Possibilistic theory. Some preliminari Triangular and trapezoidal fuzzy numbers

132 quantitative or qualitative Dubois and Prade, [44] according to the range of these measures which may be the real interval [0, 1], or a finite linearly ordered scale as well.

6.3.1 Possibilistic theory. Some preliminari

We consider the possibilistic theory proposed by Zadeh [216]. Let a ~ and b ~ be two fuzzy numbers with membership functions a ~ μ and b ~ μ respectively. The possibility operator Pos is defined as follows Dubois and Prade [44]. ⎪ ⎩ ⎪ ⎨ ⎧ ∈ = = ∈ = ≤ ∈ = ≤ }. , sup{min ~ ~ , } , , sup{min ~ ~ }, , , sup{min ~ ~ ~ ~ ~ ~ ~ ~ R R, R, x x x b a Pos y x y x y x b a Pos y x y x y x b a Pos b a b a b a μ μ μ μ μ μ 6.9 In particular, when b ~ is a crisp number b, we have ⎪⎩ ⎪ ⎨ ⎧ = = ∈ = ≤ ∈ = ≤ . ~ , } , sup{ ~ }, , sup{ ~ ~ ~ ~ b b a Pos b x x x b a Pos b x x x b a Pos a a a μ μ μ R R 6.10 Let R R R → × : f be a binary operation over real numbers. Then it can be extended to the operation over the set of fuzzy numbers. If we denoted for the fuzzy numbers b a ~ , ~ the numbers ~ , ~ ~ b a f c = , then the membership function c~ μ is obtained from the membership function a ~ μ and b ~ μ by } , , , , sup{min ~ ~ ~ y x f z y x y x z b a c = ∈ = R μ μ μ 6.11 for R ∈ z . That is, the possibility that the fuzzy number ~ , ~ ~ b a f c = achives value R ∈ z is as great as the most possibility combination of real numbers x,y such that z = fx,y, where the value of a ~ and b ~ are x and y respectively. 133

6.3.2 Triangular and trapezoidal fuzzy numbers

Let the rate of return on security given by a trapezoidal fuzzy number , , , ~ 4 3 2 1 r r r r r = where 4 3 2 1 r r r r ≤ . Then the membership function of the fuzzy number r~ can be denoted by: ⎪ ⎪ ⎪ ⎩ ⎪⎪ ⎪ ⎨ ⎧ ≤ ≤ − − ≤ ≤ ≤ ≤ − − = . , , , , 1 , , , 4 3 4 3 4 3 2 2 1 1 2 1 otherwise r x r r r r x r x r r x r r r r x x μ 6.12 We mention that trapezoidal fuzzy number is triangular fuzzy number if 3 2 r r = . ~ x b μ ~ x r μ 1 δ 0 b 1 b 2 r 1 b 3 x δ r 2 r 3 b 4 r 4 Figura 6.1: Two trapezoidal fuzzy number r~ and b ~ . Let us consider two trapezoidal fuzzy numbers , , , ~ 4 3 2 1 r r r r r = and = b ~ , , , 4 3 2 1 b b b b , as shown in Figure 6.1. If 3 2 b r ≤ , then we have { } y x y x b r Pos b r ≤ = ≤ } , min{ sup ~ ~ ~ ~ μ μ { } { } , 1 1 , 1 min , min 3 ~ 2 ~ = = ≥ b r b r μ μ which implies that 1 ~ ~ = ≤ b r Pos . If 3 2 b r ≥ and 4 1 b r ≤ then the supremum is achieved at point of intersection x δ of the two membership function ~ x r μ and ~ x b μ . A simple computation shows that 134 ~ ~ 1 2 3 4 1 4 r r b b r b b r Pos − + − − = = ≤ δ and δ δ 1 2 1 r r r x − + = . If 4 1 b r , then for any y x , at least one of the equalities , ~ ~ = = y x b r μ μ hold. Thus we have ~ ~ = ≤ b r Pos . Now we summarize the above results as ⎪⎩ ⎪ ⎨ ⎧ ≥ ≤ ≥ ≤ = ≤ . , , , , , , 1 ~ ~ 4 1 4 1 3 2 3 2 b r b r b r b r b r Pos δ 6.13 Especially, when b ~ is the crisp number 0, then we have ⎪⎩ ⎪ ⎨ ⎧ ≥ ≤ ≤ ≤ = ≤ , , , 1 ~ 1 2 1 2 r r r r r Pos δ 6.14 where 2 1 1 r r r − = δ . 6.15 We now turn our attention the following lemma. Lemma 6.1 Dobois and Prade [42] Let 4 3 2 1 , , , ~ r r r r r = be a trapezoidal fuzzy number. Then for any given confidence level α with α α ≥ ≤ ≤ ≤ ~ , 1 r Pos if and only if 1 1 r α − + 2 ≤ r α . The λ level set of a fuzzy number 4 3 2 1 , , , ~ r r r r r = is a crisp subset of R and denoted by } , { ] ~ [ R x x x r ∈ ≥ = λ μ λ , then according to Carlsson et al [26], we have ] , [ } , { ] ~ [ 3 4 4 1 2 1 r r r r r r R x x x r − − − + = ∈ ≥ = λ λ λ μ λ . Given ] , [ ] ~ [ 2 1 λ λ λ a a r = , the crisp possibilistic mean value of 4 3 2 1 , , , ~ r r r r r = is ∫ + = 1 2 1 ~ ~ λ λ λ λ d a a r E . 135 where E ~ denotes fuzzy mean operator. We can see that if 4 3 2 1 , , , ~ r r r r r = is a trapezoidal fuzzy number then 6 3 ~ ~ 4 1 3 2 1 3 4 4 1 2 1 r r r r d r r r r r r r E + + + = − − + − + = ∫ λ λ λ λ . 6.16

6.3.3 Construction efficient portfolios