Metode Broms Kapasitas Daya Dukung Lateral Tiang Pancang

78 Tabel 2.12. Nilai-Nilai n h untuk Tanah Granuler c = 0 Kerapatan relatif D r Tidak padat Sedang Padat Interval nilai A 100 – 300 300 – 1000 1000 – 2000 Nilai A dipakai 200 600 1500 n h , pasir kering atau lembab Terzaghi kNm 3 2425 7275 19400 n h , pasir terendam air kNm 3 Terzaghi 1386 4850 11779 Reese dkk 5300 16300 34000 Sumber : Tomlinson, 1977 Tabel 2.13. Nilai-Nilai n h untuk Tanah Kohesif Tanah n h kNm 3 Referensi Lempung terkonsolidasi normal lunak 166 – 3518 Reese dan Matlock 1956 277 – 554 Davisson - Prakash 1963 Lempung terkonsolidasi normal organik 111 – 277 Peck dan Davidsson 1962 111 – 831 Davidsson 1970 Gambut 55 Davidsson 1970 27,7 – 111 Wilson dan Hilts 1967 Loess 8033 – 11080 Bowles 1968 Sumber : Hardiyatmo, 2002

2.8.2. Metode Broms

Metode perhitungan ini menggunakan teori tekanan tanah yang disederhanakan dengan menganggap bahwa sepanjang kedalaman tiang, tanah mencapai nilai ultimit. Keuntungan metode Broms :  Dapat digunakan pada tiang panjang maupun tiang pendek.  Dapat digunakan pada kondisi kepala tiang terjepit maupun bebas. Kerugian metode Broms :  Hanya berlaku untuk lapisan tanah yang homogen, yaitu tanah lempung saja atau tanah pasir saja. Universitas Sumatera Utara 79  Tidak dapat digunakan pada tanah berlapis. Broms membedakan antara tiang pendek dan panjang serta membedakan posisi kepala tiang bebas dan terjepit. Broms, 1964, mengemukakan beberapa anggapan dalam metode ini bahwa tanah adalah salah satu dari non-kohesif saja c = 0 atau kohesif saja f = 0, oleh karena itu, tiang pada setiap tipe tanah dianalisis secara terpisah. Broms juga menyatakan bahwa tiang pendek kaku short rigid pile dan tiang panjang lentur long flexible pile dianggap terpisah. Tiang dianggap tiang pendek kaku short rigid pile jika LT 2 atau LR 2 dan dianggap tiang panjang lentur long flexible pile jika LT 4 atau LR 3,5. Gambar 2.32. Tiang Pendek Dikenai Beban Lateral Sumber : Hardiyatmo, 2002 Gambar 2.33. Tiang Panjang Dikenai Beban Lateral Sumber : Hardiyatmo, 2002 Universitas Sumatera Utara 80 Tiang pendek ujung bebas diharapkan berotasi di sekitar pusat rotasi, sedangkan untuk tiang ujung jepit bergerak secara lateral dalam bentuk translasi. 1.Pada Tanah Kohesif Pada tanah kohesif, tegangan tanah yang terjadi di permukaan tanah sampai kedalaman 1,5 kali diameter 1,5D dianggap sama dengan nol dan konstan sebesar 9c u untuk kedalaman yang lebih besar dari 1,5D tersebut. Hal ini dianggap sebagai efek penyusutan tanah. a. Tiang Ujung Bebas Free-end Piles Beban lateral yang bekerja pada kedua jenis tiang tersebut akan menghasilkan pergerakan yang berbeda dari segi defleksi dan mekanisme keruntuhan tiang. Bentuk keruntuhan dan distribusi reaksi tanah ultimit serta momen pada tiang ujung bebas untuk tiang pendek kaku LR 2, ditunjukkan pada Gambar 2.34a. Pada tiang pendek, tahanan tiang terhadap gaya lateral akan ditentukan oleh tahanan tanah disekitar tiang. Sedangkan bentuk keruntuhan dan distribusi reaksi tanah ultimit serta momen pada tiang ujung bebas untuk tiang panjang elastis LR , ditunjukkan pada Gambar 2.35b. Pada tiang panjang tahanan terhadap gaya lateral akan ditentukan oleh momen maksimum yang dapat ditahan tiangnya sendiri M y . Universitas Sumatera Utara 81 a b Gambar 2.34. Defleksi dan Mekanisme Keruntuhan Pondasi Tiang dengan Kondisi Kepala Tiang Bebas Akibat Beban Lateral pada Tanah Kohesif a Pondasi Tiang Pendek, b Pondasi Tiang Panjang Sumber : Hardiyatmo, 2002 Pada gambar di atas, f mendefinisikan letak momen maksimum, sehingga dapat diperoleh : f = H u 9c u .D 2.19 Dengan mengambil momen terhadap titik dimana momen pada tiang maksimum, diperoleh : ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ M maks = H u e + 1,5D + 0,5f 2.20 Sumber : Hardiyatmo, 2002 Universitas Sumatera Utara 82 Momen maksimum dapat pula dinyatakan oleh persamaan : ⁄ 2.21 Dan L = 3D2 + f + g 2.22 Dimana : L = panjang tiang m D = diameter tiang m H u = beban lateral kN c u = kohesi tanah undrained kNm 2 f = jarak momen maksimum dari permukaan tanah m g = jarak dari lokasi momen maksimum sampai dasar tiang m e = jarak beban lateral dari permukaan tanah m Karena L = 3D2 + f + g, maka Hu dapat dihitung dari persamaan di atas, diperoleh : 2.23 Dimana Nilai-nilai H u yang diplot dalam grafik hubungan LD dan c u d 2 ditunjukkan pada Gambar 2.36a yang berlaku untuk tiang pendek. Hitungan Broms untuk tiang pendek di atas didasarkan pada penyelesaian statika, yaitu dengan menganggap bahwa panjang tiang ekivalen dengan L-3d2, dengan eksentrisitas beban ekivalen e + 3d2. Sedangkan untuk tiang panjang Gambar 2.36b tahanan terhadap gaya lateral akan ditentukan oleh momen maksimum yang dapat ditahan tiangnya sendiri M y dengan menganggap Mmaks = M