da a
da a
e a
Q B
e a
Q B
I da
dI e
d a
Q B
I da
I e
a Q
B I
I f
I
V a
I V
V H
I u
H H
H H
a da
e a
Q B
H H
H H
a da
e a
Q B
H H
H H
H H
H V
H a
H I
V V
V H
a H
I V
V V
H
∫ ∫
∫ ∫
∞ ∞
− −
+ ∞
⎥⎦ ⎤
⎢⎣ ⎡
∫ −
− +
∞ ⎥⎦
⎤ ⎢⎣
⎡ ∫
− −
+ +
⎟ ⎠
⎞ ⎜
⎝ ⎛
⎥⎦ ⎤
⎢⎣ ⎡
→ =
⎟ ⎟
⎟ ⎟
⎟ ⎟
⎠ ⎞
⎜ ⎜
⎜ ⎜
⎜ ⎜
⎝ ⎛
− →
= ⎟
⎟ ⎟
⎠ ⎞
⎜ ⎜
⎜ ⎝
⎛ −
→ =
→
∞ −
∞ −
1 1
lim 1
1 lim
1 lim
lim
β β
β β
β
β β
21 with
1 lim
lim
1
= →
= →
⎥⎦ ⎤
⎢⎣ ⎡
∫ −
− +
− +
∞ −
a da
e a
Q B
H I
u H
a H
I V
V V
H H
e I
e I
β
β
; .
1 lim
= →
− +
a I
H
H V
e I
β
22 Hence we have
lim ⎟
⎠ ⎞
⎜ ⎝
⎛ =
→
∫ ∫
∞ ∞
+
da da
a aQ
a aQ
B B
I f
I
V H
V H
V H
H H
H
β β
. 23
Similarly, we obtain
lim =
∞ →
H H
H
I f
I
. 24
This will ensure that a host endemic equilibrium exists if and only if
H
I 1
⎟ ⎠
⎞ ⎜
⎝ ⎛
∫ ∫
∞ ∞
da da
a aQ
a aQ
B B
V H
V H
V H
β β
. 25
The LHS of 25 will be refereed as a threshold number R of the model.
4. Estimating the threshold number for exponential survival rate
It is well known in the literatures that in the single species model the threshold number R can be
estimated by the ratio of life expectancy and mean age at infection. In this section we will show that, to some extent, it still true in the host-vector model.
Let and
. In Diekman and Heesterbeek 2000, Mean age at infection is given by
a H
H
e a
Q
μ
−
=
a V
V
e a
Q
μ
−
=
H V
H H
I a
μ β
+ =
1
or
H H
H H
H V
H
a a
a I
1 1
μ μ
β −
= −
= , and similarly by
V H
V V
I a
μ β
+ =
1
or
V V
V V
V H
V
a a
a I
1 1
μ μ
β −
= −
= . Hence, by combining the equations 19 and 25 we will have
35
∫ ∫
∫
∞ ⎥⎦
⎤ ⎢⎣
⎡ ∫
− −
∞ ∞
⎟ ⎟
⎟ ⎠
⎞ ⎜
⎜ ⎜
⎝ ⎛
− ⎟
⎠ ⎞
⎜ ⎝
⎛ =
∞ −
1
1 da
I e
a Q
B da
da a
aQ a
aQ B
B R
H a
da e
a Q
B H
H V
H V
H V
H
a H
I V
V V
H β
β
β β
26
which can be written as
H V
H V
V V
V V
H H
V H
V H
V a
a B
H H
V H
V H
V a
da e
a Q
B H
V H
H V
H V
a da
e a
Q B
H V
H H
V H
V
a a
B I
B da
e a
Q I
B da
e a
Q da
a aQ
I B
da e
a Q
da da
a aQ
a aQ
I B
R
V V
V V
H a
V a
V a
V V
V H
a H
I V
V V
H
μ μ
μ μ
μ β
μ μ
β β
μ μ
β β
μ β
β β
β
μ μ
β β
β
μ β
1 1
1 1
1 1
1 1
1 1
2 2
1 2
2 1
2 1
1
− −
− ⎟⎟
⎠ ⎞
⎜⎜ ⎝
⎛ ⎟⎟
⎠ ⎞
⎜⎜ ⎝
⎛ =
⎟ ⎟
⎠ ⎞
⎜ ⎜
⎝ ⎛
− ⎟⎟
⎠ ⎞
⎜⎜ ⎝
⎛ ⎟⎟
⎠ ⎞
⎜⎜ ⎝
⎛ =
⎟ ⎟
⎟ ⎟
⎠ ⎞
⎜ ⎜
⎜ ⎜
⎝ ⎛
− ⎟⎟
⎠ ⎞
⎜⎜ ⎝
⎛ =
⎟ ⎟
⎠ ⎞
⎜ ⎜
⎝ ⎛
− ⎟
⎠ ⎞
⎜ ⎝
⎛ =
∫ ∫
∫ ∫
∫ ∫
∞ −
− ∞
⎥ ⎥
⎥ ⎦
⎤ ⎢
⎢ ⎢
⎣ ⎡
∫ −
− ∞
∞ ⎥⎦
⎤ ⎢⎣
⎡ ∫
− −
∞ ∞
∞ −
− ∞
−
. 27
Finally, we end up to
H V
H V
V V
V H
V V
V V
H V
H V
V V
V H
V H
V
a a
a a
a a
I B
R μ
μ μ
μ μ
μ μ
μ
μ μ
μ μ
μ μ
μ 1
1 1
1 1
1 1
1 1
2 2
2 2
− −
− ⎟⎟
⎠ ⎞
⎜⎜ ⎝
⎛ ⎟⎟
⎠ ⎞
⎜⎜ ⎝
⎛ −
= −
− −
⎟⎟ ⎠
⎞ ⎜⎜
⎝ ⎛
⎟⎟ ⎠
⎞ ⎜⎜
⎝ ⎛
= 28
Since it is symmetrical, we also have
V V
H H
H H
H H
V H
H H
a a
a a
R μ
μ μ
μ μ
μ μ
μ
1 1
1 1
1
2 2
− −
− ⎟⎟
⎠ ⎞
⎜⎜ ⎝
⎛ ⎟⎟
⎠ ⎞
⎜⎜ ⎝
⎛ −
= 29
Which can be written as
2 2
2 2
1 1
1
H H
V H
H H
V H
V H
H H
V H
H V
H V
V H
H H
a a
a a
a a
R
μ μ
μ μ
μ μ
μ μ
μ μ
μ μ
μ μ
μ μ
− +
= −
+ =
− −
− =
30
36
If we assume that vector life expectancy
H V
L L
,
that is very short compared to host life expectancy, then we can consider the limiting case as
∞ →
V
μ
as follows
H H
H H
H H
V H
H H
V V
a L
a a
a R
= =
− +
∞ →
≈
μ μ
μ μ
μ μ
μ 1
1 lim
2
31
The last equation shows that R indicating infection from host to host for the host-vector model can be
estimated by the ratio of host life expectancy and host mean age at infection.
References
Brauer, F. 2002. A Model for an SI Disease in an Age-Structured Population. Discrete and Continuous Dynamical Systems – Series
B. 2, 257-264.