modul matematika kelas xi statistik

  MATEMATIKA MODUL 1 STATISTIKA KELAS : XI IPA SEMESTER : I (SATU)

Muhammad Zainal Abidin Personal Blog

SMAN 1 Bone-Bone | Luwu Utara | Sulsel

  

STATISTIKA

  PENGANTAR : Modul ini kami susun sebagai salah satu sumber belajar untuk siswa agar dapat dipelajari dengan lebih mudah. Kami menyajikan materi dalam modul ini berusaha mengacu pada pendekatan kontekstual dengan diharapkan matematika akan makin terasa kegunaannya dalam kehidupan sehari-hari.

  STANDAR KOMPETENSI : 1. Menggunakan aturan statistika, kaidah pencacahan, dan sifat-sifat peluang dalam pemecahan masalah. KOMPETENSI DASAR : 1. Membaca data dalam bentuk table dan diagram batang, garis, lingkaran dan ogive.

  2. Menyajikan data dalam bentuk table dan diagram batang, garis, lingkaran dan ogive serta penafsirannya. TUJUAN PEMBELAJARAN : 1. Siswa dapat membaca sajian data dalam bentuk diagram garis, diagram lingkaran dan diagram batang.

  2. Siswa dapat mengidentifikasi nilai suatu data yang ditampilkan pada table dan diagram.

  3. Siswa dapat menyajikan data dalam bentuk diagram batang, garis, lingkaran dan ogive serta penafsirannya.

  4. Siswa dapat menafsirkan data dalam bentuk diagram batang, garis, lingkaran dan ogive.

  5. Siswa dapat membaca sajian data dalam bentuk table distribusi frekuensi dan histogram.

  6. Siswa dapat menyajikan data dalam bentuk table distribusi frekuensi dan histogram. KEGIATAN BELAJAR :

  I. Judul sub kegiatan belajar :  Menyajikan data ukuran menjadi data statistic diskriptif  Penyajian data dalam bentuk diagram  Data Distribusi Frekuensi, Frekuensi Relatif dan Frekuensi Kumulatif

  II. Uraian materi dan contoh Menyajikan data ukuran menjadi data statistic diskriptif

  1. Memahami Statistik, populasi dan sample

  

Statistika adalah ilmu pengetahuan tentang cara-cara pengumpulan data,

pengumpulan data, penyusunan data, penyajian data serta penarikan kesimpulan.

  Statistik adalah kumpulan fakta yang umumnya berbentuk bilangan / agka dan

  disajikan dalam bentuk table atau diagram sehingga dapat menggambarkan suatu masalah.

  Populasi adalah keseluruhan objek yang akan diteliti. Sampel adalah sebagian dari populasi yang benar-benar diteliti

  2. Memahami statistic lima serangkai

  Statistik peringkat adalah penyusunan data dari yang terbesar sampai yang

  terkecil (diurutkan)

  Statistik ekstrim :

  1

   Statstik minimum adalah nilai datum terkecil dilambangkan x

  n

   Satistik maksimum adalah nilai datum terbesar dilambangkan x

  Kuartil

  )

  1

   Kuartil bawah/pertama (Q

  2 )

   Median / kuartil kedua (Q )

  3

   Kuartil ketiga/atas (Q Kelima data statistic X

  1 , Q 1 , Q 2 , Q 3 , Xn disebut statistic lima serangkai. Bagannya

  sbb: Q =…

2 Q =… Q =…

  1

  3 X 1 =…

  X

  2 =…

  C. Memahami jangkauan data, Jangkauan antar kuartil

  

Jangkauan/ Range adalah selisih mutlak kedua statistic ekstrim/ data terbesar

  dikurang data terkecil J = X – X = Xmax – Xmin

  n

  1 Jangkauan antar kuartil / Hamparan adalah selisih Q 3 dan Q

  1 H = Q 3 –Q

1 Jangkauan semi interkuartil ( Simpangan kuartil)

  Qd = ½ (Q

  3 - Q 1 ) Rataan Quartil = ½ (Q 3 – Q 1 )

  Rataan tiga kuartil = ¼ ( Q + 2Q + Q )

  1

  2

  3 Penyajian data dalam bentuk diagram

  A. Data Ukuran (Kontinu) dan Data Cacahan(Deskrit)

  Data adalah keterangan atau fakta mengenai sesuatu persoalan

Data kualitatif adalah data kategori missal; rusak, baik, senang, puas.

  Data kuantitatif adalah data berbentuk bilangan missal: dat berat badan, banyak siswa dll.

  Ada 2 jenis data kuantitatif: 1. Data ukuran ( kontinu) yaitu data yang diperoleh dengan cara mengukur.

  Misal: tinggi menara 30 m, berat badan 50 kg dll.

  2. Data cacahan ( deskrit) yaitu data yang diperoleh dengan cara menghitung.

  Misal: jumlah siswa kls XI IPA 1 ada 30 anak SMA 13 mempunyai 20 ruang kelas.

  B. Diagram Batang, Diagram Lingkaran dan Diagram Garis

  1. Diagram Batang adalah penyajian data statistic yang menggunakan persegi panjang atau batang dengan lebar batang sama dengan jarak antara batang yang satu dengan yang lainnya, serta dilengkapi dengan skala sehingga ukuran datanya dapat dilihat dengan jelas.

