Mineralogy Directory UMM :Data Elmu:jurnal:P:Precambrian Research:Vol101.Issue1.2000:

Fig. 2. Sample photographs and photomicrographs showing: A. Rhyolitic dykes cross-cutting tholeiitic basalts, typically with plagioclase Pl phenocrysts and corroded quartz Qz; B. Heteradcumulate texture of a wehrlite; serpentinized olivine S.Ol, chromite Chr; C. Post-cumulus clinopyroxene Cpx and brown amphibole Am in wehrlite; D. Relic grains of fresh olivine Ol enclosed in orthopyroxene Opx; magnetite Mt; E. Post-cumulus amphibole and biotite Bi, partially pseudomorphosed into chlorite in wehrlite; F. Layered gabbro; G. Differentiated gabbro; ilmenite Ilm; H. CaKa X-ray map of a clinopyroxene containing thin lamellae of chlorite. with the layered gabbro-magnetite with thin lamellae of exsolved ilmenite.

4. Mineralogy

More than a hundred electron-microprobe analyses were performed using a CAMEBAX SX 50 instrument at the Laboratoire de Mineralogie, Toulouse beam current of 10 or 20 nA depending on the mineral’s resistance to beam damage, 15 kV, with counting times of 10 s at peak positions and 5 s for backgrounds. The data were cor- rected using PAP SX50 procedures a list of the standards used is available from the authors upon request. Concentrations of major elements are accurate to 1 wt of the element present, whereas concentrations of minor elements are less accu- rate, being reproductible to 0.1 wt. Representative compositions of olivine, pyroxe- nes, spinel, and amphiboles obtained only from mafic and ultramafic rocks are given in Tables 1 – 4. Relics of primary igneous phenocrysts are not observed in the volcanic rocks. 4 . 1 . Oli6ine Some rare relic olivine grains were found in the wehrlites Fig. 2D. They are unzoned and show a more limited compositional range Fo85 – 84, Fig. 2. Continued with NiO reaching a maximum of 0.40 wt Table 1. In terms of both Ni and Fo contents, the olivine compositions are consistent with a mantle-derived origin Sato, 1977, being compat- ible with the compositions of olivine in cumulates crystallizing from the melt fraction. 4 . 2 . Pyroxenes Selected compositions of different types of py- roxene are listed in Table 1. In wehrlite, the orthopyroxene is enstatite of mean composition Wo 5 En 80 Fs 15 , while the clinopyroxene varies from Mg-augite Wo 32 – 44.5 En 48 – 58 Fs 7.5 – 10 to diopside Wo 47 En 47 Fs 6 for clinopyroxene con- taining thin lamellae of chlorite along the 100 crystallographic planes Fig. 2H Fig. 3. This difference of composition could result from the reaction Mg-augite “ diopside + orthopyroxene, the chlorite lamellae representing relictual or- thopyroxene exsolution lamellae. The clinopyrox- ene in the gabbros is Mg-augite, with lower Cr 2 O 3 and Al 2 O 3 contents Fig. 4 than in the clinopy- roxene of wehrlites. The strong positive correla- tion between Al 2 O 3 and Cr 2 O 3 suggests that charge balance is maintained by a CaCrAlSiO 6 - type substitution. CaO contents are highly vari- able in all clinopyroxenes, which