y Momen leleh, penyelesaian persamaan diplot ke dalam grafik hubungan antara M y c u d 3 dan H u c u d 2 . Nilai beban lateral H u dapat ditentukan secara langsung melalui grafik pada Gambar 2.36. Universitas Sumatera Utara 83 a b Gambar 2.35. Kapasitas Beban Lateral pada Tanah Kohesif; a untuk Pondasi Tiang Pendek, b untuk Pondasi Tiang Panjang Sumber : Hardiyatmo, 2002 b. Tiang Ujung Jepit Fixed-end Pile Pada Tiang ujung jepit, Broms menganggap bahwa momen yang terjadi pada tubuh tiang yang tertanam di dalam tanah sama dengan momen yang terjadi di ujung atas tiang yang terjepit oleh pile cap. Mekanisme keruntuhan akibat beban lateral yang terjadi pada pondasi tiang dengan kondisi kepala tiang terjepit dapat dilihat pada Gambar 2.36. a Universitas Sumatera Utara 84 b Gambar 2.36. Defleksi dan Mekanisme Keruntuhan Pondasi Tiang dengan Kondisi Kepala Tiang Terjepit Akibat Beban Lateral pada Tanah Kohesif; a Pondasi Tiang Pendek, b Pondasi Tiang Panjang Sumber : Hardiyatmo, 2002 Untuk tiang pendek, dapat dihitung tahanan ultimit tiang terhadap beban lateral dengan persamaan : H u = 9C u D L –g – 1,5D 2.24 M maks = H u 0,5L + 0,75D 2.25 Dimana : H u = beban lateral kN D = diameter tiang m c u = kohesi tanah kNm 2 L = panjang tiang m g = jarak dari lokasi momen maksimum sampai dasar tiang m Nilai-nilai H u dapat diplot dalam grafik hubungan LD dan H u c u D 2 ditunjukkan pada Gambar 2.36a. Sedangkan untuk tiang panjang, H u dapat dicari dengan persamaan : H u = 2.26 Sumber : Hardiyatmo, 2002 Universitas Sumatera Utara 85 Dimana : M y = momen leleh kN-m f = jarak momen maksimum dari permukaan tanah m Nilai-nilai H u yang diplot dalam grafik hubungan M y c u d 3 dan H u c u d 2 ditunjukkan pada Gambar 2.36b. 2. Pada Tanah Granular Untuk tiang dalam tanah granuler c = 0, seperti pasir, kerikil, batuan, Broms menganggap sebagai berikut : 1. Tekanan tanah aktif yang bekerja di belakang tiang, diabaikan. 2.Bentuk penampang tiang tidak berpengaruh terhadap tekanan tanah ultimit atau tahanan lateral ultimit. 3.Tahanan tanah lateral sepenuhnya termobilisasi pada gerakan tiang yang diperhitungkan. Distribusi tekanan tanah dinyatakan oleh persamaan : p u = 3 p o K p 2.27 Dimana : p u = tahanan tanah ultimit p o = tekanan overburden efektif K p = tan 2 45 o + ø2 ø = sudut geser dalam efektif a. Tiang Ujung Bebas Free-end Piles Tiang pendek Gambar 2.37a dianggap berotasi di dekat ujung bawah tiang. Tekanan yang terjadi dianggap dapat digantikan oleh gaya terpusat yang bekerja pada ujung bawah tiang. Dengan mengambil momen terhadap ujung bawah, diperoleh : Universitas Sumatera Utara 86 H u = 2.28 Momen maksimum terjadi pada jarak f di bawah permukaan tanah sehingga : H u = 1,5γ D K p f 2 2.29 Lokasi momen maksimum : f = 0,82 √ 2.30 Sumber : Hardiyatmo, 2002 Sehingga momen maksimum diperoleh dengan persamaan : M maks = H u e + 1,5f 2.31 Gambar 2.37. Defleksi dan Mekanisme Keruntuhan Pondasi Tiang dengan Kondisi Kepala Tiang Bebas Akibat Beban Lateral pada Tanah Granular; a Pondasi Tiang Pendek, b Pondasi Tiang Panjang Sumber : Hardiyatmo, 2002 Universitas Sumatera Utara 87 b. Tiang Ujung Jepit Fixed-end Pile Jika tiang ujung jepit yang kaku tiang pendek, keruntuhan tiang berupa translasi, beban lateral ultimit dinyatakan oleh : H u = 1,5γ D L 2 K p . 2.32 Lokasi momen maksimum : f=0, 2√ D K p γ 2.33 Momen maksimum : ma = 2 3 u 2.34 Momen leleh : = 0,5γ D 3 K p - H 2.35 Dimana : H u = beban lateral kN K p = koefisien tekanan tanah pasif M max = momen maksimum kN-m M y = momen leleh kN-m L = panjang tiang m D = diameter tiang m f = jarak momen maksimum dari permukaan tanah m = berat isi tanah kNm 3 e = jarak beban lateral dari permukaan tanah m a Universitas Sumatera Utara 88 b Gambar 2.38. Defleksi dan Mekanisme Keruntuhan Pondasi Tiang dengan Kondisi Kepala Tiang Terjepit Akibat Beban Lateral pada Tanah Granular; a Pondasi Tiang Pendek, b Pondasi Tiang Panjang Sumber : Hardiyatmo, 2002 Sedangkan untuk tiang ujung jepit yang tidak kaku tiang panjang, dimana momen maksimum mencapai M y di dua lokasi M u + = M u - maka H u dapat diperoleh dari persamaan : H u = 2.36 f=0, 2√ Hu D K p γ 2.37 Persamaan 2.36 disubstitusi ke Persamaan 2.37, sehingga nilai H u menjadi : H u = √ 2.38 Universitas Sumatera Utara 89 Dimana : H u = beban lateral kN K p = koefisien tekanan tanah pasif = tan 2 45 o + ø2 M y = momen ultimit kN-m D = diameter tiang m f = jarak momen maksimum dari permukaan tanah m = berat isi tanah kNm 3 e = jarak beban lateral dari permukaan tanah m = 0 Sumber : Hardiyatmo, 2002 Nilai beban lateral H u untuk pondasi tiang pendek dan panjang dapat diperoleh berdasarkan grafik gambar berikut : a b Gambar 2.39. Kapasitas Beban Lateral pada Tanah Granuler; a Tiang Pendek, b Tiang Panjang Sumber : Tomlinson, 1977

