Ces`aro Polynomials Generalized Sylvester Polynomials Bessel Polynomials

206 Shy-Der Lin - Shih-Tong Tu - H. M. Srivastava which, for z 7−→ z 1 − z, assumes the form: ∞ X k=0 k n k M k α ; β, z + 1 − z x z k = 1 − z −β 1 − z + z x −α n X k=0 S n, k M k α ; β, x z 1 − z k n ∈ N ; |z| min {1, |x 1 − x|} .

2.5. Ces`aro Polynomials

For the Ces`aro polynomials G s n x defined by cf. [14], p. 449, Problem 20 G s n x : = P n k=0 s+n−k n−k x k = s+n n 2 F 1 −n, 1; −s − n; x 17 = P s+1,−s−n−1 n 2x − 1 , it is known that [14], p. 449, Problem 20 iii ∞ X k=0 n + k k G s n+k x t k = 1 − t −s−n−1 1 − xt −1 G s n x 1 − t 1 − xt n ∈ N ; |t| min n 1, |x| −1 o . By applying Theorem 1 or Theorem 3, we immediately obtain the following pre- sumably new generating function for the Ces`aro polynomials defined by 17: ∞ X k=0 k n G s k x 1 + z 1 + x z z 1 + z k = 1 + z s+1 1 + x z n X k=0 k S n, k G s k x z k n ∈ N ; |z| 1 , which, for z 7−→ z 1 − z and x 7−→ x 1 − z 1 − x z, assumes the form: ∞ X k=0 k n G s k x z k = 1 − z −s−1 1 − x z −1 · n X k=0 k S n, k G s k x 1 − z 1 − x z z 1 − z k n ∈ N ; |z| 1 . Generating functions involving the Stirling numbers 207

2.6. Generalized Sylvester Polynomials

For the generalized Sylvester polynomials ϕ n x ; c defined by [14], p. 450, Problem 20 iv ϕ n x ; c : = cx n n 2 F −n, x; ; − 1 cx = −1 n L −x−n n cx in terms of the classical Laguerre polynomials [15], Chapter 5, it is known that [14], p. 450, Problem 20 v ∞ X k=0 n + k k ϕ n+k α ; x t k = 1 − t −α−n e α x t ϕ n α ; x 1 − t n ∈ N ; |t| 1 , so that Theorem 1 immediately yields the generating function: ∞ X k=0 k n ϕ k α ; x 1 + z z 1 + z k = 1 + z α e α x z n X k=0 k S n, k ϕ k α ; x z k n ∈ N ; |z| 1 , which, for z 7−→ z 1 − z and x 7−→ x 1 − z, assumes the form: ∞ X k=0 k n ϕ k α ; x z k = 1 − z −α e α x z · n X k=0 k S n, k ϕ k α ; x 1 − z z 1 − z k n ∈ N ; |z| 1 .

2.7. Bessel Polynomials

The Bessel polynomials y n x , α, β are defined by [14], p. 75, Equation 1.9 1 y n x , α, β : = n X k=0 n k α + n + k − 2 k k x β k = 2 F −n, α + n − 1; ; − x β = − x β n n L 1−α−2n n β x 208 Shy-Der Lin - Shih-Tong Tu - H. M. Srivastava and satisfy the generating-function relationship [14], p. 419, Equation 8.4 8: ∞ X k=0 y n+k x , α − k, β t k k 18 = 1 − x t β 1−α−n e t y n x 1 − x t β −1 , α, β n ∈ N ; |t| |βx| . On the other hand, for the simple Bessel polynomials y n x defined by y n x : = y n x , 2, 2 , it is known that [14], p. 419, Equation 8.4 10 ∞ X k=0 y n+k x t k k = 1 − 2xt − 1 2 n+1 19 · exp x −1 h 1 − √ 1 − 2xt i y n x √ 1 − 2xt n ∈ N ; |t| 1 2 |x| −1 . Thus, in view of the obviously independent results 18 and 19, Theorem 3 yields the following presumably new generating functions for the Bessel polynomials: ∞ X k=0 k n k y k x 1 + x z β −1 , α − k, β z k = 1 + x z β α −1 e z n X k=0 S n, k y k x , α − k, β z k n ∈ N ; |z| |βx| , which, for x 7−→ x 1 − x z β −1 , assumes the form: ∞ X k=0 k n k y k x , α − k, β z k = 1 − x z β 1−α e z · n X k=0 S n, k y k x 1 − x z β −1 , α − k, β z k n ∈ N ; |z| |βx| ; Generating functions involving the Stirling numbers 209 ∞ X k=0 k n k y k x √ 1 + 2x z z √ 1 + 2x z k = √ 1 + 2x z exp −x −1 h 1 − √ 1 + 2x z i · n X k=0 S n, k y k x z k n ∈ N ; |z| 1 2 |x| −1 .

2.8. Generalized Heat Polynomials