3

2+ + + + + + + + +

+ +

kV

V1 = 2,234 kV

Tegangan pada V2 , berdasarkan Persamaan 2.6, maka V2 adalah :

V2 = ( 1 + m ) V1

V2 = ( 1 + 0,1 ) 2,234 kV

V2 = 02,457 kV


(54)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

V3 = ( 1 + 3m + m2 ) V1

V3 = ( 1 + 3(0,1) + (0,1)2) 2,234 kV

V3 = 2,927 kV

Tegangan pada V4, berdasarkan Persamaan 2.12, maka V4 adalah :

V4 = (1 + 6m + 5m2 + m3) V1

V4 = (1 + 6(0,1) +5(0,1)2+ (0,1)3 )2,234 kV

V4 = 3,689 kV

Tegangan pada V5, berdasarkan Persamaan 2.14, maka V5 adalah :

V5 = (1 + 10 m + 15 m2 + 7 m3 + m4) V1

V5 = (1 +10(0,1) +15(0,1)2+ 7(0,1)3 + (0,1)4)2,234 kV

V5 = 4,820 kV

Tegangan pada V6, berdasarkan Persamaan 2.16, maka V6 adalah :

V6 = (1+15m+35m2+28m3+9m4+m5)V1

V6 = (1+15(0,1)+35(0,1)2+28(0,1)3+9(0,1)4+(0,1)5)2,234 kV

V6 = 6,432 kV

Tegangan pada V7, berdasarkan Persamaan 2.18, maka V7 adalah :

V7 = (1+21m+70m2+84m3+45m4+11m5+m6)V1

V7 = (1+21(0,1)+70(0,1)2+84(0,1)3+45(0,1)4+11(0,1)5+(0,1)6)2,234 kV

V7 =8,689 kV

Tegangan pada V8, berdasarkan Persamaan 2.20, maka V8 adalah :

V8 = (1+28m+116m2+220m3+175m4+66m5+13m6+m7)V1

V8 = (1+28(0,1)+116(0,1)2+220(0,1)3+175(0,1)4+66(0,1)5+13(0,16)+(0,1)7)2,234 kV

V8 =11,615 kV


(55)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

V9 = (1+36m+200m2+462m3+515m4+290m5+91m6+14m7+m8)V1

V9 = (1+36(0,1)+200(0,1)2+462(0,1)3+515(0,1)4+29(0,1)5+91(0,1)6+14(0,1)7+(0,1)8)

2,234 kV V9 = 15,901 kV

Tegangan pada V10, berdasarkan Persamaan 2.24, maka V10 adalah :

V10 = (1+45m+320m2+904m3+1317m4+1035m5+459m6+119m7+15m8+m9)V1

V10= (1+45(0,1)+320(0,1)2+904(0,1)3+1317(0,1)4+1035(0,1)5+459(0,1)6+119(0,17)+

15(0,1)8+(0,1)9) 2,234 kV V10 = 21,778 kV

Tegangan pada V11, berdasarkan Persamaan 2.26, maka V11 adalah :

V11 = (1+55m+485m2+1666m3+3023m4+3096m5+1862m6+683m7+150m8+18m9+

m10) V1

V11 = (1+55(0,1)+(485(0,1)2+1666(0,1)3+3023(0,1)4+3096(0,1)5+1862(0,1)6+683

(0,1)7+150(0,1)8+18(0,1)9+(0,1)10) 2,234 kV V11 = 29,833 kV

Tegangan pada V12, berdasarkan Persamaan 2.28, maka V12 adalah :

V12 = (1+66m+705m2+2913m3+6395m4+8181m5+6361m6+3109m7+967m8+185m9

+20m10+m11) V1

V12 = (1+66(0,1)+705(0,1)2+2913(0,1)3+6395(0,1)4+8181(0,1)5+6361(0,1)6+3109

(0,1)7 +967(0,1)8+185(0,1)9+20(0,1)10+(0,1)11) 2,234 kV V12 = 40,870 kV

Dari hasil perhitungan, faktor kerataanya adalah : AF = 40,870 kV – 2,234 kV =38,636 kV


(56)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Dari hasil perhitungan semua (dari jumlah lima sampai dua belas piring isolator rantai), dapat dibuat tabel-tabel hasil perhitungan yang terdapat dilampiran a.Dan perhitungan secara metode Matlab (Matrrix Laboratory) terdapat dilampiran c.