may reflect submicroscopic orthopyroxene exsolution lamel- lae resulting in large variations in Wo and corre- spondingly also in En components. However, the range in magnesium number mg = 100Mg Mg + Fe 2 + is more limited in both the clinopy- roxenes 0.90 – 0.85 and orthopyroxenes 0.88 – 0.84, Table 1. Table 1 Representative microprobe analyses of olivine and pyroxenes a 1 Analysis 2 3 4 5 6 7 8 9 W W W W LG Host rock type EG W W W Cpx Cpx Opx Chlorit.-Cpx Cpx Cpx Cpx Ol Ol SiO 2 51.97 53.29 52.94 55.61 54.19 52.60 52.96 39.96 39.69 0.08 0.22 0.06 0.03 T I O 2 0.12 0.19 0.16 - - 2.48 2.62 1.77 1.20 2.42 2.68 1.71 Al 2 O 3 - - 4.58 FeO 4.04 5.87 9.51 3.83 5.60 8.14 14.70 14.62 0.89 0.92 0.56 0.47 0.64 Cr 2 O 3 0.04 1.03 0.05 0.05 0.21 0.15 0.17 0.19 0.30 0.16 0.38 MnO 0.23 0.16 16.98 MgO 18.76 18.95 30.41 16.50 16.32 12.17 44.66 45.28 19.11 18.12 CaO 2.14 21.88 23.29 21.67 23.70 0.06 0.02 0.37 0.21 0.03 0.34 0.32 0.24 0.82 Na 2 O - - 0.00 K 2 O 0.01 0.00 0.01 0.04 0.03 0.02 - - 99.24 100.00 100.27 100.08 100.02 Total 100.10 99.71 99.99 100.16 39.38 36.84 4.12 47.16 Wo 44.24 44.47 50.12 Fo 0.84 0.85 En 48.01 53.78 53.61 81.36 46.49 46.36 35.81 Fa 0.16 0.15 6.84 9.56 Fs 14.53 7.52 6.36 9.41 14.07 a In W: wehrlite; LG: layered gabbro; EG: evolved gabbro; Chlorit-Cpx: clinopyroxene containing thin lamellae of chlorite. In the more evolved gabbros, clinopyroxene is diopside Wo 50 En 36 Fs 14 . It differs from the clinopyroxene of wehrlites and gabbros in having lower mg B 80, Al 2 O 3 and Cr 2 O 3 Fig. 4 and higher CaO, Na 2 O and FeO contents. 4 . 3 . Spinel Spinel is mostly encountered in ultramafic cu- mulates, more rarely in the gabbros and basalts. Selected compositions of different types of chromite are listed in Table 2. They correspond to chromite, with only one grain having the compo- sition of magnesio-chromite MgM 2 + \ Fe 2 + M 2 + , Table 2. Chromite is dispersed throughout the entire volume of the ultramafic cumulates. It occurs as 200 – 400 mm euhedral to rounded grains included in olivine, interstitial to olivine, or in- completely enclosed by olivine and in partial con- tact with postcumulus phases Fig. 2B, C and D. Compositional zoning within individual grains is not observed; only a thin ferritchromite rim is developed along boundaries in individual grains located in secondary serpentine or chlorite phases. When plotted against Mg ratio = MgMg + Fe 2 + , chromite exhibits similar Cr contents but a distinct inverse relationship between Al and Fe 3 + , except those having a Mg ratio B 0.2 which shows more scattered trivalent cation contents Fig. 5. TiO 2 also correlates positively with Fe 3 + Fig. 6. These compositional variations indicate a spinel-magnetite type-substitution. No significant differences in chemistry exist be- tween chromites in dunites or wehrlites. However, significant differences exist among interstitial chromites entirely included in either clinopyrox- ene or amphibole. These chromites are distinctly Al-poor and Fe 3 + -rich, while