Portfolio problems with fuzzy technological coefficients and fuzzy right-

88 adopted for solving general nonconvex optimization problem Rockafellar and Wets [153] and White [209].

5.5.2 Portfolio problems with fuzzy technological coefficients and fuzzy right-

hand-side numbers We consider the linear programming problem 5.34-5.36 with fuzzy technological coefficients and fuzzy right-hand-side numbers max X ϕ = ∑ = n j j j X c 1 5.58 subject to i mT n j j ij b X a ~ ~ 1 ≤ ∑ + = , 2 , 1 + + = m mT i , 5.59 ≥ j X , mT n j + = ,1 . 5.60 Assumption 5.3. ij a ~ and i b ~ are fuzzy numbers for any i and j. In this case we consider the following linear membership functions: i 1. For 1 , , 1 , 1 − = + + = T K m K Km i and n j , 1 = , ⎪ ⎩ ⎪ ⎨ ⎧ + − ≥ + − ≤ − − + − − = + , 1 , , 1 ij ij ij ij ij ij ij ij j k a d r t if d r t r if d t d r r t if t ij μ 2. For 1 , , 1 , 1 − = + + = T K m K Km i and j=n+Ti-Km-1+K+1, ⎪ ⎩ ⎪ ⎨ ⎧ + − ≥ + − ≤ − − + − − = , 1 , 1 1 1 1 1 ij ij ij ij a d t if d t if d t d t if t ij μ ii For m K m mT mT i , 1 , 2 , 3 = + + + = and TK n K T n j + − + = , 1 , ⎪ ⎩ ⎪ ⎨ ⎧ + ≥ + ≤ − + = , , , 1 ij ij ij ij ij ij ij ij ij a d p t if d p t p if d t d p p t if t ij μ and 89 ⎪⎩ ⎪ ⎨ ⎧ + ≥ + ≤ − + = i i i i i i i i i b p b t if p b t b if p t p b b t if t i , , 1 μ where R t ∈ and ij d for all 2 , 1 , , 1 + + = = m mT i n j . For defuzzification of this problem 5.58-5.60, we first calculate the lower and upper bounds of the optimal values. The optimal values l z and u z can be defined by solving the following standard linear programming problems, for which we assume that all they have the finite optimal values. Now defuzzification of this problem 5.58-5.60. first we fuzzify the objective function. This is done by calculating the lower and upper bound of the optimal values first. The bounds of the optimal values l z and u z are obtained by solving the standard linear programming problems max 1 X z ϕ = 5.61 subject to i j ij n j ij b X d r ≤ + − ∑ = 1 , 2 , 1 + + = m mT i 5.62 ≥ j X , n j , 1 = , 5.63 and max 2 X z ϕ = 5.64 subject to i i j n j ij p b X r + ≤ − ∑ =1 , 5.65 ≥ j X , n j , 1 = , 5.66 and max 3 X z ϕ = 5.67 subject to i i j n j ij ij p b X d r + ≤ + − ∑ =1 , 5.68 ≥ j X , n j , 1 = , 5.69 and 90 max 4 X z ϕ = 5.70 subject to: i j n j ij b X r ≤ − ∑ =1 , 5.71 ≥ j X , n j , 1 = . 5.72 Let , , , min 4 3 2 1 z z z z z = l and , , , max 4 3 2 1 z z z z z u = . The objective function takes values between l z and u z while technological coefficients take values between ij r − and ij ij d r + − and the right-hand side numbers take values between i b and i i p b + . Then, the fuzzy set of optimal values, G, which is a subset of mT n R + , is defined by ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ≥ ≤ ≤ − − = ∑ ∑ ∑ ∑ = = = = n j j j n j j j n j j j n j j j G z X c if z X c z if z z z X c z X c if X 1 1 1 1 . , 1 , , , , u u l l u l l μ 5.73 The fuzzy set of the ith constraint, i C , which is a subset of mT n R + , is defined by: i 1. For m K Km i 1 , 1 + + = and 1 , − = T K ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ + + − ≥ + + − ≤ − + + − = ∑ ∑ ∑ ∑ ∑ ∑ = = = = = = n j i j ij ij i n j n j i j ij ij i j ij n j n j i j ij j ij i n j j ij i C p X d r b p X d r b X r p X d X r b X r b X i 1 1 1 1 1 1 . , 1 , , , , μ 5.74 2. For m K Km i 1 , 1 + + = and 1 , − = T K 91 ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ + + − ≥ + + − ≤ − + + − = ∑ ∑ ∑ ∑ ∑ ∑ + = + = + = + = = + = , 1 , 1 , 1 , 1 1 , 1 . 1 , 1 , 1 , , , K i n n j i j ij i K i n n j K i n n j i j ij i j K i n n j n j i j ij j i K i n n j j i C p X d b p X d b X p X d X b X b X i μ 5.75 where 1 1 , + + − − + = K Km i T n K i n . ii For 2 , 3 + + + = m mT mT i and m K , 1 = X i C μ = ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ + + ≥ + + ≤ + − ∑ ∑ ∑ ∑ ∑ ∑ + − + = + − + = + − + = + − + = + − + = + − + = TK n K T n j i j ij ij i TK n K T n j TK n K T n j i j ij ij i j ij TK n K T n j TK n K T n j i j ij j ij i TK n K T n j j ij i p X d p b p X d p b X p p X d X p b X p b 1 1 1 , 1 1 1 . , 1 , , , 5.76 By using the definition of the fuzzy decisions proposed by Bellman and Zadeh [9], we have min , min X X X j C j G D μ μ μ = . In this case the an optimal fuzzy decision is a solution of the problem min , min max max X X X j C j G X D X μ μ μ ≥ ≥ = . Consequently, the problem 5.58-5.60 can be written as to the following optimization problem λ max 5.77 λ μ ≥ X G 5.78 2 , 1 , + + = ≥ m mT i X i C λ μ 5.79 ≥ X , 1 ≤ ≤ λ . 5.80 92 By using the method of defuzzification as for the problem 5.50-5.53, we get the following theorem. Theorem 5.2 The problem 5.58-4.60 is reduced to one of the following crisp problems : λ max 5.81 1 1 1 2 ≤ + − − ∑ = z X c z z n j j j λ , 5.82 ∑ = ≤ − + + − n j i i j ij ij b p X d r 1 λ λ , m K Km i 1 , 1 + + = and 1 , − = T K 5.83 ≥ j X , n j , 1 = , 1 ≤ ≤ λ ; 5.84 λ max 5.85 1 1 1 2 ≤ + − − ∑ = z X c z z n j j j λ , 5.86 ∑ + = ≤ − + + − , 1 1 K i n n j i i j ij b p X d λ λ , m K Km i 1 , 1 + + = and 1 , − = T K 5.87 ≥ j X , , , 1 K i n n j + = , 1 ≤ ≤ λ , 5.88 where ni,K=n+Ti-Km-1+K+1; λ max 5.89 1 1 1 2 ≤ + − − ∑ = z X c z z n j j j λ , 5.90 ∑ + − + = ≤ − + + TK n K T n j i i j ij ij b p X d p 1 λ , 2 , 3 + + + = m mT mT i and m K , 1 = 5.91 ≥ j X , TK n K T n j + + + = , 1 , 1 ≤ ≤ λ . 5.92 Notice that, the problem given in this theorem are also nonconvex programming problems, similar for the problem 5.77-5.80. 93

5.6 The modified subgradient method