156 C. Bocci - G. Dalzotto
complete intersection.
2. Gorenstein points in
P
3
from the h-vector
In this section we will see how Nagel and Migliore find a reduced arithmetically Gorenstein zeroscheme in
P
3
i.e. a reduced Gorenstein quotient of k[x ,
x
1
, x
2
, x
3
] of Krull dimension 1 with given h-vector.
We start with some basic definitions that we find in [6] and in [9]. D
EFINITION
1. Let H = h ,
h
1
, . . . , h
i
, . . . be a finite sequence of non-negative inte-
gers. Then H is called an O-sequence if h = 1 and h
i+1
≤ h
i i
for all i . By the Macaulay theorem we know that the O-sequences are the Hilbert functions of stan-
dard graded k-algebras. D
EFINITION
2. Let h = 1, h
1
, . . . , h
s−1
, 1 be a sequence of non-negative integers. Then
h is an SI-sequence if: • h
i
= h
s−i
for all i = 0, . . . , s, • h
, h
1
− h , . . . ,
h
t
− h
t −1
, 0, . . . is an O-sequence, where t is the greatest integer
≤
s 2
. Stanley [9] characterized the h-vectors of all graded Artinian Gorenstein quotients of
k[x ,
x
1
, x
2
], showing that these are SI-sequence and any SI-sequence, with h
1
= 3, is the h- vector of some Artinian Gorenstein quotient of k[x
, x
1
, x
2
]. Now we can see how Nagel and Migliore [6] find a reduced arithmetically Gorenstein ze-
roscheme in P
3
with given h−vector. This set of points will result from the intersection of two arithmetically Cohen-Macaulay curves in
P
3
, linked by a Complete Intersection curve which is a stick figure.
D
EFINITION
3. A generalized stick figure is a union of linear subvarieties of
P
n
, of the same dimension d, such that the intersection of any three components has dimension at most
d − 2 the empty set has dimension -1. In particular, sets of reduced points are stick figure, and a stick figure of dimension d = 1
is nothing more than a reduced union of lines having only nodes as singularities. So, let
h = h ,
h
1
, . . . , h
s
= 1, 3, h
2
, . . . , h
t −1
, h
t
, h
t
, . . . , h
t
, h
t −1
, . . . , h
2
, 3, 1
be a SI-sequence, and consider the first difference 1
h = 1, 2, h
2
− h
1
, . . . , h
t
− h
t −1
, 0, 0, . . . , 0, h
t −1
− h
t
, . . . , − 2, −1
Define two sequences a = a , . . . ,
a
t
and g = g , . . . ,
g
s+1
in the following way: a
i
= h
i
− h
i−1
f or 0 ≤ i ≤ t
Gorenstein points in
P
3
157
and g
i
=
i + 1 for 0 ≤ i ≤ t
t + 1 for t ≤ i ≤ s − t + 1
s − i + 2 for s − t + 1 ≤ i ≤ s + 1
We observe that a
1
= g
1
= 2, a is a O-sequence since h is a SI-sequence and g is the h- vector of a codimension two Complete Intersection. So, we would like to find two curves C and
X in P
3
with h-vector respectively a and g. In particular it is easy to see that g is the h-vector of a Complete Intersection, X , of two surfaces in
P
3
of degree t + 1 and s − t + 2. We can get X as a stick figure by taking as the equation of those surfaces two forms which
are the product, respectively, of A , . . . ,
A
t
and B , . . . ,
B
s−t +1
, all generic linear forms. Nagel and Migliore [6] proved that the stick figure embedded in X , determined by the union of a
i
consecutive lines in A
i
= 0 always the first in B = 0, is an aCM scheme C with h-vector