most of them are Mg-rich compared with chromites included or incompletely enclosed by olivine. Fractional crystallization can be excluded as a major cause of the compositional variation of chromites because of the slight change in Cr content relative to their Mg ratio Hulbert and Von Gruenewaldt, 1985; Leblanc, 1985. So, the chemical characteristics of chromite are in part a result of hydrothermal alteration processes and metamorphism which affect the host rocks, with dissolution-recrystallization from magmatic chromite to Mg-Al-poor and Fe 2 + -Fe 3 + -rich D . Be ´ziat et al . Precambrian Research 101 2000 25 – 47 33 Table 2 Representative microprobe analyses of spinel a 5 6 7 8 9 10 Analysis 11 1c 12 13 1r 2 3 4 W W W W W W LG W LG Host rock B D D D D S.Ol S.Ol-Am Cpx Am S.01-Bi Bi S.Ol Related silicate Am S.Ol Trem S.Ol S.Ol-Cpx Cpx Ol 0.05 0.01 0.12 0.00 0.01 0.00 0.09 0.00 0.09 0.45 0.10 0.00 SiO 2 0.02 0.08 16.24 13.75 20.23 11.78 12.51 6.79 Al 2 O 3 19.21 16.68 16.87 13.40 17.03 16.04 17.32 18.90 34.47 38.12 24.75 48.74 42.11 57.47 30.16 34.12 38.36 FeO 35.19 29.91 31.97 33.35 31.48 0.41 0.29 0.36 0.32 0.24 0.27 0.35 0.74 0.18 1.33 1.68 0.46 0.28 MnO 0.34 6.33 6.18 11.84 6.27 5.56 2.32 8.93 7.16 1.44 MgO 0.35 9.78 8.75 7.30 8.49 0.66 1.61 0.39 0.14 0.82 3.10 0.50 TiO 2 0.35 0.72 0.20 0.64 1.74 1.64 0.43 40.15 38.21 42.93 30.17 37.15 27.26 39.11 37.66 37.75 Cr 2 O 3 44.49 38.80 39.62 38.75 39.90 0.00 0.00 0.00 0.00 0.08 0.20 0.15 0.11 0.00 0.00 0.00 0.00 0.00 0.00 ZnO 0.66 0.20 0.09 0.28 0.22 0.25 0.17 0.43 0.16 0.04 0.07 NiO 0.15 0.18 0.17 98.99 97.85 98.92 98.40 100.67 97.85 98.88 98.04 98.26 96.71 95.48 97.65 98.66 98.06 Total 0.002 0.000 0.004 0.000 0.000 0.000 0.000 0.016 Si 0.004 0.001 0.003 0.003 0.003 0.000 0.633 0.542 0.738 0.470 0.496 0.281 0.731 0.724 0.697 0.659 0.574 Al 0.645 0.664 0.614 0.300 0.408 0.202 0.718 0.494 0.881 0.259 Fe 3+ 0.248 0.303 0.144 0.305 0.325 0.311 0.298 0.654 0.658 0.439 0.662 0.692 0.807 0.555 0.630 0.877 Fe 2+ 0.925 0.496 0.543 0.618 0.561 0.010 0.009 0.006 0.008 0.010 0.022 0.005 Mn 0.039 0.011 0.052 0.013 0.008 0.009 0.008 0.312 0.308 0.547 0.317 0.279 0.121 0.430 0.347 0.075 0.471 0.019 Mg 0.415 0.360 0.424 0.016 0.040 0.009 0.004 0.021 0.082 0.012 Ti 0.009 0.018 0.005 0.016 0.043 0.040 0.011 1.050 1.010 1.051 0.808 0.989 0.757 0.998 0.968 1.046 Cr 1.277 0.990 1.018 1.014 1.035 0.000 Zn 0.000 0.000 0.002 0.005 0.004 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.005 0.002 0.007 0.005 0.006 0.004 0.010 0.004 Ni 0.002 0.003 0.004 0.004 0.001 0.525 0.505 0.525 0.404 0.494 0.378 CrM 3+ 0.499 0.517 0.523 0.639 0.507 0.509 0.495 0.484 0.317 0.271 0.369 0.235 0.248 0.140 0.365 0.362 0.348 AlM 3+ 0.287 0.329 0.307 0.332 0.322 Fe 3+ M 3+ 0.150 0.151 0.204 0.101 0.359 0.247 0.440 0.129 0.124 0.072 0.153 0.163 0.156 0.149 0.670 0.675 0.442 0.668 0.703 0.846 0.561 0.640 0.884 0.508 0.929 Fe 2+ M 2+ 0.568 0.623 0.557 0.320 MgM 2+ 0.316 0.420 0.550 0.319 0.284 0.127 0.434 0.076 0.019 0.364 0.435 0.482 0.352 a c: core; r: