b. Variabel Effort Expectancy
KMO and Bartletts Test
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .809
Bartletts Test of Sphericity Approx. Chi-Square
174.806 Df
10 Sig.
.000
Anti-image Matrices
EE1 EE2
EE3 EE4
EE5 Anti-image Covariance
EE1 .662
-.170 .032
.039 -.118
EE2 -.170
.447 -.162
8.309E-5 -.099
EE3 .032
-.162 .486
-.110 -.070
EE4 .039
8.309E-5 -.110
.412 -.198
EE5 -.118
-.099 -.070
-.198 .314
Anti-image Correlation EE1
.820
a
-.312 .057
.075 -.258
EE2 -.312
.828
a
-.349 .000
-.264 EE3
.057 -.349
.855
a
-.247 -.179
EE4 .075
.000 -.247
.781
a
-.551 EE5
-.258 -.264
-.179 -.551
.778
a
a. Measures of Sampling AdequacyMSA
Communalities
Initial Extraction
EE1 1.000
.428 EE2
1.000 .697
EE3 1.000
.656 EE4
1.000 .661
EE5 1.000
.800 Extraction Method: Principal
Component Analysis.
Total Variance Explained
Component Initial Eigenvalues
Extraction Sums of Squared Loadings Total
of Variance Cumulative
Total of Variance
Cumulative 1
3.241 64.827
64.827 3.241
64.827 64.827
2 .744
14.872 79.699
3 .470
9.393 89.092
4 .327
6.539 95.631
5 .218
4.369 100.000
Extraction Method: Principal Component Analysis.
Component Matrix
a
Component 1
EE1 .654
EE2 .835
EE3 .810
EE4 .813
EE5 .895
Extraction Method: Principal Component
Analysis. a. 1 components
extracted.
Sumber: Data primer yang diolah, 2016
c. Variabel Social Influence
KMO and Bartletts Test
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .727
Bartletts Test of Sphericity Approx. Chi-Square
112.295 Df
10 Sig.
.000
Anti-image Matrices
SI1 SI2
SI3 SI4
SI5 Anti-image Covariance
SI1 .645
-.142 -.092
-.006 -.240
SI2 -.142
.543 -.198
-.042 -.093
SI3 -.092
-.198 .441
-.252 .112
SI4 -.006
-.042 -.252
.545 -.125
SI5 -.240
-.093 .112
-.125 .762
Anti-image Correlation SI1
.782
a
-.239 -.172
-.010 -.343
SI2 -.239
.791
a
-.405 -.077
-.144 SI3
-.172 -.405
.668
a
-.513 .193
SI4 -.010
-.077 -.513
.736
a
-.194 SI5
-.343 -.144
.193 -.194
.644
a
a. Measures of Sampling AdequacyMSA
Communalities
Initial Extraction
SI1 1.000
.528 SI2
1.000 .654
SI3 1.000
.653 SI4
1.000 .596
SI5 1.000
.281 Extraction Method: Principal
Component Analysis.
Total Variance Explained
Component Initial Eigenvalues
Extraction Sums of Squared Loadings Total
of Variance Cumulative Total
of Variance Cumulative
1 2.712
54.240 54.240
2.712 54.240
54.240 2
.963 19.253
73.492 3
.585 11.708
85.201 4
.453 9.055
94.256 5
.287 5.744
100.000 Extraction Method: Principal Component Analysis.
Component Matrix
a
Component 1
SI1 .726
SI2 .809
SI3 .808
SI4 .772
SI5 .530
Extraction Method: Principal Component
Analysis. a. 1 components
extracted.
Sumber: Data primer yang diolah, 2016