BAB V

KESIMPULAN DAN SARAN

V.1. KESIMPULAN

Kesimpulan yang diperoleh dari perhitungan distribusi tegangan pada isolator rantai dengan menggunakan Matlab, penulis menyimpulkan antara lain :

1. Hasil perhitungan secara manual sama dengan metode Matlab.

2. Dengan menggunakan metode perhitungan Matlab akan mempermudah dalam perhitungan distribusi tegangan pada isolator rantai karena lebih cepat memperoleh hasilnya.

3. Dapat dilihat dari jumlah lima sampai dua belas isolator, nilai faktor kerataanya semakin menaik.

4. Dari perhitungan terlihat bahwa tegangan terbesar isolator rantai terdapat di isolator yang paling dekat dengan konduktor tegangan tinggi.

V.2. SARAN

Adapun saran yang ingin disampaikan penulis antara lain:

1. Pada Tugas Akhir ini tidak membahas perhitungan distribusi tegangan dengan memperhitungakan C1 dan C3 dan distribusi tegangan pada

isolator rantai dengan memperhitungan semua kapasitansi.Diharapkan kemudian hari dapat lebih disempurnakan lagi.


(57)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

2. Pada program yang disajikan kali ini terbatas untuk perhitungan, yaitu distribusi tegangan tanpa kapasitansi C2 dan C3, dan distribusi tegangan

memperhitungkan kapasitansi C1 dan C2.Diharapkan dikemudian hari

program ini dapat dikembangkan untuk semua kapasitansi.

3. Program yang digunakan dalam perhitungan distribusi tegangan pada isolator rantai disini adalah menggunakan metode Matlab.Diharapkan dikemudian hari dapat digunakan dengan program - program yang lain, dengan tampilan disain yang lebih menarik dan mempunyai ketelitian perhitungan yang tinggi.


(58)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.


(59)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

DAFTAR PUSTAKA

1. Arismunandar, Artono. 1968. Teknik Tegangan Tinggi, PT. Pradya Paramita: Jakarta.

2. Kadir, Abdul. 1998. Transmisi Tenaga Listrik, Universitas Indonesia : Jakarta 3. Tobing, Bonggas L. 2003. Dasar Teknik Pengujian Tegangan Tinggi,

PT Gramedia Pustaka Utama: Jakarta.

4. Tobing, Bonggas L. 2003. Peralatan Tegangan Tinggi, PT Gramedia Pustaka Utama: Jakarta

5. Uppal. 1989. Electric Power, Khana Publishers : Delhi-6..

6. Gunaidi Abdia Away.2006.The Shortcut Of Matlab Programming.Informatika: Bandung.

7. Cekmas Cekdin, “Sistem Tenaga Listrik” : “Contoh Soal Dan Penyelesaiannya Menggunakan Matlab”, Andi Yogyakarta.


(60)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

LAMPIRAN A

Lampiran

:

Tabel hasil perhitungan dari jumlah lima sampai dua belas isolator deng an memperhitungkan kapasitansi C1 dan C2.

