Normal gamma Simulation Study

45 10 20 30 60 100 300 500 1000 ML UMVU MSE bargraph for k=2 and mu_j=1 Sample Size Mean Square Error 0.0 0.5 1.0 1.5 a k=2 10 20 30 60 100 300 500 1000 ML UMVU MSE bargraph for k=4 and mu_j=1 Sample Size Mean Square Error 5 10 15 20 25 b k=4 10 20 30 60 100 300 500 1000 ML UMVU MSE bargraph for k=2 and mu_j=1 Sample Size Mean Square Error 200 400 600 800 1000 1200 c k=6 10 20 30 60 100 300 500 1000 ML UMVU MSE bargraph for k=8 and mu_j=1 Sample Size Mean Square Error 10000 20000 30000 40000 50000 d k=8 Figure 4.1: Bargraphs of the mean square errors of T n;k ,p,t and U n;k ,p,t for normal-gamma with µ j = 1 and k ∈ {2,4,6,8}. There are more important performance characterizations for an estimator than just being unbiased. The MSE is perhaps the most important of them. It captures the bias and the variance of the estimator. For this reason, we compare the quality of the estimators using their MSE values. The result shows that when n increases the MSE of the estimates of the two methods become similar, and they both produced almost the same result for n = 1000. The MSE values in the tables are presented graphically in Figure 4.1 and Figure 4.2 respectively. In the figures it is obviously seen that the performance of all estimators becomes more similar when the sample size increase. For small sample sizes, U n;k ,p,t always has smaller MSE, in this situation U n;k ,p,t is preferable than T n;k ,p,t . In these figures we also can observe that the difference between U n;k ,p,t and T n;k ,p,t for small sample sizes increases when the dimension increases. 46 Table 4.2: The expected values with empirical standard errors and MSE of T n;k ,p,t and U n;k ,p,t for normal-gamma with 1000 replications for given target value µ k+1 j = 5 k+1 with k ∈ {2,4,6,8} k Target n ET n;k ,p,t StdT n;k ,p,t EU n;k ,p,t StdU n;k ,p,t MSE T n;k ,p,t MSE U n;k ,p,t 2 125 3 1.46E+02 1.17E+02 6.58E+01 5.27E+01 1.41E+04 6.28E+03 10 1.32E+02 