The existence of a threshold number

Let . Further let also assume that , , and denotes, respectively, the numbers of 0 who survive at time t , the numbers of 0 who survive at time t , and the numbers of 0 who survive at time t , then we have H H H I S N + = t N H t S H t I H H N H S H I ∫ + = t H H H H da a Q B t N t N . 3 Since the per capita rate of infection in human population at time t is t I V H β , the number of susceptibles at time t is given by ∫ ∫ + = − − t ds s I H H H H da e a Q B t S t S t a t V H β . 4 The number of human infectives is t S t N t I H H H − = , and given by ∫ ∫ − + = − − t ds s I H H H da e a Q B t I t I t a t V H 1 β . 5 It is clear that lim = ∞ → t N t H , , and . lim = ∞ → t S t H lim = ∞ → t I t H 6 Analogously, we can derive similar equations for the mosquitoes, which are ∫ + = t V V V V da a Q B t N t N . 7 ∫ ∫ + = − − t ds s I V V V V da e a Q B t S t S t a t H V β . 8 ∫ ∫ − + = − − t ds s I V V V V da e a Q B t I t I t a t H V 1 β . 9 It is also clear that lim = ∞ → t N t V , , and . lim = ∞ → t S t V lim = ∞ → t I t V 10

3. The existence of a threshold number

Next we will show that there is a threshold number for the model discussed above. Let us consider the limit values of equations 3 and 5. Whenever , and by considering 6 holds, the equations 3 and 5 can be written as ∞ → t , ∫ ∞ = da a Q B t N H H H 11 ∫ ∞ − ∫ − = − 1 da e a Q B t I t a t V H ds s I H H H β . 12 Similarly equations 7 and 9 can be written as ∫ ∞ = da a Q B t N V V V . 13 33 ∫ ∞ − ∫ − = − 1 da e a Q B t I t a t H V ds s I V V V β . 14 The value of is constant, that is, . Similarly the value of is also constant, that is, . Hence the system reduces to two equations, namely equations 12 and 14. t N H ∫ ∞ = da a Q B K H H H t N V ∫ ∞ = da a Q B K V V V The equilibrium of the system are given by and satisfying H I V I ∫ ∞ − − = 1 da e a Q B I a I H H H V H β , 15 ∫ ∞ − − = 1 da e a Q B I a I V V V H V β . 16 Or ∫ ∞ ⎥⎦ ⎤ ⎢⎣ ⎡ ∫ − − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = ∞ − 1 1 da e a Q B I a da e a Q B H H H a H I V V V H β β , 17 ∫ ∞ ⎥⎦ ⎤ ⎢⎣ ⎡ ∫ − − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = ∞ − 1 1 da e a Q B I a da e a Q B V V V a V I H H H V β β . 18 It is easy to see that is a disease-free equilibrium. To find other equilibrium, without loss of generality, let us consider only equation 17. An endemic equilibrium satisfies , , = V H I I ∫ ∞ ⎥⎦ ⎤ ⎢⎣ ⎡ ∫ − − ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎝ ⎛ − = ∞ − 1 1 1 da I e a Q B H a da e a Q B H H a H I V V V H β β . 19 The RHS of equation 20 is a function of I , say ∫ ∞ ⎥⎦ ⎤ ⎢⎣ ⎡ ∫ − − ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎝ ⎛ − = ∞ − 1 1 da I e a Q B I f H a da e a Q B H H H H a H I V V V H β β 20 satisfying 34 da a da a e a Q B e a Q B I da dI e d a Q B I da I e a Q B I I f I V a I V V H I u H H H H a da e a Q B H H H H a da e a Q B H H H H H H H V H a H I V V V H a H I V V V H ∫ ∫ ∫ ∫ ∞ ∞ − − + ∞ ⎥⎦ ⎤ ⎢⎣ ⎡ ∫ − − + ∞ ⎥⎦ ⎤ ⎢⎣ ⎡ ∫ − − + + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⎥⎦ ⎤ ⎢⎣ ⎡ → = ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ − → = ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎝ ⎛ − → = → ∞ − ∞ − 1 1 lim 1 1 lim 1 lim lim β β β β β β β 21 with 1 lim lim 1 = → = → ⎥⎦ ⎤ ⎢⎣ ⎡ ∫ − − + − + ∞ − a da e a Q B H I u H a H I V V V H H e I e I β β ; . 1 lim = → − + a I H H V e I β 22 Hence we have lim ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = → ∫ ∫ ∞ ∞ + da da a aQ a aQ B B I f I V H V H V H H H H β β . 23 Similarly, we obtain lim = ∞ → H H H I f I . 24 This will ensure that a host endemic equilibrium exists if and only if H I 1 ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∫ ∫ ∞ ∞ da da a aQ a aQ B B V H V H V H β β . 25 The LHS of 25 will be refereed as a threshold number R of the model.

4. Estimating the threshold number for exponential survival rate