  2. Diagram Lingkaran adalah penyajian data statistic dengan menggunakan gambar yang berbentuk daerah lingkaran.

  3. Diagram Garis adalah penyajian data statistic dengan menggunakan gambar berbentuk garis lurus.

  4. Diagram Batang Daun yaitu teknik penyajian data dalam bentuk batang dan daun yang bertujuan untuk menampilkan data yang akurat darai suatu opservasi.

  5. Diagram Kotak Garis (DKG) adalah diagram yang berupa kotak dan garis dengan ketentuan sbb:  Data statistic yang dipakai untuk menggambar DKG adalah statistic lima serangkai  Diagram tersebut berbentuk seperti kotak seperti persegi panjang dan mempunyai ekor ke kiri dan ke kanan yang berupa garis.

   DKG meliputi jangkauan antar kuartil atau hamparan dan data yang berada di dalam kotak adalah median dan kuartil bawah (Q1) serta kuartil atas (Q3).

   Persegi panjang yang mempunyai ekor memeanjang kekiri dan kekanan mencakup semua data ( kecuali pencilan)  Pencilan adalah data yang letaknya diluar pagar dalam dan pagar luar biasanya diberi tanda * . Q Q Q

  1

  2

  3

  • X Xn

1 Data Distribusi Frekuensi, Frekuensi Relatif dan Frekuensi Kumulatif

  A. Daftar Distribusi Frekuensi Tunggal Nilai ulangan matematika dari 40 siswa : 8 5 7 4 4 5 7 7 6 4 7 6 6 5 4 8 8 7 6 5 5 6 7 8 4 5 7 6 7 6 7 7 6 6 8 6 6 4 4 5

  Data di atas dapat disajikan dalam bentuk distribusi frekuensi data tunggal: Nilai Turus Frekuensi

  4

  7

  5

  7

  6

  11

  7

  10

  8

  5 Jumlah ∑f = 40

  B. Daftar Distribusi Frekuensi Data Kelompok Nilai ulangan matematika dari 100 siswa:

  Nilai Frekuensi 30 – 34 3 35 – 39 7 40 – 44

  12 45 – 49 17 50 – 59 25 60 – 64 18 65 – 69 13 70 – 74

  5 Jumlah ∑f = 100 Beberapa istilah yang adarekuensi data kelompok:

  1. Kelas interval Kelompok-kelompok data seperti 30 – 34, 35 – 39, …, 70 – 74 disebut kelas interval.

  2. Batas kelas Bilangan 30, 35, …70 disebut batas bawah kelas, sedangkan 34, 39, … ,74 batas atas kelas.

  3. Tepi kelas Tepi bawah = batas bawah - 0,5 satuan terkecil.

  Tepi atas = batas atas – 0,5 satuan terkecil.

  4. Panjang kelas / lebar kelas Panjang kelas = tepi atas – tepi bawah kelas

  5. Titik tengah kelas Titik tengah kelas = ½ ( batas bawah + batas atas )

  Langkah-langkah untuk membuat daftar distribusi frekuensi data kelompok:

  1. Menentukan jangkauan J = X max – X min = Xn – X

  1

  2. Menentukan banyaknya kelas interval Biasanya diambil paling sedikit 5 kelas dan paling banyak 15 kelas.

  Atau menggunakan aturan Strungers: k = 1+ 3,3 log n k = banyaknya kelas n = banyaknya data

  3. Menentukan panjang kelas interval p = jangkauan . banyaknya kelas 4. Menentukan batas kelas dimana semua nilai tercakup di dalamnya.

  5. Menentukan nilai frekuensi tiap kelas dengan turus.

  C. Distribusi Frekuensi Relatif Frekuensi relatif adalah banyaknya data (frekuensi ) yang dihitung dengan prosen.

  Frekuensi Relatif = fi . x 100% ∑fi Contoh :

  Nilai Frekuensi Frekuensi Relatif (%) 36 – 44

  2

  5

  45 – 53 5 12,5 54 – 62

  6

  15 63 – 71

  12

  30 72 – 80

  8

  20 81 – 89

  4

  10 90 – 98 3 7,5

  Jumlah 100 Frekuensi relative untuk kelas pertama = 2 x 100%

  40 D. Distribusi frekuensi kumulatif Ada 2 macam daftar distribusi frekuensi kumulatif yaitu: 1. Daftar distribusi frekuensi kumulatif kurang dari.

  2. Daftar distribusi frekuensi kumulatif lebih dari.

  E. Histogram, Polygon Frekuensi dan Ogive  Histogram merupakan diagram batang dimana batang-batangnya saling dihimpitkan.Apabila tengah tiap sisi atas batang dihubungkan satu sama lain diperoleh polygon frekuensi.

   Ogive positive merupakan grafik yang disusun berdasarkan table frekuensi kumulatif kurang dari.  Ogive negative merupakan grafik yang disusun berdasarkan table frekuensi kumulatif lebih dari.