5.68E+01 9.97E+01 4.30E+01 3.27E+03 2.49E+03 20 1.27E+02 3.88E+01 1.10E+02 3.36E+01 1.51E+03 1.34E+03 30 1.27E+02 3.20E+01 1.16E+02 2.91E+01 1.03E+03 9.33E+02 60 1.25E+02 2.27E+01 1.19E+02 2.16E+01 5.16E+02 5.07E+02 100 1.26E+02 1.67E+01 1.22E+02 1.62E+01 2.79E+02 2.73E+02 300 1.25E+02 9.82E+00 1.24E+02 9.72E+00 9.65E+01 9.56E+01 500 1.25E+02 7.64E+00 1.25E+02 7.59E+00 5.84E+01 5.78E+01 1000 1.25E+02 5.32E+00 1.25E+02 5.30E+00 2.83E+01 2.83E+01 4 3125 5 4.55E+03 5.13E+03 9.41E+02 1.06E+03 2.84E+07 5.89E+06 10 3.83E+03 2.90E+03 1.60E+03 1.21E+03 8.89E+06 3.79E+06 20 3.45E+03 1.77E+03 2.17E+03 1.11E+03 3.25E+06 2.16E+06 30 3.39E+03 1.37E+03 2.47E+03 9.95E+02 1.94E+06 1.42E+06 60 3.20E+03 9.56E+02 2.72E+03 8.12E+02 9.20E+05 8.23E+05 100 3.14E+03 6.98E+02 2.84E+03 6.32E+02 4.87E+05 4.78E+05 300 3.15E+03 4.17E+02 3.05E+03 4.03E+02 1.74E+05 1.69E+05 500 3.14E+03 3.18E+02 3.07E+03 3.12E+02 1.02E+05 9.99E+04 1000 3.14E+03 2.18E+02 3.11E+03 2.16E+02 4.79E+04 4.69E+04 6 78125 7 1.51E+05 2.20E+05 1.44E+04 2.10E+04 5.38E+10 4.51E+09 10 1.15E+05 1.34E+05 2.00E+04 2.33E+04 1.94E+10 3.93E+09 20 9.86E+04 7.79E+04 3.81E+04 3.01E+04 6.49E+09 2.51E+09 30 8.83E+04 5.09E+04 4.59E+04 2.64E+04 2.69E+09 1.74E+09 60 8.55E+04 3.70E+04 6.10E+04 2.64E+04 1.43E+09 9.93E+08 100 8.13E+04 2.44E+04 6.62E+04 1.98E+04 6.04E+08 5.35E+08 300 7.87E+04 1.40E+04 7.34E+04 1.31E+04 1.97E+08 1.94E+08 500 7.83E+04 1.11E+04 7.51E+04 1.06E+04 1.23E+08 1.22E+08 1000 7.88E+04 7.92E+03 7.71E+04 7.75E+03 6.31E+07 6.11E+07 8 1953125 10 3.52E+06 6.52E+06 1.99E+05 3.69E+05 4.49E+13 3.21E+12 20 2.79E+06 3.42E+06 5.70E+05 6.98E+05 1.24E+13 2.40E+12 30 2.44E+06 2.01E+06 8.13E+05 6.68E+05 4.27E+12 1.75E+12 60 2.15E+06 1.16E+06 1.21E+06 6.52E+05 1.37E+12 9.78E+11 100 2.17E+06 9.34E+05 1.53E+06 6.58E+05 9.20E+11 6.11E+11 300 2.01E+06 4.79E+05 1.79E+06 4.25E+05 2.33E+11 2.08E+11 500 1.98E+06 3.52E+05 1.84E+06 3.28E+05 1.25E+11 1.20E+11 1000 1.96E+06 2.55E+05 1.89E+06 2.46E+05 6.53E+10 6.44E+10