a. In this way, if we consider C
′
, the residual of C in X , the intersection of C and C
′
is an aG scheme Y of codimension 3. This is also a reduced set of points because X , C and C
′
are stick figures and it has the desired h-vector by the following theorem:
T
HEOREM
1. Let C, C
′
, X , Y be as above. Let g = 1, c, g
2
, . . . , g
s
, g
s+1
be the h-vector of X , let a = 1, a
1
, . . . , a
t
and b = 1, b
1
, . . . , b
l
be the h-vectors of C and C
′
, then b
i
= g
s+1−i
− a
s+1−i
for i ≥ 0. Moreover the sequence d
i
= a
i
+ b
i
− g
i
is the first difference of the h-vector of Y . So we have to show that d
i
= h
i
− h
i−1
: • For 0 ≤ i ≤ t we have d
i
= a
i
= h
i
− h
i−1
• For t + 1 ≤ i ≤ s − t we have d
i
= b
i
− g
i
= 0 • For s − t + 1 ≤ i ≤ s + 1 we have d
i
= b
i
− g
i
= −a
s+1−i
= −h
s+1−i
− h
s−i
= h
i
− h
i−1
R
EMARK
1. Theorem 1 says, for example, that there exists no cubic through the 8 points of a Complete Intersection of two cubics, but not through the nine. In fact, if we consider a reduced
Complete Intersection zeroscheme X in P
2
given by two forms of degree a and b, the h−vector of X \ { P} is 1, 2, 3, . . . , a − 1, a, a, . . . , a, a, a − 1, . . . , 3, 2, whatever point P we cut off.
E
XAMPLE
1. Let h = 1, 3, 4, 3, 1 be a SI-sequence. Consider the first difference of h, i.e. 1h = 1, 2, 1, −1, −2, −1.
So, g = 1, 2, 3, 3, 2, 1 is the h-vector of X , stick figure which is the Complete Intersection of F
1
= Q
2 i=0
A
i
and F
2
= Q
3 i=0
B
i
, where A
i
and B
i
are general linear forms. Now, we call P
i, j
the intersection between A
i
= 0 and B
j
= 0. Then C = P
0,0
∪ P
1,0
∪ P
1,1
∪ P
2,0
is the scheme which has h-vector a = 1, 2, 1.
158 C. Bocci - G. Dalzotto
✈ ❢
❢ ❢
✈ ✈
❢ ❢
✈ ❢
❢ ❢
✈ ❢
C = C
′
= P
0,0
P
0,1
P
0,2
P
0,3
P
1,0
P
1,1
P
1,2
P
1,3
P
2,0
P
2,1
P
2,2
P
2,3
Figure 1
A
2
A
1
A B
3
B
2
B
1
B
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
So, it is clear that the residual C
′
of C in X is the union of the lines of X which aren’t components in C. Then the reduced set of points Y with h-vector 1, 3, 4, 3, 1 consists of 12
points which exactly are: • 3 points on P
0,0
, intersection between P
0,0
and P
0,1
, P
0,2
and P
0,3
• 2 points on P
1,0
, intersection between P
1,0
and P
1,2
, P
1,3
• 4 points on P
1,1
, intersection between P
1,1
and P
1,2
, P
1,3
, P
0,1
and P
2,1
• 3 points on P
2,0
, intersection between P
2,0
and P
2,1
, P
2,2
and P
2,3
E
XAMPLE
2. Let h = 1, 3, 5, 3, 1. With the previous notations, we have that the first difference of h is 1h = 1, 2, 2, −2, −2, −1, so g = 1, 2, 3, 3, 2, 1. Hence, we can take a
stick figure X which is a Complete Intersection between a cubic and a quartic. Therefore, as above, we get a subscheme of X with h-vector 1, 2, 2.
✈ ✈
❢ ❢
✈ ✈
❢ ❢
✈ ❢
❢ ❢
✈ ❢
C = C
′
= A
2
A
1
A B
3
B
2
B
1
B
Figure 2
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
In this way, the intersection between C and the residual C
′
gives the reduced set of 13 points with the expected h-vector.
Gorenstein points in
P
3
159
3. Gorenstein Sets of points not complete intersection