  III. Latihan

  1. Hasil ulangan matematika dari 15 siswa sbb: 9 7 6 8 9 7 6 4 5 6 8 7 7 8 5 Tentukan:

  a. statistic peringkat

  b. nilai ekstrim

  c. median

  d. kuartil bawah dan kuartil atas

  e. statistic lima serangkai

  2. Diketahui data : 12 30 16 39 46 26 15 36 20 21 27 31 38 19 24 13 15 17 43 45 Tentukan : a. Nilai ekstrim

  b. Kuartil atas dan kuarti bawah

  c. jangkauan

  d. Hamparan e. Simpamgan kuartil

  f. Rataan kuartil

  g. Rataan tiga kuartil 3. Tabel di bawah ini menunjukkan nilai matematika di suatu kelas. Nilai Frekuensi 40 – 46

  2 47 – 53 5 54 – 60 7 61 – 67

  10 68 – 74 8 75 – 81 6 82 – 88

  2 Tentukan :

  a. banyaknya interval kelas

  b. panjang interval kelas

  c. batas bawah interval kelas ke 3

  d. batas atas interval kelas ke 2

  e. tepi bawah interval kelas ke 4

  f. tepi atas interval kelas ke 5

  g. frekuensi yang terbesar terletak pada interval kelas ke…

  4. Skor nilai ulangan matematika kelas XI SMA di suatu sekolah sbb: 32 47 60 48 32 42 31 39 23 24 22 23 41 49 42 54 46 26 52 31 43 49 27 29 37 29 49 32 45 30 47 26 57 47 35 63 38 38 42 34 20 57 45 25 36 30 51 45 42 34 41 45 59 24 24 44 63 69 45 38 21 18 54 41 35 48 59 31 42 33 62 42 46 24 61 17 53 34 38 28 48 19 39 25 56 47 43 42 52 61 54 20 42 36 43 51 44 24 57 24

  a. Buatlah daftar distribusi frekuensi data kelompok

  b. Gambarlah diagram histogram dan polygon frekuensi

  c. Buatlah distribusi frekuensi kurang dari dan lebih dari d. Gambarlah kurva ogive positif dan ogive negatif. IV. Tes Formatif 1 ( Terlampir)

  V. Daftar pustaka Tim penulis MGMP Matematika SMA kota Semarang, Matematika SMA / MA XI A

  IPA, ( Semarang : CV. Jabbaar Setia, 2008) Tim penyusun KREATIF Matematika, Matematika SMA/MA kelas XI IPA semester gasal, ( Klaten, Viva Pakarindo, 2007) Simangunsong Wilson, Matematika dasar, ( Jakarta: Erlangga, 2005)

  

MATEMATIKA

  MODUL 2 STATISTIKA KELAS : XI IPA SEMESTER : I (SATU)

Muhammad Zainal Abidin Personal Blog

SMAN 1 Bone-Bone | Luwu Utara | Sulsel

  

STATISTIKA

  PENGANTAR : Modul ini kami susun sebagai salah satu sumber belajar untuk siswa agar dapat dipelajari dengan lebih mudah. Kami menyajikan materi dalam modul ini berusaha mengacu pada pendekatan kontekstual dengan diharapkan matematika akan makin terasa kegunaannya dalam kehidupan sehari-hari.

  STANDAR KOMPETENSI : 1. Menggunakan aturan statistika, kaidah pencacahan, dan sifat-sifat peluang dalam pemecahan masalah. KOMPETENSI DASAR : 1.3 Menghitung ukuran pemusatan, ukuran letak, dan ukuran penyebaran data serta penafsirannya. TUJUAN PEMBELAJARAN : 1. Siswa dapat menentukan rataan, median dan modus.

  2. Siswa dapat memberikan tafsiran terhadap ukuran pemusatan.

  3. Siswa dapatmenentukan simpangan rata-rata dan simpangan baku.

  4. Siswa dapat menentukan ragam/varian. KEGIATAN BELAJAR :

I. Judul sub kegiatan belajar :  Ukuran pemusatan : Rataan, Modus, Median.

   Ukuran letak : Kuartil dan Desil.  Ukuran Penyebaran : Jangkauan, Simpangan Kuartil, Variansi dan Simpangan Baku.

  II. Uraian materi dan contoh

A. Memahami Rataan Hitung ( Mean)

  1. Rataan Hitung dari data tunggal

  n

  x = ∑ x i

  i=1

  Contoh: Tentukan rataan hitung dari data: 9 8 4 12 6 9 5 3 Jawab: x = ∑ x i = 1 ( 9+8+4+12+6+9+5+3 )

  8 = 7

  2. Rataan hitung dari data berkelompok x = keterangan : x i = titik tengah interval kelas ke i fi = frekuensi interval kelas ke i Contoh : Diketahui distribusi frekuensi :

  14

  b. Tentukan simpangan (d i ) dari tiap-tiap nilai (x i ) terhadap rataan sementara yang dipilih, dengan rumus d i = x i - x s c. Rataan sesungguhnya ( yang dicari ) dapat dihitung menggunakan rumus :

  ) dapat diambil dari salah satu titik tengah

  s

  a. pilih rattan sementara (x

  1. Dengan simpangan rata-rata Langkah-langkah :

  … … x = = …

  91 … … … … …

  … … … … …

  2 45,5

  6

  10

  5

  Nilai Frekuensi 41 -50 51 -60 61 – 70

  2

  71 – 80 81 – 90 91 – 100

  Fi .xi 41 -50 51 -60 61 – 70

  Titik tengah ( xi )

  Nilai Frekuensi ( fi )

  2 Tentukan rataan hitung dari table diatas. Jawab:

  6

  10

  14

  5

  2

  71 – 80 81 – 90 91 – 100

B. Menentukan rataan hitung dengan rataan sementara

  x = xs + fi . di ∑ fi

  Contoh : Lengkapilah daftar distribusi frekuensi di bawah ini. Kemudian hitunglah rataan hitungnya dengan mengambil rataan sementara xs = 162

  T badan (cm) f x d = x - x f . d

  i i i s i i

  152 – 154 6 153 -9 … 155 – 157 13 … … … 158 – 160 12 … … … 161 – 163 22 162 164 – 166 10 … … … 167 – 169 11 … … … 170 – 172

  4 … … … 173 - 175 2 … … …

  ∑f = 80 ∑ = … X = x s + fi.di .