rim; D: dunite; W: wehrlite; LG: layered gabbro; B: basalt; spinels included in fresh olivine Ol, in serpentinized olivine S.Ol and in partial contact with clinopyroxene S.Ol-Cpx, amphibole S.Ol-Am or biotite S.Ol-Bi, in clinopyroxene Cpx, in amphibole Am, in biotite Bi and in tremolite Trem. chromites, leading to the complete late-stage transformation to ferritchromite Jan et al., 1985; Kimball, 1990; Be´ziat and Monchoux, 1991; Liipo et al., 1995. The low Mg contents of chromite grains trapped in olivine could result from subsolidus re-equilibration be- tween chromite and olivine Wilson, 1982; Hatton and Von Gruenewaldt, 1985; Roeder and Camp- bell, 1985; Yang and Seccombe, 1993; Scowen et al., 1991. On the contrary, their generally high Al contents could be inherited from the magmatic stage because Al partitions preferentially into the Al silicates Eales and Marsh, 1983 causing a relative decrease of Al in the interstitial chromite relative to the cumulus chromite where the only cocumulus phase is olivine. 4 . 4 . Amphiboles Brown amphibole frequently coexists with clinopyroxene in ultramafic cumulates Fig. 2C and layered gabbros, while green amphibole oc- curs in the isolated massive gabbros and the vol- canic sequence. Using IMA nomenclature 1997, Table 3, they range in composition, respectively, from pargasite to edenite and from magnesio- hornblende to actinolite. Tremolite occurs as a selvage in these amphiboles and is also as pseudo- morph of serpentine in contact with chlorite. Amphibole compositions Fig. 7 fall into two distinct groups. Brown amphibole has high Al IV , Ti, Na and K and low Si. Green and colourless amphiboles have low Al IV , Ti, Na and K and high Table 3 Representative microprobe analyses of amphiboles a 4 Analysis 5 1 6 7 2 3 W B Do Di G W W Host rock 44.18 50.73 41.84 43.59 43.75 43.04 SiO 2 44.95 4.06 0.16 0.48 3.77 3.51 3.37 TiO 2 2.32 13.01 4.65 10.14 10.32 Al 2 O 3 10.30 10.65 10.79 0.06 0.01 0.08 0.25 Cr 2 O 3 0.72 1.02 0.15 FeO 22.18 15.55 9.63 12.05 6.57 7.56 7.72 0.28 0.31 0.16 0.42 0.04 0.10 0.01 MnO 12.94 16.37 6.33 16.23 16.41 13.66 13.98 MgO 11.55 11.54 11.50 CaO 11.05 11.79 11.91 11.08 2.47 2.60 3.02 Na 2 O 2.45 2.03 0.74 1.91 0.59 0.35 K 2 O 0.23 0.63 0.35 0.67 0.48 Cl 0.00 0.00 0.05 0.02 0.00 0.00 0.00 0.00 F 0.00 0.19 0.00 0.00 0.00 0.00 97.16 96.62 97.39 97.99 95.56 Total 97.2 97.68 6.471 7.487 6.416 6.378 Si 6.456 6.409 6.438 1.584 0.513 1.529 1.562 Al IV 1.544 1.622 1.591 0.769 0.256 Al Vl 0.249 0.216 0.259 0.495 0.297 Cr 0.018 0.029 0.083 0.119 0.007 0.001 0.010 0.000 0.000 0.000 0.000 0.059 Fe 3+ 0.000 0.000 0.260 0.379 0.018 0.055 0.443 Ti 0.415 0.390 3.539 3.609 3.045 3.539 3.110 Mg 2.846 1.447 0.936 0.925 0.811 1.508 1.202 1.919 2.786 Fe 2+ 0.035 0.001 0.055 0.012 0.005 0.020 0.039 Mn 1.884 1.795 1.821 1.809 1.818 1.771 1.886 Ca 0.568 0.212 0.588 0.711 Na 0.864 0.738 0.695 0.067 0.043 0.068 K 0.109 0.118 0.090 0.128 0.79 0.34 0.59 0.72 0.67 0.79 0.82 mg a In D: dunite; W: wehrlite; LG: layered gabbro; EG: evolved gabbro; IG: isolated massive gabbro; B: basalt. Fig. 3. Compositional variation of pyroxenes. Orthopyroxene , clinopyroxene 2 and clinopyroxene containing thin lamellae of chlorite from wehrlite; clinopyroxene from layered and more differentiated gabbros. MgO and Cr 2 O 3 Table 3 are depleted in more differentiated gabbros relative to the cumulate amphiboles. 