4.2.2. Normal inverse-Gaussian

We generated normal inverse-Gaussian model in the same way as sim- ulating the normal-gamma model. Table 4.3 shows the expected values of generalized variance estimates with their standard errors in parentheses and the means square error values of both ML and UMVU methods in case of normal inverse-Gaussian. By setting µ j = 1 and using equation 3.11 we 47 10 20 30 60 100 300 500 1000 ML UMVU MSE bargraph for k=2 and mu_j=5 Sample Size Mean Square Error 500 1000 1500 2000 2500 3000 a k=2 10 20 30 60 100 300 500 1000 ML UMVU MSE bargraph for k=4 and mu_j=5 Sample Size Mean Square Error 0e+00 2e+06 4e+06 6e+06 8e+06 b k=4 10 20 30 60 100 300 500 1000 ML UMVU MSE bargraph for k=2 and mu_j=5 Sample Size Mean Square Error 0.0e+00 5.0e+09 1.0e+10 1.5e+10 c k=6 10 20 30 60 100 300 500 1000 ML UMVU MSE bargraph for k=8 and mu_j=5 Sample Size Mean Square Error 0e+00 1e+13 2e+13 3e+13 4e+13 d k=8 Figure 4.2: Bargraphs of the mean square errors of T n;k ,p,t and U n;k ,p,t for normal-gamma with µ j = 5 and k ∈ {2,4,6,8}. have generalized variance of distribution: µ k+2 j = 1. Similar with the result of generalized variance estimation for normal gamma, the result for normal inverse-Gaussian shows that UMVU method produced better estimates than ML method for small sample sizes. When the sample size n increases, the expected values of the estimates of the two methods become closer to the target value and they both produced almost the same result for n = 1000. The MSE values in Table 4.3 is presented as bargraphs in Figure 4.3. In Figure 4.3 the behavior of MSE of T n;k ,p,t and U n;k ,p,t is displayed clearly. For small sample sizes n ≤ 30, U n;k ,p,t is preferable than T n;k ,p,t . The differ- ence between the two methods when n ≤ 30 increases when k increases. 48 Table 4.3: The expected values with standard errors and MSE of T n;k ,p,t and U n;k ,p,t for normal inverse-Gaussian with 1000 replications for given target value µ k+2 j = 1 and k ∈ {2,4,6,8}. k Target n E T n;k ,p,t StdT n;k ,p,t E U n;k ,p,t StdU n;k ,p,t MSE T n;k ,p,t MSE U n;k ,p,t 2 1 3 2.0068 4.9227 0.9135 0.8235 25.2469 0.6856 10 1.4249 2.8513 1.0316 0.4388 8.3103 0.1935 20 1.5936 1.8951 1.1340 0.3718 3.9439 0.1562 30 1.3677 1.0155 1.1641 0.2668 1.1664 0.0981 60 1.0846 0.5341 1.1104 0.1856 0.2924 0.0466 100 1.0819 0.5166 1.1102 0.1675 0.2735 0.0402 300 1.0006 0.2570 1.0843 0.0919 0.0660 0.0156 500 1.0356 0.1890 1.1374 0.0727 0.0370 0.0242 1000 1.0156 0.1219 1.0116 0.0670 0.0151 0.0115 4 1 5 9.3836 30.0947 1.3196 1.1323 975.9726 1.3843 10 4.6547 13.8643 1.2837 0.8153 205.5754 0.7452 20 2.7487 5.1845 1.2963 0.6189 29.9373 0.4709 30 1.4822 2.1166 1.1854 0.4572 4.7125 0.2434 60 1.3095 1.1051 1.2560 0.3054 1.3170 0.1588 100 1.1673 0.8467 1.2264 0.2671 0.7449 0.1226 300 1.0849 0.4296 1.2542 0.1520 0.1918 0.0877 500 1.0350 0.2839 1.0762 0.0914 0.0818 0.0416 1000 1.0107 0.2080 1.0102 0.1137 0.0434 0.0337 6 1 7 20.4865 113.4633 0.9423 0.9984 13253.6508 1.0001 10 12.1032 55.7841 1.0596 0.8610 3235.1488 0.7449 20 3.4498 10.3056 1.0054 0.5933 112.2060 0.3520 30 2.1422 3.2262 1.0246 0.4970 11.7130 0.2476 60 1.8236 2.6064 1.0587 0.3744 7.4717 0.1436 100 1.2468 1.1599 1.0129 0.2643 1.4062 0.1170 300 1.0781 0.4953 1.0568 0.1596 0.2514 0.0929 500 1.0815 0.4065 1.0230 0.1110 0.1719 0.0922 1000 1.0207 0.2816 1.0204 0.0775 0.0798 0.0760 8 1 10 27.9651 106.4417 1.1645 1.2832 12056.9414 1.6737 20 10.2639 47.3683 1.2127 0.9227 2329.5787 0.8674 30 5.8903 14.2638 1.2634 0.8024 227.3707 0.7133 60 1.8667 3.2137 1.1402 0.4894 11.0792 0.2504 100 1.5251 1.8103 1.1340 0.3734 3.5530 0.1591 300 1.2059 0.8122 1.1398 0.2275 0.7021 0.1571 500 1.1817 0.6075 1.1210 0.3032 0.4021 0.1200 1000 1.0325 0.3189 1.1125 0.0564 0.1027 0.0910

4.2.3. Normal Poisson

Again by fixing j = 1 we set several sample sizes n varied from 5 until 1000 and we generated 1000 samples for each n. However, for normal Poisson case, to see the effect of zero values proportion within X j , we also consider small mean values on the Poisson component because PX j = 0 = exp−µ j , then we set µ j = 0 .5, 1 and 5. We also used Theorem 4.1.3 for calculating Bayesian estimator in this simulation, we assume that the parameters of