  ∑ fi = 162 + … = …

  2. Dengan pengkodean (u i ) Langkah-langkah :

  a. pilih rattan sementara (x ) dapat diambil dari salah satu titik tengah

  s

  b. Tentukan kode (u i ) dari tiap-tiap nilai (x i ) terhadap rataan sementara yang dipilih, dengan rumus u i = x i - x s p

  c. Rataan sesungguhnya ( yang dicari ) dapat dihitung menggunakan rumus : x = xs + fi . ui . p

  ∑ fi Keterangan : ui = 0, ± 1, ± 2, …

  Contoh : Dengan menggunakan table distribusi frekuensi pada contoh di atas, hitunglah rataan hitung dengan cara pengkodean.

  T badan (cm) f x i ui = di f i . u i p 152 – 154 6 153 -3… … 155 – 157

  13 … … … 158 – 160 12 … … … 161 – 163 22 162 164 – 166 10 … … … 167 – 169 11 … … … 170 – 172

  4 … … … 173 - 175 2 … …

  ∑f = 80 ∑ = … X = x s + fi.ui . p ∑ fi

  = 162 + … = … C. Menentukan modus median dan kuartil.

  1. Modus Modus adalah nilai datum yang paling banyak munculatau nilai datum yang mempunyai frekuensi terbesar.

  Contoh : Diketahui nilai ulangan matematika 10 siswa sbb: 5 6 6 6 7 8 8 8 9 10 Jawab: Modus (Mo) = 6 dan 8 Modus dat kelompok ditentukan dengan rumus Mo = L + d . p

  1

  d

  1 + d

2 Keterangan :

  Mo = Modus L = Tb = tepi bawah kelas modus d

  1 = selisih frekuensi kelas modus dengan frekuensi kelas sebelumnya d = selisih frekuensi kelas modus dengan frekuensi kelas sesudahnya.

  P = panjang interval kelas Contoh : Tentukan modus dari data daftar distribusi frekuensi di bawah ini.

  Nilai Frekuensi

  55 – 59

  9 60 – 64 12 65 – 69 15 70 – 74 20 75 – 79 10 80 – 84

  8 ∑ f = 80

  Jawab : Kelas Modus 70 -74 L = Tb = 69,5 di = 20 -15 = 5 d = 20 – 10 = 10

  2

  p = 5 Mo = 69,5 + 5 . 5 5+15

  = 69,5 + 1,25 = 70,75

  2. Median, kuartil dan desil Median adalah nilai tengah setelah data diurutkan.

  Quartil ada 3 yaitu : Q 1 (k artil bawah), 2 ( Median ) , Q3 ( kuartil atas) Dapat diperoleh dengan rumus : Qi = Li + i / 4 n - ( ∑ f )i . p Fi Ket : Li = tepi bawah yang memuat kuartil bawah Qi

  (∑f ) = jumlah frekuensi sebelumquartil bawah Qi fi = frekuensi kelas yang memuat kuarti bawah Qi i = 1,2,3

  Contoh : Dari table distribusi frekuensi di bawah ini tentukan Q , Median atau Q dan Q .

  1

  2

  3 Nilai frekuensi F kumulatif

  20 - 24

  6

  9 25 – 29

  10

  19 30 – 34

  15

  34 35 – 39

  8

  42

  40 – 44 45 – 49

  dari data berikut 3 4 10 5 7 6 5 6 7 4 7 7 10 6 Jawab : Data diurutkan terlebih dahulu dari yang terkecil sampai yang terbesar : 3 4 4 5 5 6 6 6 7 7 7 10 D

  k

  = frekuensi kumulatif sebelum kelas D

  i

  F i = frekuensi kelas D i Contoh : Tentukan D

  2

  dan D

  7

  2 teletak pada urutan nilai ke 2(12+1)/10 = 2,6

  i

  D

  2 = x 2 + 0,6 ( x 3 -x 2 )

  = 4 + 0,6 (4 -4) = 4 + 0 = 4

  D

  7 terletak pada urutan nilai ke 7(12+1)/10 =9,1

  D

  7

  = tepi bawah kelas F

  L

  5

  = 29,5 + … =…

  3

  47

  50 ∑ f = 50

  Jawab : Q 1 terletak pada data ke ¼ . 50 = 12,5 yaitu pada kelas 25 – 29. Q

  1 = 24,5 + (12,5 – 9)/10 . 5

  = 24,5 + 1,75 = 26,75 Q 2 terdapat pada data ke ½ . 50 = 25 yaitu pada kelas 30 -34. Q

  2 = 29,5 + (15 – 19)/15 . 5

  Q

  b. Untuk data kelompok, dapat ditentukan dengan : D i = L i + (i/10 n – f k )/f i . p

  3 = … + …

  = …

  

Desil adalah suatu nilai yang membagi data menjadi sepuluh bagian yang sama

  banyak ( setelah data diurutkan). Cara menentukan Desil:

  a. Untuk data tunggal, dapat ditentukan dengan : D

  i

  = i(n + 1)/10

  = x9 + 0,1 (x10 – x9) = 7 + 0,1 (7-7) = 7 + 0 = 7 Contoh untik data kelompok. Tentukan Desil ke 7 dari data dibawah ini Nilai Frekuensi 50 – 54

  55 – 59 60 – 64 65 – 69 70 – 74 75 – 79 80 – 84

  = 42 F

  72

  80 D 7 terletak pada data ke 7/10 x 80 = 56.

  Kelas D

  7

  pada interval 70 – 74 F

  k

  7 = 20

  42

  D

  7

  = 69,5 + 56 – 42 . 5

  20 = 69,5 + 3,5 = 73 D. Menentukan Simpangan Rata-rata, Ragam, Simpangan Baku.