4 . 5 . Feldspar In the different lithological facies, plagioclase is always pseudomorphed into albite. 4 . 6 . Accessory phases Late magmatic biotite, rimming brown amphi- bole Fig. 2E and clinopyroxene, is present within the wehrlites and gabbros. They clearly differ from biotites of metamorphic origin en- Fig. 5. Compositional variation of chromites. Dunite: included chromite in serpentinized olivine , partly in contact with clinopyroxene |stop10| and entirely within clinopyroxene . Wehrlite: included chromite in serpentinized olivine 2, fresh olivine , clinopyroxene or amphibole and biotite ; partly in contact with clinopyroxene or amphibole and biotite . Gabbro: chromite included in serpentinized olivine and amphibole . Basalt . Fig. 4. Cr 2 O 3 vs. Al 2 O 3 in clinopyroxenes. Si. The reasonably good linear correlation shown in Fig. 7 between Al IV and Na + K parallel to the tremolite-pargasite line indicate that the substitu- tion mechanism operative in both amphiboles is principally of the edenite type Na + K A + Al IV “ A + Si. A simple Mg for Fe 2 + substitution is also operative. As with the clinopyroxenes, both D . Be ´ziat et al . Precambrian Research 101 2000 25 – 47 Table 4 Representative whole-rock chemical analyses a 5 1 6 7 8 9 10 11 12 13 14 15 2 3 4 Sample LG EG EG IG Do CAB And Ca-CAB Rh D ThB W W LG LG 52.6 59.6 58.0 47.5 48.0 51.5 57.8 44.7 44.0 SiO 2 66.0 46.1 49.5 40.3 37.1 36.1 0.08 0.46 0.80 1.37 3.06 1.08 1.24 0.60 0.70 0.46 0.32 1.17 0.06 0.17 TiO 2 0.20 13.2 15.2 16.4 14.1 14.2 13.9 14.0 Al 2 O 3 15.6 3.0 14.8 14.0 5.4 5.7 9.9 17.9 5.7 3.2 3.7 14.5 15.7 8.7 8.2 7.4 7.2 10.3 2.6 11.3 9.5 Fe 2 O 3 12.3 10.9 0.11 0.15 0.11 0.08 0.24 0.20 0.22 0.12 0.11 0.11 0.03 0.17 0.15 0.15 0.16 MnO 9.5 2.8 2.3 5.8 5.6 8.6 3.6 MgO 6.4 36.3 0.9 5.5 30.5 27.3 15.3 5.9 10.3 7.2 6.5 8.9 10.5 8.4 9.2 8.8 7.5 0.9 3.1 8.9 CaO 7.7 3.7 3.1 4.6 0.08 4.0 8.2 7.9 3.4 0.9 3.2 2.6 2.8 6.7 1.4 0.04 0.24 1.9 Na 2 O 0.37 0.21 0.01 0.40 0.09 0.13 0.15 1.30 K 2 O 1.35 0.03 0.01 0.01 0.01 0.01 0.39 0.13 0.18 0.22 0.19 0.16 0.18 0.23 0.05 0.08 0.01 0.11 0.16 P 2 O S 0.03 0.01 0.01 3.1 11.1 2.3 1.1 1.6 2.0 3.0 3.3 2.7 13.7 2.9 9.4 10.3 9.7 8.0 LOI 99.01 99.14 99.93 98.07 99.61 98.53 99.09 99.05 Total 98.81 100.05 98.11 97.57 96.88 97.36 98.11 750 43 265 37 62 109 40 647 98 Cr 8 38 68 799 362 650 1080 55 243 133 38 28 47 20 13 31 6 28 874 763 Ni 254 33 16 10 5 42 5 6 Co 21 78 27 24 79 71 35 20 74 66 91 121 310 50 72 2 115 7 40 171 2 Sc 7 4 36 15 174 196 3 3 2 3 3 2 4 2 16 38 39 V 2 3 4 12 8 10 15 Pb 21 30 10 1 1 1 2 6 6 0.31 0.28 0.13 0.09 0.15 9 0.58 1 0.63 0.37 Rb 1 3 5 0.00 0.00 0.11 0.19 660 93 30 139 