2.9 Faktor Keamanan

Dokumen yang terkait

Analisa Daya Dukung Pondasi Tiang Pancang pada Titik Bore Hole - 01 dengan Metode Analitis dan Metode Elemen Hingga (Studi Kasus : Hotel Medan Siantar Sinaksak – Pematang Siantar)

3 76 181

Analisis Daya Dukung Pondasi Tiang Pancang Menggunakan Metode Sondir, SPT, Metode Elemen Hingga pada Proyek Pembangunan Hotel Medan-Siantar, Sinaksak, Pematang Siantar

34 104 146

Analisa Daya Dukung Pondasi Tiang Pancang pada Titik Bore Hole - 01 dengan Metode Analitis dan Metode Elemen Hingga (Studi Kasus : Hotel Medan Siantar Sinaksak – Pematang Siantar)

0 3 18

Analisa Daya Dukung Pondasi Tiang Pancang pada Titik Bore Hole - 01 dengan Metode Analitis dan Metode Elemen Hingga (Studi Kasus : Hotel Medan Siantar Sinaksak – Pematang Siantar)

0 0 1

Analisa Daya Dukung Pondasi Tiang Pancang pada Titik Bore Hole - 01 dengan Metode Analitis dan Metode Elemen Hingga (Studi Kasus : Hotel Medan Siantar Sinaksak – Pematang Siantar)

0 1 7

Analisa Daya Dukung Pondasi Tiang Pancang pada Titik Bore Hole - 01 dengan Metode Analitis dan Metode Elemen Hingga (Studi Kasus : Hotel Medan Siantar Sinaksak – Pematang Siantar)

0 2 101

Analisis Daya Dukung Pondasi Tiang Pancang Menggunakan Metode Sondir, SPT, Metode Elemen Hingga pada Proyek Pembangunan Hotel Medan-Siantar, Sinaksak, Pematang Siantar

0 0 17

Analisis Daya Dukung Pondasi Tiang Pancang Menggunakan Metode Sondir, SPT, Metode Elemen Hingga pada Proyek Pembangunan Hotel Medan-Siantar, Sinaksak, Pematang Siantar

0 0 1

Analisis Daya Dukung Pondasi Tiang Pancang Menggunakan Metode Sondir, SPT, Metode Elemen Hingga pada Proyek Pembangunan Hotel Medan-Siantar, Sinaksak, Pematang Siantar

0 1 6

Analisis Daya Dukung Pondasi Tiang Pancang Menggunakan Metode Sondir, SPT, Metode Elemen Hingga pada Proyek Pembangunan Hotel Medan-Siantar, Sinaksak, Pematang Siantar

0 1 73