  1. Simpangan Rata-rata ( Deviasi Rata-rata )

  a. Untuk data tunggal SR = ∑| xi – x | n b. Untuk data kelompok

  SR = ∑ Fi

  62

  27

  6

  55 – 59 60 – 64 65 – 69 70 – 74 75 – 79 80 – 84

  9

  12

  15

  20

  10

  8 ∑ f = 80

  Jawab: Nilai Frekuensi F kumulatif 50 – 54

  6

  15

  9

  12

  15

  20

  10

  8

  6

  | xi – x | ∑fi Ket : xi = ukuran data ke i

  • – x )

  1. Untuk data tunggal S = √∑ ( x i – x )

  6

  8

  10

  7

  5

  2

  Nilai Frekuensi 40 – 46 47 – 53 54 – 60 61 – 67 68 – 74 75 – 81 82 – 88

  1. Hasil ulangan matematika dari 15 siswa sbb: 9 7 6 8 9 7 6 4 5 6 8 7 7 8 5 Tentukan nilai rata rata dari data diatas 3. Tabel di bawah ini menunjukkan nilai matematika di suatu kelas.

  III. Latihan

  ∑f i

  2

  2. Untuk data kelompok S = √∑ f i ( x i – x )

  n

  2

  2

  x = rataan hitung |…| = nilai mutlak

  S = √ S

  3. Simpangan Baku ( Deviasi Standart) Simpangan baku adalah akar pangkat dua dari nilai ragam yang memilikisatuan yang sama dengan data.

  i

  ∑f

  2

  = ∑ f i ( x i – x )

  2

  2. Ragam data kelompok S

  n

  2

  = ∑ ( x i

  2

  1. Ragam data tunggal S

  2. Ragam / Varian

  2 Tentukan : a) Nilai rata –rata dengan menggunakan rumus data kelompok

  b) Nilai rata –rata dengan menggunakan rataan sementara

  c) Nilai rata –rata dengan menggunakan coding

  d) Q

  1 dan Q

  3

  e) Median atau Q

  2

  3. Deengan menggunakan data pada table no 2 , tentukan:

  a. Simpangan Rata-rata

  b. Ragam/Varian

  c. Simpangan Baku

  IV. Tes Formatif 1 ( Terlampir)

  V. Daftar pustaka Tim penulis MGMP Matematika SMA kota Semarang, Matematika SMA / MA XI A

  IPA, ( Semarang : CV. Jabbaar Setia, 2008) Tim penyusun KREATIF Matematika, Matematika SMA/MA kelas XI IPA semester gasal, ( Klaten, Viva Pakarindo, 2007) Simangunsong Wilson, Matematika dasar, ( Jakarta: Erlangga, 2005)

  

MATEMATIKA

MODUL 3

PELUANG

KELAS : XI IPA

  SEMESTER : I (SATU)

Muhammad Zainal Abidin Personal Blog

SMAN 1 Bone-Bone | Luwu Utara | Sulsel

  

PELUANG

  PENGANTAR : Modul ini kami susun sebagai salah satu sumber belajar untuk siswa agar dapat dipelajari dengan lebih mudah. Kami menyajikan materi dalam modul ini berusaha mengacu pada pendekatan kontekstual dengan diharapkan matematika akan makin terasa kegunaannya dalam kehidupan sehari-hari.

  STANDAR KOMPETENSI : 1. Menggunakan aturan statistika, kaidah pencacahan, dan sifat-sifat peluang dalam pemecahan masalah. KOMPETENSI DASAR : 1. Menggunakan aturan perkalian permutasi dan kombinasi dalaam pemecahan masalah.

  2. Menentukan ruang sample suatu percobaan 3. Menentukan peluang suatu kejadian dan penafsiraanya. TUJUAN PEMBELAJARAN : 1. Siswa dapat menyusun aturan perkalian, permutasi dan kombinasi

  2. Siswa dapat menggunakan aturan perkalian, permutasi dan kombinasi.

  3. Siswa dapat menentukan banyak kemungkinan kejadian dari berbagai situasi.

  4. Siswa dapat menuliskan himpunan kejadian dari suatu percobaan .

  5. Siswa dapat menentukan peluang kejadian melalui percobaan.

  6. Siswa dapat menentukan peluang suatu kejadian secara teoritis.

  KEGIATAN BELAJAR :

  I. Judul sub kegiatan belajar :  Peluang :

   Aturan perkalian  Permutasi dan  Kombinasi

   Ruang sampel  Peluang kejadian. II. Uraian materi dan contoh

KAIDAH PENCACAHAN

  Kaidah pencacahan adalah metode untuk menghitung berapa banyak cara yang mungkin terjadi dalam suatu percobaan. Ada 3 kaidah pencacahan yaitu