Lampiran 1

NOMOR ISOLATOR

BESAR TEGANGAN (KV)

1 20,781

2 22,859

3 27,223

4 34,309

5 44,826

Tabel. Hasil perhitungan untuk 5 (lima) piring isolator

NOMOR ISOLATOR

BESAR TEGANGAN (KV)

1 15,004

2 16,504

3 19,655

4 24,772

5 32,366

6 43,196


(61)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Lampiran 2

NOMOR ISOLATOR

BESAR TEGANGAN (KV)

1 10,803

2 11,883

3 14,152

4 17,836

5 23,303

6 31,101

7 42,009

Tabel. Hasil perhitungan untuk 7 (tujuh) piring isolator

NOMOR ISOLATOR

BESAR TEGANGAN (KV)

1 7,860

2 8,646

3 10,296

4 12,976

5 16,954

6 22,628

7 30,564


(62)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Tabel. Hasil perhitungan untuk 8 (delapan) piring isolator

Lampiran 3

NOMOR ISOLATOR

BESAR TEGANGAN (KV)

1 5,725

2 6,297

3 7,499

4 9,452

5 12,349

6 16,482

7 22,262

8 29,760

9 40,742

Tabel. Hasil perhitungan untuk 9 (sembilan) piring isolator

NOMOR ISOLATOR

BESAR TEGANGAN (KV)

1 4,173

2 4,591

3 5,467

4 6,891

5 9,003

6 12,016

7 16,230

8 21,696

9 29,703


(63)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Tabel. Hasil perhitungan untuk 10 (sepuluh) piring isolator

Lampiran 4

NOMOR ISOLATOR

BESAR TEGANGAN (KV)

1 3,043

2 3,347

3 3,986

4 5,024

5 6,564

6 8,761

7 11,834

8 15,819

9 21,657

10 29,661

11 40,631

Tabel. Hasil perhitungan untuk 11 (sebelas) piring isolator

NOMOR ISOLATOR

BESAR TEGANGAN (KV)

1 2,234

2 2,457

3 2,927

4 3,689

5 4,820

6 6,432

7 8,689

8 11,615


(64)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

10 21,778

11 29,833

12 40,870

Tabel. Hasil perhitungan untuk 12 (dua belas) piring isolator

Lampiran 5

JUMLAH ISOLATOR

FAKTOR KERATAAN (KV)

5 24,045

6 28,192

7 31,206

8 32,997

9 35,017

10 36,507

11 37,588

12 38,636


(65)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

LAMPIRAN B

Lampiran : Kurva hubungan jumlah isolator dengan besar tegangan yang dipikul setiap isolator dan kurva hubungan faktor kerataan dengan jumlah isolator.

Lampiran 1

5 6 7 8 9 10 11 12

0 5 10 15 20 25 30 35 40 45

kurva hubungan jumlah isolator dengan besar tegangan yang dipikul setiap isolator

Jumlah Isolator

B

es

ar

t

egangan y

ang di

pi

k

ul

pada s

et

iap i

s

ol

at

or

Keterangan :

a) O – biru = isolator ke-1

b) O – merah = isolator ke-2

c) O – hijau = isolator ke-3


(66)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

e) O – hitam = isolator ke-5

f) O – merah jambu = isolator ke-6 g) O – biru muda = isolator ke-7

h) X – biru = isolator ke-8

i) X – merah = isolator ke-9

j) X – hijau = isolator ke-10

k) X - kuning = isolator ke-11

l) X – hitam = isolator ke-12

Lampiran 2

5 6 7 8 9 10 11 12

24 26 28 30 32 34 36 38 40

Kurva Hubungan Faktor Kerataan Dengan Jumlah Isolator

Jumlah Isolator

F

ak

tor

K

er

at


(67)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

LAMPIRAN C

Lampiran : Program Matlab

Dipergunakan program Matlab Jumlah untuk mempermudah perhitungan pada berbagai macam distribusi tegangan pada isolator rantai yang berjumlah lima sampai dua belas piring isolator rantai.Dalam program Matlab ini yang dibuat adalah:

1. Memprogram perhitungan distribusi tegangan tanpa kapasitansi C2 dan C3.

2. Memprogram perhitungan kapasitansi C1 dan C2.

3. Memprogram, membuat kurva hubungan faktor kerataan dengan jumlah isolator.(terdapat dilampiran B).

4. Memprogram, membuat kurva hubungan jumlah isolator dengan besar tegangan yang dipikul setiap isolator.(terdapat dilampiran B).


