+, - . 0 12
0 .32 4356 1 78 9 1:
6 1 ; 3
= .
52 ?
7; . ?1
9 6
7 3 5
= 3
6 2
5 ;
AB .3
2 4
3 5 6 1
9 3 .91 5
1 6 3; 5
C 2
DE F 4. 4
7 3 51 1
78 91: 6 1
; 3
= . 5
2 9 3.
392 ?
2 9 3
8 .1
91 51 ? 5
4 59 4 2
2 93 8
.1 6 3? 5
.32 43 5 6 1
4 .4 7 35 1
1 78 9 1:
6 1 ;3
= . 5
2 63
; 36 . , G
H +F
6 3. 9 45 94
2 2 9
3 8
.1 I
4 2
4 0 .32 435
6 1 4 .4
7 3 51 1 78 91:
6 1 ; 3
= . 52
63; 36 .
J J H
J F
K L
15 1 636 41
?3 55 15 93.. 39
61 78 9 1:
6 1 ; 3
= .
5 2
? 9
; 3
?1 96
y
5 7 3
5 45 =
4 2 2 5
; A
B 6 3
; 1 5 ;36 .
4 .4 2 38
7 82
M ?1
N O
P A
.7 Q
5 19
63 O 3
I 7 9
5 O3 ?4
O ; 4 9 3 5
N 3 7 5 45
7 35 1 1
7 8
91: 6 1
; 3
= .
5 2
? 2
9 3 8 .1
9 15 1
? 35 5
511 3.
6 3 59 63
6 3;36. D
E F K
RS T U
ngujian Persyaratan Normalitas dan Linieritas Data
V 3 5 4=
1 5 .
6 C
. 9 5
16 1 6
? 1 2
4 2 5
6 3;
3 47
7 32 4 2
5 5
1616 ?
9 K
P 7 3 5
3 191 5 1 51
?1 4 52 5
5 161
6 .3
.3 6 1K
W 5 942
19 4 H
3 . 4
?1 2 42 5
35 4
= 1
5 3 .
6 C
.9 5 5 16 1
6
y
5 ;
3. 4 35
4 =
1 5 5
8 .7
196 ? 5
3 54 =
1 5
151 3 .1 9 6K
L 6 1
4 =
1 .
6 C
. 9 5
16 1 6
? 1 6
= 12 5
; 3. 1 2 4 9
1 51K
1. Pengujian Normalitas
X A
6 94 6
C . 9
4 59 4 2
7 35 5 1
6 16 ?9
? A
?3 55 7 32 4
2 5
4 =
1 58 .7 1 9
6 6 3
; . 5 K
W =
1 58 .7 1 9
6 6 3
; . 5 ?124
2 5
45 942 7 3 54
= 1
2 A
? 9 ?
7 6 1 5
Y 7 6 15 :. 1; 3
3 53 1 915
9 3 .?169.1; 4 6 1
58 .7 9
4 91 ?2K
N 3 2
512 516 1
6
y
5 ?1
45 2
5 ?
A
chi-square
K N .
6 1510 1
2 5 6 1
y
5 ?1452
5 6 3; 36.
Z E HE
D [
Y :
4 3 \
E HE D
]K M 3.12 4 9
? A
A 6 1
35 A
194 55 45 942
63 7 4 :
.1 ;
3
y
5 ?16
= 1
2 5 ?
9 ;3
; 3 .12 4 9
15 1
_` a
b c de f f
g h
b ije k
dl m no jb
l pq rsbe jt
b i u
ariabel X
2
tabel
X
2
hitung
p-value Ket.
vw xy z { |
} ~
z ~
X
2
z
|
w
|
w
y
|{ |z
| x|
X
2
z
| d rbi
b r
b l tbc d
e j
btb i
b b t
je j
b t c
b b
n l t n
s bi jl m
sb i j l
m b
rjbc d
e l je
b j
X
2
hitung
edc j
d ¡ je
b rj l je
b j
X
2
tabel
sb
b b r j
b c de t dr
i dc nt c
dr j it
rj c
n i j
lq rs
be g ¢
d i j s
n
e bl
y
b l m i
b s
b o
n m b
b b t
je j
bt
b rj l
j eb j
b e n d t
j b t j
b b
rj b cde
c drb b
j b t
b i t
b r
b£ ijm
l j
£ j
bli j
y
bl m
jt dtb
b l
y
b jt n ¤
¤¥g ¦
dl m bl
ds j j bl
b
b t jij s ne
b l cb
b i d
cbrbl d n
b b r j
b c de dlde j
t j
b l j
l j b
b e
b lq r s
be i d jl m
m b
j l §
b tb
b l s ds nl§
b j
b i n s
i j l q rsbe jt
b i
b l s
ds dl n j
i§ b
r b t
b m
b r
b bt
j b l
b e jij i
e d
c j
eb l
o n
tg
2. Pengujian Linieritas
¨ o
j jl j
jeb
n b l
n l t n
s dl m dt b
nj b
b
b b
rj bc de
c dc b i
©ª «
b l b
rjbc d
e t
drj bt
© ¬ « s d s
n
l § b j
nc n l
m b l
y
b l m
e jl jd rg ¨
lt n
s dl m no
jl§b j
e b n b l
d l
m b l
n o
j
dl§ jsb lm bl
bt b
b rj
m b r j
i e j
l j
d r ©
deviation from linierity
«
y
b l m jm
nlb
b l n
l t n s ds
rd ji j b l
sq deg
¢ r j
t drjb
y
b l m j mn
l b bl nlt
n s dl mn
o j e
j l j d rj
tbi b
b e
b o
j b
l j eb
j
b b
n o
j rd m
rdi j s dl nl
o n
b l bi je
y
bl m
t j b
i j m
l j£ jbl
© ® ¤ ¤¥
«
s b
b
ji js n
e bl
q
rde b i j
y
b l m
j n o
j sd s n
l § b
j sq
de e
j l j d r
id
c be jl§ b
o j
b bi je
i jm l j£ jbl ij
bi j e l§
b i jm
l j
£ j
b l s
b
b b b
t j
i js n
e
bl t d r
o b
j
n c
n l m
bl
y
b l m t j
b e
j l
jd r g
¯ t b n
b b t
sdl mm n
l b b l ¡b
r b
e b j l
y
b j
t n
dl m bl
s dsc bl j
l m
b l
l j e b j
jt nl m
dl m b l
t bc
d e
y
b j
t n
b b cjeb l j
eb j
hitung
®
tabel
s b
b
td r o
b j
q r de bij
y
bl m
e j
l jd r
g