  1. Aturan pengisian tempat yang tersedia

  2. Permutasi

  3. Kombinasi

  Aturan pengisian tempat yang tersedia

  Contoh Dora mempunyai dua topi berwarna merah(m) dan hijau(h), dan mempunyai 3 sepatu warna biru(b), kuning(k), dan coklat(c). Berapa pasang topi dan sepatu yang bisa Dora pasangkan untuk di pakai? Jawab:

  a. Dengan diagram pohon

  b. Dengan tabel

  c. Dengan pasangan berurutan

  d. Dengan aturan pengisian tempat yang tersedia

  FAKTORIAL

   Definisi: Untuk setiap n bil asli didefinisikan: n! = 1 x 2 x 3 x 4 x … x (n-1) x n atau n! = n x (n-1) x … x 4 x 3 x 2 x 1 n! dibaca “n faktorial” 0! = 1 demikian juga 1! = 1

  Contoh:

  1. 3! = 3 x 2 x 1 = 6

  Permutasi

  Permutasi r unsur dari n unsur yang tersedia (ditulis Prn atau nPr) yang tersedia (ditulis Prn atau nPr) adalah banyak cara menyusun adalah banyak cara menyusun r unsur yang berbeda diambil dari sekumpulan n unsur yang tersedia.

   Rumus: nPr = n! (n-r)!

  Contoh 1 Banyak cara menyusun pengurus yang terdiri dari Ketua, Sekretaris, dan Bendahara yang diambil dari 5 orang calon adalah….

  Penyelesaian

  • banyak calon pengurus 5

   n = 5

  • banyak pengurus yang akan dipilih 3

   r = 3 nPr = n! (n-r)!

  P = 5! = 5x4x3x2x1

  5

  3

  (5-3)! 2x1 = 60 cara

  Contoh 2

  Banyak bilangan yang terdiri dari tiga angka yang dibentuk dari angka-angka 3, 4, 5, 6, 7, dan 8, di mana setiap angka hanya boleh digunakan satu kali adalah….

  Penyelesaian

  • banyak angka = 6

   n = 6

  • bilangan terdiri dari 3 angka

   r = 3 nPr = n ! (n-r)!

  P = 6! = 6x5x4x3x2x1

  6

  3

  (6-3)! 3x2x1 = 120 cara

  Kombinasi

  Kombinasi r unsur dari n unsur yang tersedia (ditulis Crn atau nCr) adalah banyak cara mengelompokan r unsur yang diambil dari sekumpulan n unsur yang tersedia.

   Rumus: nCr = n ! .

  (n-r)! r! Contoh 1

  Seorang siswa diharuskan mengerjakan 6 dari 8 soal, tetapi nomor 1 sampai 4 wajib dikerjakan . Banyak pilihan yang dapat diambil oleh siswa adalah….

  Penyelesaian

  • mengerjakan 6 dari 8 soal, tetapi nomor 1 sampai 4 wajib dikerjakan
  • berarti tinggal memilih 2 soal lagi dari soal nomor 5 sampai 8
  • r = 2 dan n = 4
  • 4 C

  2 = 4 ! . = 4x3x2x1 = 6 cara

  (4-2)! 2! 2x1 . 2x1

  Contoh 2

  Dari sebuah kantong yang berisi10 bola merah dan 8 bola putih akan diambil 6 bola sekaligus secara acak. Banyak cara mengambil 4 bola merah dan 2 bola putih adalah….

  Penyelesaian

  • mengambil 4 bola merah dari 10 bola merah

   r = 4, n = 10

  10 C 4 = 10 ! = 10!

  (10-4)! 4! 6! 4! = 10x9x8x7x6! = 210 6! 4!

  • mengambil 2 bola putih dari 8 bola putih

   r = 2, n = 8 C = 8! . = 8x7x6! .

  8

  2

  (8-2)! 2! 6! 2! = 28

  • Jadi banyak cara mengambil 4 bola merah dan 2 bola putih adalah

  10C4 x 8C2 = 7.3.10 x 7.4 = 5880 cara

  Peluang atau Probabilitas

  Peluang atau nilai kemungkinan adalah perbandingan antara kejadian yang diharapkan muncul dengan banyaknya kejadian yang mungkin muncul. Bila banyak kejadian yang diharapkan muncul dinotasikan dengan n(A), dan banyaknya kejadian yang mungkin muncul (ruang sampel = S) dinotasikan dengan n(S) maka Peluang kejadian A ditulis

  P(A) = n(A) n(S)

  Contoh 1

  Peluang muncul muka dadu nomor 5 dari pelemparan sebuah dadu satu kali adalah….

  Penyelesaian:

  n(5) = 1 dan n(S) = 6  yaitu: 1, 2, 3, 4, 5, 6

  Jadi P(5) = n(5) = 1 n(S) 6

  Contoh 2

  Dalam sebuah kantong terdapat 4 kelereng merah dan 3 kelereng biru . Bila sebuah kelereng diambil dari dalam kantong maka peluang terambilnya kelereng merah adalah

  Penyelesaian:

  • Kejadian yang diharapkan muncul yaitu terambilnya kelereng merah ada 4

   n(merah) = 4

  • Kejadian yang mungkin muncul yaitu terambil 4 kelereng merah dan 3 kelereng biru

   n(S) = 4 + 3 = 7

  • Jadi peluang kelereng merah yang terambil adalah P(merah) = n (merah ) n(S)

  P(merah) = 4

  7 Contoh 3 Dalam sebuah kantong terdapat 7 kelereng merah dan 3 kelereng biru . Bila tiga buah kelereng diambil sekaligus maka peluang terambilnya kelereng merah adalah….

  Penyelesaian:

  • Banyak kelereng merah = 7 dan biru = 3

   jumlahnya = 10

  • Banyak cara mengambil 3 dari 7

  C = 7!

