Teknik Kompresi Citra Kriteria Kompresi Citra

Pemampatan citra atau kompresi bertujuan untuk meminimalkan kebutuhan memori dalam merepresentasikan citra digital dengan mengurangi duplikasi data di dalam citra sehingga memori yang dibutuhkan menjadi lebih sedikit daripada representasi citra semula.

2.5.1 Teknik Kompresi Citra

Ada dua teknik yang dapat dilakukan dalam melakukan kompresi citra yaitu: 1. Lossless Compression Metode Lossless merupakan kompresi citra dimana hasil dekompresi dari citra yang terkompresi sama dengan citra aslinya, tidak ada informasi yang hilang. Sayangnya, untuk ratio kompresi citra metode ini sangat rendah. secara umum teknik lossless digunakan untuk penerapan aplikasi yang memerlukan kompresi tanpa cacat, seperti pada aplikasi radiografi, kompresi citra hasil diagnose medis atau gambar satelit, di mana kehilangan gambar sekeil apa pun akan menyebabkan hasil yang tidak diharapkan. Contoh metode ini adalah Shannon-Fano Coding, Huffman Coding, Arithmetic Coding, Run-Length Encodingdan lain sebagainyaSutoyo, 2009 2. Lossy Compression Metode Lossy merupakan kompresi citra dimana hasil dekompresi dari citra yang terkompresi tidak sama dengan citra aslinya, artinya bahwa ada informasi yang hilang, tetapi masih bisa ditolerir oleh persepsi mata. Metode ini menghasilkan ratio kompresi yang lebih tinggi dari pada metode lossless. Contohnya adalah color reduction, chroma subsampling, dan transform coding, seperti transformasi Fourier, Wavelet dll. Sutoyo, 2009

2.5.2 Kriteria Kompresi Citra

Dalam kompresi citra biasanya kriteria yang digunakan untuk mengukur pemampatan citra adalah: 1. Waktu kompresi dan waktu dekompresi Proses kompresi merupakan proses mengkodekan citra encode sehingga diperoleh citra dengan representasi kebutuhan memori yang minimum. Citra terkompresi disimpan dalam file dengan format tertentu. Sedangkan proses dekompresi adalah Universitas Sumatera Utara proses untuk menguraikan citra yang dimampatkan untuk dikembalikan lagi decoding menjadi citra yang tidak mampat mengembalikan ke bentuk semula. Algoritma pemampatan yang baik adalah algoritma yang membutuhkan waktu untuk kompresi dan dekompresi paling sedikit paling cepat. Gambar 2 merupakan gambar mengenai proses kompresi dan dekompresi citra Sutoyo, et al. 2009. 2. Kebutuhan memori Suatu metode kompresi yang mampu mengompresi file citra menjadi file yang berukuran paling minimal adalah metode kompresi yang baik. Dimana memori yang dibutuhkan untuk menyimpan hasil kompresi berkurang secara berarti. Akan tetapi biasanya semakin besar persentase pemampatan, semakin kecil memori yang diperlukan sehingga kualitas citra makin berkurang. Sebaliknya semakin kecil persentase yang dimampatkan, semakin bagus kualitas hasil pemampatan tersebut Sutoyo, et al. 2009. 3. Kualitas pemampatan Metode kompresi yang baik adalah metode yang dapat mengembalikan citra hasil kompresi menjadi citra semula tanpa kehilangan informasi apapun. Walaupun ada informasi yang hilang akibat pemampatan, sebaiknya hal tersebut ditekan seminimal mungkin. Semakin berkualitas hasil pemampatan, semakin besar memori yang dibutuhkan, sebaliknya semakin jelek kualitas pemampatan, semakin kecil kebutuhan memori yang harus disediakan Sutoyo, et al. 2009.

2.5.3 Parameter Perbandingan