210 100 482 20 0.13 1.03 0.08 Cs 550 Ba 355 5 1227 215 212 503 192 188 215 9 18 61 10 752 0.89 0.13 0.16 0.18 0.23 44 0.09 22 0.15 0.18 54 Sr 1 12 1.04 0.42 0.28 0.81 20.00 2.20 2.60 2.80 3.50 0.70 2.80 2.70 0.05 0.07 0.07 Ta 5.10 11.90 2.72 0.81 1.01 1.29 1.36 Nb 0.69 0.30 3.39 1.03 0.10 0.50 0.60 2.20 2.97 6.39 180 31 38 40 80 0.80 29 0.08 121 40 Hf 0.45 0.42 0.11 43 5 90 186 46 10 14 20 10 3 6 21 3 14 10 Zr 40 55 3.95 0.32 0.35 1.10 0.71 0.36 Y 2.17 2 0.24 2 5 7 9 1.41 4.52 1.36 0.12 0.12 0.30 0.34 0.33 0.10 0.05 0.85 0.09 0.24 0.20 Th 0.04 0.11 0.02 0.44 1.26 22.23 7.24 6.76 11.87 9.97 4.49 15.74 5.39 0.02 0.07 0.07 U 11.61 36.87 .06 2.40 2.30 3.32 2.98 La 1.35 0.59 4.10 2.01 0.65 1.73 2.04 4.79 28.61 73.40 25.12 10.14 10.32 13.00 13.01 10.53 5.52 0.00 16.06 9.70 Ce 4.45 3.84 1.40 1.32 0.16 4.08 8.83 6.22 2.39 2.50 2.52 2.91 1.16 2.73 2.66 0.18 0.49 0.59 Pr Nd 18.33 0.70 34.33 1.47 0.93 0.97 0.79 0.94 0.39 0.69 1.03 0.76 2.11 2.50 5.76 4.72 7.48 6.54 2.48 3.01 2.17 2.83 1.23 1.05 0.16 2.03 2.94 Sm 0.69 0.53 0.18 0.50 0.06 1.07 1.30 1.22 0.44 0.52 0.34 0.46 0.13 0.26 0.56 0.09 0.21 0.24 Eu 5.61 8.73 8.22 2.92 3.49 2.06 2.89 Gd 0.63 0.22 1.23 3.57 0.21 0.60 0.81 1.54 1.03 1.52 1.80 0.68 0.77 0.46 0.63 0.23 0.13 0.04 0.20 0.81 Tb 0.16 0.12 0.04 1.33 0.23 6.72 9.63 5.22 2.00 2.26 1.31 1.82 0.35 0.57 2.26 0.31 0.87 1.12 Dy 1.53 Ho 2.19 0.06 0.74 0.29 0.33 0.20 0.27 0.05 0.07 0.32 0.07 0.20 0.27 0.29 4.50 6.20 4.66 1.97 2.27 1.36 1.79 0.88 0.37 0.63 0.39 2.07 0.80 Er 0.18 0.22 0.12 0.03 0.64 0.83 0.70 0.30 0.35 0.21 0.27 0.07 0.08 0.31 0.03 0.10 0.12 Tm 4.06 Yb 5.54 0.19 0.24 0.67 0.84 0.79 0.59 0.88 0.12 Lu 0.03 0.04 0.10 0.14 a D: dunite; W: wehrlite; LG: layered gabbro; EG: evolved gabbro; IG: isolated massive gabbro; Do: dolerite; CAB: calc-alkaline basalt; And: andesite; Ca-CAB: carbonatized calc-alkaline basalt. Fig. 6. Ti versus Fe 3 + in chromites. SiO 2 plot Fig. 8, the Loraboue´ basaltic rocks are clearly distributed on both sides of the Miyashiro 1974 discriminant boundary. A first group made up of dolerites, isolated massive gabbros and some basalts is tholeiitic, while the second group, made up of basaltic rocks, evolved gabbros and rhyolites is calc-alkaline. The chronology can be established on the field, dykes of rhyolite cross- cutting basalts of the first group Fig. 2A, anal. 14 in Table 4. Due to their cumulative nature, the Fig. 7. Compositional variation of amphiboles. Al IV , Na + K and Ti in atoms p.f.u. countered in the volcanic sequence in having higher TiO 2 1.5 – 3 wt and Cr 2 O 3 0.5 – 0.7 wt contents. Mn-rich ilmenite \ 5 wt MnO partially replaced by titanite, apatite and zircon are common accessories in the more differentiated gabbros Fig. 2G. Magnetite and Ni-Fe sulphide heazlewoodite and pentlandite are common by- products of the serpentinization of olivine in ul- tramafic cumulates and gabbros. However, Ti-magnetite is present as a primary phase in the isolated massive gabbros, dolerites and the vol- canic sequence.

5. Geochemistry