Identify the issue, the objective of the needs

202 CHAPTER 7 Concept Generation presented earlier. Practitioners of TRIZ have a very high rate of developing new, patentable ideas. To best understand TRIZ, its history is important. This method was developed by Genrikh aka Henry Altshuller, a mechan- ical engineer, inventor, and Soviet Navy patent investigator. After World War II Altshuller was tasked by the Russian government to study worldwide patents to look for strategic technologies the Soviet Union should know about. He and his team noticed that some of the same principles were used repeatedly by totally different industries, often separated by many years, to solve similar problems. Altshuller conceived of the idea that inventions could be organized and gen- eralized by function rather than the traditional indexing system discussed in Section 7.5. From his findings, Altshuller began to develop an extensive “ knowl- edge base,” which includes numerous physical, chemical, and geometric effects along with many engineering principles, phenomena, and patterns of evolution. Altshuller wrote a letter to Stalin describing his new approach to improve the rail system along with products the U.S.S.R. produced. The Communist system at the time didn’t value creative, freethinking. His ideas were scorned as insulting, indi- vidualistic, and elitist, and as a result of this letter, he was imprisoned in 1948 for these capitalist and “insulting” ideas. He was not released until 1954, after Stalin’s death. From the 1950s until his death in 1998, he published numerous books and technical articles and taught TRIZ to thousands of students in the former Soviet Union. TRIZ has become a best practice worldwide. Altshuller’s initial research in the late 1940s was conducted on 400,000 patents. Today the patent database has been extended to include over 2.5 million patents. This data has led to many TRIZ methods by both Altshuller and his disciples. The first, contradictions, was developed in Section 7.6. The second, the use of 40 inventive principles, is based on contractions. TRIZ’s 40 inventive principles, help in generating ideas for overcoming con- tradictions. 1 The inventive principles were found by Altshuller when researching patents from many different fields of engineering and reducing each to the basic principle used. He found that there are 40 inventive principles underlying all patents. These are proposed “solution pathways” or methods of dealing with or eliminating engineering contradictions between parameters. The entire list of principles and a description of each is on the website. In the list below, the names of the inventive principles are shown organized into seven major categories. ■ Organize 6 ■ Segment, Merge, Abstract, Nest ■ Counterweight, Asymmetry 1 Here, the method has been greatly shortened. In traditional TRIZ practice, the contradictions are used with a large table to find which inventive principles might best be used. The table is too large for inclusion here and simply exploring the 40 principles is not much more time consuming and is more fun than using the table.

7.7 The Theory of Inventive Machines, TRIZ

203 ■ Compose 7 ■ Local Quality, Universality ■ Homogeneity, Composites ■ Spheroids, Thin Films, Cheap Disposables ■ Physical 4 ■ Porosity, Additional Dimension, Thermal Expansion, Color Changes ■ Chemical 4 ■ Oxidate—Reduce Inertness ■ Transform States, Phase Transition ■ Interactions 5 ■ Reduce Mechanical Movement, Bring Fluidity ■ Equipotence, Dynamicity, Vibration ■ Process 9 ■ Do It in Reverse, ++ −−, Continued Action, Repeated Action, Skip Through, Negative to Positive ■ Prior Cushioning, Prior Actions, Prior Counteractions ■ Service 5 ■ Self-Service, Intermediary, Feedback, ■ Use and Retrieve, Cheap Copies To see how this works, consider a contradiction in the design of one handed clamp from Section 7.6 “Increasing the speed with which squeezing the grip on the one- handed bar clamp moves the jaws together good lowers the clamping force bad.” Reviewing the list of 40 inventive principles, three ideas were generated. Each inventive principle is listed as a title and clarifying statements followed by the idea generated. Principle 1. Segmentation a. Divide an object into independent parts

b. Make an object sectional

c. Increase degree of an object’s segmentation

This leads to the idea of having two mechanisms, one for fast motion with low force and one that gives high force when the motion slows due to clamping pressure. In fact, this two-stage action has been patented by Irwin. 204 CHAPTER 7 Concept Generation Principle 10. Prior action a. Carry out the required action in advance in full, or at least in part

b. Arrange objects so they can go into action without time loss

waiting for action This leads to the idea of having the clamp automatically move so the jaws come into contact with the work prior action and then the grip force is translated into high clamping force with small motion. This is similar to the first idea, but the prior motion is automated. Principle 17. Moving to a new dimension a. Remove problems in moving an object in a line by two- dimensional movement along a plane b–d. Others are not important here This leads to the idea of using a linkage to get a more complex motion than purely linear. A linkage is used to get the jaws in contact with the work and then the small motion with high force is action as is typical with a one-handed clamp. There are many other ideas to be discovered by working through the inventive principles and other TRIZ techniques see Section 7.11 for TRIZ information sources. 7.8 BUILDING A MORPHOLOGY The technique presented here uses the functions identified to foster ideas. It is a very powerful method that can be used formally, as presented here, or informally as part of everyday thinking. There are three steps to this technique. The first step is to list the decomposed functions that must be accomplished. The second step is to find as many concepts as possible that can provide each function identified in the decomposition. The third is to combine these individual concepts into overall concepts that meet all the functional requirements. The design engineer’s knowl- edge and creativity are crucial here, as the ideas generated are the basis for the remainder of the design evolution. This technique is often called the “morpho- logical method,” and the resulting table a “morphology,” which means “a study of form or structure.” A partial Morphology for the redesign of the one-handed bar clamp is presented in Figure 7.21. This is highly modified from the morphol- ogy done at Irwin to protect their intellectual property. A blank morphology is available as a template. 7.8.1 Step 1: Decompose the Function The first half of this chapter details this step. For the one-handed clamp exam- ple, the function was decomposed in Fig. 7.11. The first four functions in that figure are