(1)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Tabel. Hasil perhitungan untuk 8 (delapan) piring isolator

Lampiran 3

NOMOR ISOLATOR

BESAR TEGANGAN (KV)

1 5,725

2 6,297

3 7,499

4 9,452

5 12,349

6 16,482

7 22,262

8 29,760

9 40,742

Tabel. Hasil perhitungan untuk 9 (sembilan) piring isolator

NOMOR ISOLATOR

BESAR TEGANGAN (KV)

1 4,173

2 4,591

3 5,467

4 6,891

5 9,003

6 12,016

7 16,230

8 21,696

9 29,703


(2)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

Tabel. Hasil perhitungan untuk 10 (sepuluh) piring isolator

Lampiran 4

NOMOR ISOLATOR

BESAR TEGANGAN (KV)

1 3,043

2 3,347

3 3,986

4 5,024

5 6,564

6 8,761

7 11,834

8 15,819

9 21,657

10 29,661

11 40,631

Tabel. Hasil perhitungan untuk 11 (sebelas) piring isolator

NOMOR ISOLATOR

BESAR TEGANGAN (KV)

1 2,234

2 2,457

3 2,927

4 3,689

5 4,820

6 6,432

7 8,689

8 11,615


(3)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

10 21,778

11 29,833

12 40,870

Tabel. Hasil perhitungan untuk 12 (dua belas) piring isolator

Lampiran 5

JUMLAH ISOLATOR

FAKTOR KERATAAN (KV)

5 24,045

6 28,192

7 31,206

8 32,997

9 35,017

10 36,507

11 37,588

12 38,636


(4)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

LAMPIRAN B

Lampiran : Kurva hubungan jumlah isolator dengan besar tegangan yang dipikul setiap isolator dan kurva hubungan faktor kerataan dengan jumlah isolator.

Lampiran 1

5 6 7 8 9 10 11 12

0 5 10 15 20 25 30 35 40 45

kurva hubungan jumlah isolator dengan besar tegangan yang dipikul setiap isolator

Jumlah Isolator

B

es

ar

t

egangan y

ang di

pi

k

ul

pada s

et

iap i

s

ol

at

or

Keterangan :

a) O – biru = isolator ke-1

b) O – merah = isolator ke-2

c) O – hijau = isolator ke-3


(5)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009

e) O – hitam = isolator ke-5

f) O – merah jambu = isolator ke-6 g) O – biru muda = isolator ke-7

h) X – biru = isolator ke-8

i) X – merah = isolator ke-9

j) X – hijau = isolator ke-10

k) X - kuning = isolator ke-11

l) X – hitam = isolator ke-12

Lampiran 2

5 6 7 8 9 10 11 12

24 26 28 30 32 34 36 38 40

Kurva Hubungan Faktor Kerataan Dengan Jumlah Isolator

Jumlah Isolator

F

ak

tor

K

er

at


(6)

Sukra Zainuddin : Studi Menentukan Distribusi Tegangan Pada Isolator Rantai Di Sistem Transmisi Tenaga Listrik Menggunakan Matlab, 2008.

USU Repository © 2009 LAMPIRAN C

Lampiran : Program Matlab

Dipergunakan program Matlab Jumlah untuk mempermudah perhitungan pada berbagai macam distribusi tegangan pada isolator rantai yang berjumlah lima sampai dua belas piring isolator rantai.Dalam program Matlab ini yang dibuat adalah:

1. Memprogram perhitungan distribusi tegangan tanpa kapasitansi C2 dan C3.

2. Memprogram perhitungan kapasitansi C1 dan C2.

3. Memprogram, membuat kurva hubungan faktor kerataan dengan jumlah isolator.(terdapat dilampiran B).

4. Memprogram, membuat kurva hubungan jumlah isolator dengan besar tegangan yang dipikul setiap isolator.(terdapat dilampiran B).