  7

  3

   (7-3)! 3! = 7x6x5x4! 4! 3! = 35 Banyak cara mengambil 3 dari 10

  C = 10!

  10

  3

   (10-3)! 3! = 10x9x8x7! 7! 3! = 120

  • Peluang mengambil 3 kelereng merah sekaligus = C

  7

3 C

  10

  3

  = 35 120 = 7

  24

  Komplemen Kejadian

  • Nilai suatu peluang antara 0 sampai dengan 1

   0 ≤ p(A) ≤ 1

  • P(A) = 0

   kejadian yang tidak mungkin terjadi

  • P(A) = 1

   kejadian yang pasti terjadi

  1

  • P(A ) = 1 – P(A)

1 A adalah komplemen A

  Contoh 1

  Sepasang suami istri mengikuti keluarga berencana. Mereka berharap mempunyai dua anak. Peluang paling sedikit mempunyai seorang anak laki-laki adalah …

  Penyelesaian:

  • kemungkinan pasangan anak yang akan dimiliki: keduanya laki-laki, keduanya perempuan atau 1 laki- laki dan 1 perempuan

   n(S) = 3

  • Peluang paling sedikit 1 laki-laki = 1 – peluang semua perempuan = 1 – 1 = 2 3 3

  Contoh 2

  Dalam sebuah keranjang terdapat50 buah salak, 10 diantaranya busuk. Diambil 5 buah salak. Peluang paling sedikit mendapat sebuah salak tidak busuk adalah….

  Penyelesaian:

  • banyak salak 50, 10 salak busuk
  • diambil 5 salak

   r = 5

  • n(S) = C

  50

  5

  • Peluang paling sedikit 1 salak tidak busuk = 1 – peluang semua salak busuk = 1 –

  Kejadian Saling Lepas

  Jika A dan B adalah dua kejadian yang saling lepas maka peluang kejadian A atau B adalah P(A atau B) = P(A) + P(B)

  Contoh 1

  Dari satu set kartu bridge (tanpa joker) akan diambil dua kartu joker) akan diambil dua kartu kemudian kartu tersebut dikembalikan. Peluang terambilnya kartu as atau kartu king adalah…. Penyelesaian:

  • kartu bridge = 52
  • kartu as = 4

   n(as) = 4

  • P(as) = 4/52
  • kartu king = 4

   n(king) = 4

  • P(king) = 4/52
  • P(as atau king) = P(as) + P(king) = 4/52 + 4/52 = 8/52

  Contoh 2

  Sebuah dompet berisi uang logam 5 keping lima ratusan dan 2 keping ratusan rupiah.Dompet yang lain berisi uang logam 1 keping lima ratusan dan 3

  

keping ratusan. Jika sebuah uang logam diambil secara acak dari salah satu

dompet, peluang untuk mendapatkan uang logam ratusan rupiah adalah….

  Penyelesaian

  • dompet I: 5 keping lima ratusan dan 2 keping ratusan

  P(dompet I,ratusan) = ½. 2/10 = 1/10 • dompet II: 1 keping lima ratusan dan 3 keping ratusan. P(dompet II, ratusan) = ½.3/4 = 3/8

  • Jadi peluang mendapatkan uang logam ratusan rupiah

  P(ratusan) = 1/10 + 3/8 = 38/80 = 19/40

  Kejadian Saling Bebas

  Kejadian A dan B saling bebas Jika keduanya tidak saling mempengaruhi P(A dan B) = P(A) x P(B)

  Contoh 1

  Anggota paduan suara suatu sekolah terdiri dari 12 putra dan 18 putri. Bila diambil dua anggota dari kelompok tersebut untuk mengikuti lomba perorangan maka peluang terpilihnya putra dan putri adalah….

  Penyelesaian

  • banyak anggota putra 12 dan banyak anggota putri 18

   n(S) = 12 + 18 = 30

  • P(putra dan putri) = P(putra) x P(putri) = 12/30 x 18/30 =

  Contoh 2

  Peluang Amir lulus pada Ujian Nasional adalah 0,90. Sedangkan peluang Badu lulus pada Ujian Nasional 0,85. Peluang Amir lulus tetapi Badu tidak lulus

  Penyelesaian:

  • Amir lulus

   P(AL) = 0,90

  • Badu lulus

   P(BL) = 0,85

  • Badu tidak lulus

   P(BTL) = 1 – 0,85 = 0,15

  • P(AL tetapi BTL) = P(AL) x P(BTL) = 0,90 x 0,15 = 0,135

  Contoh 3

  Dari sebuah kantong berisi 6 kelereng merah dan 4 kelereng biru diambil 3 kelereng sekaligus secara acak. Peluang terambilnya 2 kelereng merah dan 1 biru adalah….

  Penyelesaian:

  • banyak kelereng merah = 6 dan biru = 4

   jumlahnya = 10

  • banyak cara mengambil 2 merah dari 6

   r = 2 , n = 6

  6 C 2 = 6!

   (6-2)! 2! = 6x5x4! 4! 2! = 5.3 =15 banyak cara mengambil 1 biru dari 4 kelereng biru

   r = 1, n = 4 C = 4

  4

  1

  

  • banyak cara mengambil 3 dari 10

  10 C 3 = 120

   n(S) = Peluang mengambil 2 kelereng merah dan 1 biru = 15 x 4 120 Jadi peluangnya = ½

  Contoh 4

  Dari sebuah kotak yang berisi 5 bola merah dan 3 bola putih di- ambil 2 bola sekaligus secara acak. Peluang terambilnya keduanya merah adalah

  Penyelesaian:

  • banyak cara mengambil 2 dari 8

  8 C 2 = 8 !

   (8-2)! 2! = 28 banyak cara mengambil 2 dari5 

  5 C 2 = 5 !

  (5-2)! 2! = 10

  • Peluang mengambil 2 bola merah sekaligus = 10/28 = 5/14

  III. Latihan Jawablah pertanyaan di bawah dengan benar

  1. Banyak cara menyusun pengurus yang terdiri dari Ketua, Sekretaris, dan Bendahara yang diambil dari 5 orang calon adalah….

  2. Dari sebuah kantong yang berisi10 bola merah dan 8 bola putih akan diambil 6 bola sekaligus secara acak. Banyak cara mengambil 4 bola merah dan 2 bola putih adalah….

  3. Dalam sebuah kantong terdapat 7 kelereng merah dan 3 kelereng biru . Bila tiga buah kelereng diambil sekaligus maka peluang terambilnya kelereng merah adalah….

  4. Anggota paduan suara suatu sekolah terdiri dari 12 putra dan 18 putri. Bila diambil dua anggota dari kelompok tersebut untuk mengikuti lomba perorangan maka peluang terpilihnya putra dan putri adalah….

  5. Dari sebuah kantong berisi 6 kelereng merah dan 4 kelereng biru diambil 3 kelereng sekaligus secara acak. Peluang terambilnya 2 kelereng merah dan 1 biru adalah….

  IV. Tes Formatif 3 ( Terlampir)

  V. Daftar pustaka Tim penulis MGMP Matematika SMA kota Semarang, Matematika SMA / MA XI A

  IPA, ( Semarang : CV. Jabbaar Setia, 2008) Tim penyusun KREATIF Matematika, Matematika SMA/MA kelas XI IPA semester gasal, ( Klaten, Viva Pakarindo, 2007) Simangunsong Wilson, Matematika dasar, ( Jakarta: Erlangga, 2005)


Dokumen baru

PENGARUH PENERAPAN MODEL DISKUSI TERHADAP KEMAMPUAN TES LISAN SISWA PADA MATA PELAJARAN ALQUR’AN HADIS DI MADRASAH TSANAWIYAH NEGERI TUNGGANGRI KALIDAWIR TULUNGAGUNG Institutional Repository of IAIN Tulungagung

92 2564 16

PENGARUH PENERAPAN MODEL DISKUSI TERHADAP KEMAMPUAN TES LISAN SISWA PADA MATA PELAJARAN ALQUR’AN HADIS DI MADRASAH TSANAWIYAH NEGERI TUNGGANGRI KALIDAWIR TULUNGAGUNG Institutional Repository of IAIN Tulungagung

34 664 43

PENGARUH PENERAPAN MODEL DISKUSI TERHADAP KEMAMPUAN TES LISAN SISWA PADA MATA PELAJARAN ALQUR’AN HADIS DI MADRASAH TSANAWIYAH NEGERI TUNGGANGRI KALIDAWIR TULUNGAGUNG Institutional Repository of IAIN Tulungagung

32 565 23

PENGARUH PENERAPAN MODEL DISKUSI TERHADAP KEMAMPUAN TES LISAN SISWA PADA MATA PELAJARAN ALQUR’AN HADIS DI MADRASAH TSANAWIYAH NEGERI TUNGGANGRI KALIDAWIR TULUNGAGUNG Institutional Repository of IAIN Tulungagung

15 363 24

PENGARUH PENERAPAN MODEL DISKUSI TERHADAP KEMAMPUAN TES LISAN SISWA PADA MATA PELAJARAN ALQUR’AN HADIS DI MADRASAH TSANAWIYAH NEGERI TUNGGANGRI KALIDAWIR TULUNGAGUNG Institutional Repository of IAIN Tulungagung

23 492 23

KREATIVITAS GURU DALAM MENGGUNAKAN SUMBER BELAJAR UNTUK MENINGKATKAN KUALITAS PEMBELAJARAN PENDIDIKAN AGAMA ISLAM DI SMPN 2 NGANTRU TULUNGAGUNG Institutional Repository of IAIN Tulungagung

42 835 14

KREATIVITAS GURU DALAM MENGGUNAKAN SUMBER BELAJAR UNTUK MENINGKATKAN KUALITAS PEMBELAJARAN PENDIDIKAN AGAMA ISLAM DI SMPN 2 NGANTRU TULUNGAGUNG Institutional Repository of IAIN Tulungagung

38 742 50

KREATIVITAS GURU DALAM MENGGUNAKAN SUMBER BELAJAR UNTUK MENINGKATKAN KUALITAS PEMBELAJARAN PENDIDIKAN AGAMA ISLAM DI SMPN 2 NGANTRU TULUNGAGUNG Institutional Repository of IAIN Tulungagung

12 465 17

KREATIVITAS GURU DALAM MENGGUNAKAN SUMBER BELAJAR UNTUK MENINGKATKAN KUALITAS PEMBELAJARAN PENDIDIKAN AGAMA ISLAM DI SMPN 2 NGANTRU TULUNGAGUNG Institutional Repository of IAIN Tulungagung

19 677 30

KREATIVITAS GURU DALAM MENGGUNAKAN SUMBER BELAJAR UNTUK MENINGKATKAN KUALITAS PEMBELAJARAN PENDIDIKAN AGAMA ISLAM DI SMPN 2 NGANTRU TULUNGAGUNG Institutional Repository of IAIN Tulungagung

29 819 23